Displaying publications 161 - 180 of 843 in total

Abstract:
Sort:
  1. Singh JC, Kakalij RM, Kshirsagar RP, Kumar BH, Komakula SS, Diwan PV
    Pharm Biol, 2015 May;53(5):630-6.
    PMID: 25472801 DOI: 10.3109/13880209.2014.935866
    Vanillic acid (VA), a flavoring agent used in food and drug products, obtained naturally from the plant Angelica sinensis (Oliv.) Diels (Apiaceae), used in the traditional Chinese medicine. It is reported to possess strong antioxidant, anti-inflammatory, and neuroprotective effects. However, the pharmacological effects on oxidative stress-induced neurodegeneration are not well investigated.
    Matched MeSH terms: Oxidative Stress/drug effects
  2. Amir Yusri MA, Sekar M, Wong LS, Gan SH, Ravi S, Subramaniyan V, et al.
    Drug Des Devel Ther, 2023;17:1079-1096.
    PMID: 37064431 DOI: 10.2147/DDDT.S389977
    Celastrol is a naturally occurring chemical isolated from Tripterygium wilfordii Hook. f., root extracts widely known for their neuroprotective properties. In this review, we focus on the efficacy of celastrol in mitigating memory impairment (MI) in both in vivo and in vitro models. Scopus, PubMed and Web of Science databases were utilised to locate pertinent literatures that explore the effects of celastrol in the brain, including its pharmacokinetics, bioavailability, behavioral effects and some of the putative mechanisms of action on memory in many MI models. To date, preclinical studies strongly suggest that celastrol is highly effective in enhancing the cognitive performance of MI animal models, particularly in the memory domain, including spatial, recognition, retention and reference memories, via reduction in oxidative stress and attenuation of neuro-inflammation, among others. This review also emphasised the challenges and potential associated enhancement of medication delivery for MI treatment. Additionally, the potential structural alterations and derivatives of celastrol in enhancing its physicochemical and drug-likeness qualities are examined. The current review demonstrated that celastrol can improve cognitive performance and mitigate MI in several preclinical investigations, highlighting its potential as a natural lead molecule for the design and development of a novel neuroprotective medication.
    Matched MeSH terms: Oxidative Stress
  3. Paudel KR, Wadhwa R, Mehta M, Chellappan DK, Hansbro PM, Dua K
    Toxicol In Vitro, 2020 Oct;68:104961.
    PMID: 32771431 DOI: 10.1016/j.tiv.2020.104961
    Airway inflammation and infections are the primary causes of damage in the airway epithelium, that lead to hypersecretion of mucus and airway hyper-responsiveness. The role of reactive oxygen species (ROS) and their components in the pathophysiological mechanisms of airway inflammation have been well-studied and emphasized for the past several decades. Rutin, a potent bioflavonoid, is well-known for its antioxidant, anti-inflammatory, especially in bronchial inflammation. However, poor solubility and rapid metabolism have led to its low bioavailability in biological systems, and hence limit its application. The present study aims to investigate the beneficial effects of rutin-loaded liquid crystalline nanoparticles (LCNs) against lipopolysaccharide (LPS) induced oxidative damage in human bronchial epithelial cell line (BEAS-2-B) cells in vitro. LPS was used to stimulate BEAS-2-B cells, causing the generation of nitric oxide (NO) and other reactive oxygen species (ROS) that had led to cellular apoptosis. The levels of NO and ROS were detected by, Griess reagent kit and dichlorodihydrofluorescein diacetate (DCFH-DA) respectively, whereas, cell apoptosis was studied by Annexin V-FITC and PI staining. The findings revealed that rutin-loaded LCNs significantly reduced NO, ROS levels and prevented apoptosis in BEAS-2B cells. The observations and findings provide a mechanistic understanding of the effectiveness of rutin-loaded LCNs in protecting the bronchial cells against airway inflammation, thus possessing a promising therapeutic option for the management of airway diseases.
    Matched MeSH terms: Oxidative Stress/drug effects
  4. Mehta M, Paudel KR, Shukla SD, Shastri MD, Satija S, Singh SK, et al.
    Future Med Chem, 2021 03;13(6):543-549.
    PMID: 33538615 DOI: 10.4155/fmc-2020-0297
    Aim: In the present study, the inhibitory potential of rutin-loaded liquid crystalline nanoparticles (LCNs) on oxidative stress was determined in human bronchial epithelial cells (BEAS-2B) by analysing the expression levels of different antioxidant (NADPH quinine oxidoreductase-1 (NQO1); γ-glutamyl cysteine synthetase catalytic subunit (GCLC)) and pro-oxidant (NADPH oxidase (Nox)-4; Nox2B) genes. Results: Our findings revealed that the rutin-loaded LCNs inhibited the genes, namely Nox2B and Nox4, which caused oxidative stress. In addition, these nanoparticles demonstrated an upregulation in the expression of the antioxidant genes Gclc and Nqo-1 in a dose-dependent manner. Conclusion: The study indicates the promising potential of rutin-loaded LCNs as an effective treatment strategy in patients with high oxidant loads in various respiratory diseases.
    Matched MeSH terms: Oxidative Stress/drug effects*
  5. Chellappan DK, Yee LW, Xuan KY, Kunalan K, Rou LC, Jean LS, et al.
    Drug Dev Res, 2020 06;81(4):419-436.
    PMID: 32048757 DOI: 10.1002/ddr.21648
    Neutrophils are essential effector cells of immune system for clearing the extracellular pathogens during inflammation and immune reactions. Neutrophils play a major role in chronic respiratory diseases. In respiratory diseases such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, lung cancer and others, there occurs extreme infiltration and activation of neutrophils followed by a cascade of events like oxidative stress and dysregulated cellular proteins that eventually result in apoptosis and tissue damage. Dysregulation of neutrophil effector functions including delayed neutropil apoptosis, increased neutrophil extracellular traps in the pathogenesis of asthma, and chronic obstructive pulmonary disease enable neutrophils as a potential therapeutic target. Accounting to their role in pathogenesis, neutrophils present as an excellent therapeutic target for the treatment of chronic respiratory diseases. This review highlights the current status and the emerging trends in novel drug delivery systems such as nanoparticles, liposomes, microspheres, and other newer nanosystems that can target neutrophils and their molecular pathways, in the airways against infections, inflammation, and cancer. These drug delivery systems are promising in providing sustained drug delivery, reduced therapeutic dose, improved patient compliance, and reduced drug toxicity. In addition, the review also discusses emerging strategies and the future perspectives in neutrophil-based therapy.
    Matched MeSH terms: Oxidative Stress/drug effects
  6. Wadhwa R, Paudel KR, Mehta M, Shukla SD, Sunkara K, Prasher P, et al.
    CNS Neurol Disord Drug Targets, 2020;19(9):698-708.
    PMID: 33109069 DOI: 10.2174/1871527319999200817112427
    Tobacco smoke is not only a leading cause for chronic obstructive pulmonary disease, cardiovascular disorders, and lung and oral cancers, but also causes neurological disorders such as Alzheimer 's disease. Tobacco smoke consists of more than 4500 toxic chemicals, which form free radicals and can cross blood-brain barrier resulting in oxidative stress, an extracellular amyloid plaque from the aggregation of amyloid β (Aβ) peptide deposition in the brain. Further, respiratory infections such as Chlamydia pneumoniae, respiratory syncytial virus have also been involved in the induction and development of the disease. The necessary information collated on this review has been gathered from various literature published from 1995 to 2019. The review article sheds light on the role of smoking and respiratory infections in causing oxidative stress and neuroinflammation, resulting in Alzheimer's disease (AD). This review will be of interest to scientists and researchers from biological and medical science disciplines, including microbiology, pharmaceutical sciences and the translational researchers, etc. The increasing understanding of the relationship between chronic lung disease and neurological disease is two-fold. First, this would help to identify the risk factors and possible therapeutic interventions to reduce the development and progression of both diseases. Second, this would help to reduce the probable risk of development of AD in the population prone to chronic lung diseases.
    Matched MeSH terms: Oxidative Stress
  7. De Rubis G, Paudel KR, Manandhar B, Singh SK, Gupta G, Malik R, et al.
    Nutrients, 2023 Feb 17;15(4).
    PMID: 36839377 DOI: 10.3390/nu15041019
    Chronic obstructive pulmonary disease (COPD) is an irreversible inflammatory respiratory disease characterized by frequent exacerbations and symptoms such as cough and wheezing that lead to irreversible airway damage and hyperresponsiveness. The primary risk factor for COPD is chronic cigarette smoke exposure, which promotes oxidative stress and a general pro-inflammatory condition by stimulating pro-oxidant and pro-inflammatory pathways and, simultaneously, inactivating anti-inflammatory and antioxidant detoxification pathways. These events cause progressive damage resulting in impaired cell function and disease progression. Treatments available for COPD are generally aimed at reducing the symptoms of exacerbation. Failure to regulate oxidative stress and inflammation results in lung damage. In the quest for innovative treatment strategies, phytochemicals, and complex plant extracts such as agarwood essential oil are promising sources of molecules with antioxidant and anti-inflammatory activity. However, their clinical use is limited by issues such as low solubility and poor pharmacokinetic properties. These can be overcome by encapsulating the therapeutic molecules using advanced drug delivery systems such as polymeric nanosystems and nanoemulsions. In this study, agarwood oil nanoemulsion (agarwood-NE) was formulated and tested for its antioxidant and anti-inflammatory potential in cigarette smoke extract (CSE)-treated BCi-NS1.1 airway basal epithelial cells. The findings suggest successful counteractivity of agarwood-NE against CSE-mediated pro-inflammatory effects by reducing the expression of the pro-inflammatory cytokines IL-1α, IL-1β, IL-8, and GDF-15. In addition, agarwood-NE induced the expression of the anti-inflammatory mediators IL-10, IL-18BP, TFF3, GH, VDBP, relaxin-2, IFN-γ, and PDGF. Furthermore, agarwood-NE also induced the expression of antioxidant genes such as GCLC and GSTP1, simultaneously activating the PI3K pro-survival signalling pathway. This study provides proof of the dual anti-inflammatory and antioxidant activity of agarwood-NE, highlighting its enormous potential for COPD treatment.
    Matched MeSH terms: Oxidative Stress
  8. Malik R, Paudel KR, Manandhar B, De Rubis G, Shen J, Mujwar S, et al.
    Pathol Res Pract, 2023 Nov;251:154895.
    PMID: 37879146 DOI: 10.1016/j.prp.2023.154895
    PURPOSE: Oxidative stress and inflammation are key pathophysiological features of chronic respiratory diseases, including asthma and chronic obstructive pulmonary disease (COPD). Agarwood oil obtained from Aquilaria trees has promising antioxidant and anti-inflammatory activities. However, its clinical application is hampered by poor solubility. A viable approach to overcome this involves formulation of oily constituents into emulsions. Here, we have investigated the antioxidant and anti-inflammatory potential of an agarwood oil-based nanoemulsion (DE'RAAQSIN) against lipopolysaccharide (LPS)-induced RAW264.7 mouse macrophages in vitro.

    METHODS: The antioxidant and anti-inflammatory activity of DE'RAAQSIN was assessed by measuring the levels of ROS and nitric oxide (NO) produced, using the DCF-DA assay and the Griess reagent assay, respectively. The molecular pathways activated by DE'RAAQSIN were investigated via qPCR.

    RESULTS: LPS stimulation of RAW264.7 cells increased the production of nitric oxide (NO) and ROS and resulted in the overexpression of the inducible nitric oxide synthase (iNOS) gene. Furthermore, LPS induced the upregulation of the expression of key proinflammatory genes (IL-6, TNF-α, IL-1β, and CXCL1) and of the antioxidant gene heme oxygenase-1 (HO-1). DE'RAAQSIN demonstrated potent antioxidant and anti-inflammatory activity by significantly reducing the levels of ROS and of secreted NO, simultaneously counteracting the LPS-induced overexpression of iNOS, IL-6, TNF-α, IL-1β, and HO-1. These findings were corroborated by in silico activity prediction and physicochemical analysis of the main agarwood oil components.

    CONCLUSIONS: We propose DE'RAAQSIN as a promising alternative managing inflammatory disorders, opening the platform for further studies aimed at understanding the effectiveness of DE'RAAQSIN.

    Matched MeSH terms: Oxidative Stress
  9. Allam VSRR, Paudel KR, Gupta G, Singh SK, Vishwas S, Gulati M, et al.
    Environ Sci Pollut Res Int, 2022 Sep;29(42):62733-62754.
    PMID: 35796922 DOI: 10.1007/s11356-022-21454-w
    Asthma is a chronic inflammatory disease primarily characterized by inflammation and reversible bronchoconstriction. It is currently one of the leading causes of morbidity and mortality in the world. Oxidative stress further complicates the pathology of the disease. The current treatment strategies for asthma mainly involve the use of anti-inflammatory agents and bronchodilators. However, long-term usage of such medications is associated with severe adverse effects and complications. Hence, there is an urgent need to develop newer, novel, and safe treatment modalities for the management of asthma. This has therefore prompted further investigations and detailed research to identify and develop novel therapeutic interventions from potent untapped resources. This review focuses on the significance of oxidative stressors that are primarily derived from both mitochondrial and non-mitochondrial sources in initiating the clinical features of asthma. The review also discusses the biological scavenging system of the body and factors that may lead to its malfunction which could result in altered states. Furthermore, the review provides a detailed insight into the therapeutic role of nutraceuticals as an effective strategy to attenuate the deleterious effects of oxidative stress and may be used in the mitigation of the cardinal features of bronchial asthma.
    Matched MeSH terms: Oxidative Stress
  10. Paudel KR, Clarence DD, Panth N, Manandhar B, De Rubis G, Devkota HP, et al.
    Naunyn Schmiedebergs Arch Pharmacol, 2024 Apr;397(4):2465-2483.
    PMID: 37851060 DOI: 10.1007/s00210-023-02760-7
    The purpose of this study was to evaluate the potential of zerumbone-loaded liquid crystalline nanoparticles (ZER-LCNs) in the protection of broncho-epithelial cells and alveolar macrophages against oxidative stress, inflammation and senescence induced by cigarette smoke extract in vitro. The effect of the treatment of ZER-LCNs on in vitro cell models of cigarette smoke extract (CSE)-treated mouse RAW264.7 and human BCi-NS1.1 basal epithelial cell lines was evaluated for their anti-inflammatory, antioxidant and anti-senescence activities using colorimetric and fluorescence-based assays, fluorescence imaging, RT-qPCR and proteome profiler kit. The ZER-LCNs successfully reduced the expression of pro-inflammatory markers including Il-6, Il-1β and Tnf-α, as well as the production of nitric oxide in RAW 264.7 cells. Additionally, ZER-LCNs successfully inhibited oxidative stress through reduction of reactive oxygen species (ROS) levels and regulation of genes, namely GPX2 and GCLC in BCi-NS1.1 cells. Anti-senescence activity of ZER-LCNs was also observed in BCi-NS1.1 cells, with significant reductions in the expression of SIRT1, CDKN1A and CDKN2A. This study demonstrates strong in vitro anti-inflammatory, antioxidative and anti-senescence activities of ZER-LCNs paving the path for this formulation to be translated into a promising therapeutic agent for chronic respiratory inflammatory conditions including COPD and asthma.
    Matched MeSH terms: Oxidative Stress
  11. Bhat AA, Afzal M, Goyal A, Gupta G, Thapa R, Almalki WH, et al.
    Chem Biol Interact, 2024 May 01;394:111002.
    PMID: 38604395 DOI: 10.1016/j.cbi.2024.111002
    Lung inflammatory disorders are a major global health burden, impacting millions of people and raising rates of morbidity and death across many demographic groups. An industrial chemical and common environmental contaminant, formaldehyde (FA) presents serious health concerns to the respiratory system, including the onset and aggravation of lung inflammatory disorders. Epidemiological studies have shown significant associations between FA exposure levels and the incidence and severity of several respiratory diseases. FA causes inflammation in the respiratory tract via immunological activation, oxidative stress, and airway remodelling, aggravating pre-existing pulmonary inflammation and compromising lung function. Additionally, FA functions as a respiratory sensitizer, causing allergic responses and hypersensitivity pneumonitis in sensitive people. Understanding the complicated processes behind formaldehyde-induced lung inflammation is critical for directing targeted strategies aimed at minimizing environmental exposures and alleviating the burden of formaldehyde-related lung illnesses on global respiratory health. This abstract explores the intricate relationship between FA exposure and lung inflammatory diseases, including asthma, bronchitis, allergic inflammation, lung injury and pulmonary fibrosis.
    Matched MeSH terms: Oxidative Stress/drug effects
  12. Mohamed K, Zine K, Fahima K, Abdelfattah E, Sharifudin SM, Duduku K
    Toxicol Rep, 2018;5:480-488.
    PMID: 29854619 DOI: 10.1016/j.toxrep.2018.03.012
    Nickel oxide nanoparticles (NiO NPs) have attracted increasing attention owing to potential capacity to penetrate to several human cell systems and exert a toxic effect. Elsewhere, the use of medicinal plants today is the form of the most widespread medicine worldwide. Utilizing aromatic plants as interesting source of phytochemicals constitute one of the largest scientific concerns. Thus this study was focused to investigate antioxidant and cytoprotective effects of essential oil of a Mediterranean plant P. lentiscus (PLEO) on NiO NPs induced cytotoxicity and oxidative stress in human lung epithelial cells (A549). The obtained results showed that cell viability was reduced by NiO NPs, who's also found to induce oxidative stress in dose-dependent manner indicated by induction of reactive oxygen species and reduction of antioxidant enzymes activities. Our results also demonstrated that PLEO contains high amounts in terpinen-4-ol (11.49%), germacrene D (8.64%), α-pinene (5.97%), sabinene (5.19%), caryophyllene (5.10%) and δ-Cadinene (4.86%). PLEO exhibited a potent antioxidant capacity by cell viability improving, ROS scavenging and enhancing the endogenous antioxidant system against NiO NPs in this model of cells. The present work demonstrated, for the first time, the protective activity of PLEO against cell oxidative damage induced by NiO NPs. It was suggested that this plant essential oil could be use as a cells protector.
    Matched MeSH terms: Oxidative Stress
  13. Abd Aziz NAA, Chatterjee A, Chatterjee R, Durairajanayagam D
    Andrologia, 2019 Apr;51(3):e13199.
    PMID: 30461035 DOI: 10.1111/and.13199
    This study examined whether tocotrienol supplementation to corticosterone-treated male rats could prevent foetal loss in females upon their mating. Epididymides of adult male Sprague-Dawley (SD) rats with proven fertility were surgically separated at the testis-caput junction. Twenty-four hours post-surgery, these animals received for 7 days either: tocopherol-stripped corn oil (Control), corticosterone 25 mg/kg s.c. (CORT), CORT 25 mg/kg s.c. and tocotrienol-rich fraction (TRF) 100 mg/kg orally (CORT + TRF) or TRF 100 mg/kg orally (TRF). On day 8, males were cohabited with proestrus females. A spermatozoa-positive vaginal smear indicated pregnancy. Males were euthanised for analysis of testosterone and antioxidant activities. Reproductive organs were weighed. On day 8 of pregnancy, females were laparotomised to count the number of implantation sites. Pregnancy was continued until term. Number of pups delivered and their weights were determined. Data were analysed using ANOVA. Malondialdehyde levels were significantly lower in CORT + TRF group compared with CORT group. Enzymatic antioxidant activities, testosterone level and reproductive organ weights were significantly higher in CORT + TRF group compared with CORT group. Number of implantation sites and live pups delivered, and their birth weights from females mated with CORT + TRF males were significantly higher compared to CORT group. Therefore, TRF prevents foetal loss in females mated with CORT + TRF-treated males.
    Matched MeSH terms: Oxidative Stress/drug effects
  14. Abd-Aziz, N.A.A., Chatterjee, A., Chatterjee, R., Durairajanayagam, D.
    ASM Science Journal, 2014;8(2):117-124.
    MyJurnal
    Elevated glucocorticoid levels during stressed conditions have been demonstrated to impair reproductive function in rats. In our previous study investigating the dose-related effects of corticosterone (CORT) on the fertilising capacity of epididymal sperm in surgically-manipulated rats, we found that 25 mg/kg/day of CORT given subcutaneously for seven consecutive days significantly decreased the number of implantation sites and increased intrauterine embryonic loss compared to controls. Based on these findings, the current study aims to elucidate the possible mechanisms of action of CORT-induced stress on impaired sperm fertility in rats. Results of the present study showed that compared to controls, 25 mg/kg/day of CORT given subcutaneously for 7 consecutive days significantly increased the level of plasma malondialdehyde (MDA) with corresponding attenuated levels of superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) activities. Plasma adrenocorticotropin (ACTH) and testosterone levels were also found to be decreased in CORTtreated rats. These findings suggest that CORT-induced oxidative stress and exert an inhibitory effect at the hypothalamic-pituitary-gonadal (HPG) axis, as evidenced by increased lipid peroxidation, reduced enzymatic antioxidant activities, and decreased testosterone production. These subsequently result in decreased fertilising capacity of epididymal sperm leading to poor pregnancy outcomes.
    Matched MeSH terms: Oxidative Stress
  15. Alahmar AT, Calogero AE, Sengupta P, Dutta S
    World J Mens Health, 2021 Apr;39(2):346-351.
    PMID: 32009311 DOI: 10.5534/wjmh.190145
    PURPOSE: Oxidative stress and sperm DNA fragmentation (SDF) are potential contributing factors for idiopathic male infertility. Coenzyme Q10 (CoQ10) have been reported to be effective in the treatment of idiopathic male infertility, in general, owing to its antioxidant properties. Thus, the present study intends to investigate the effects of CoQ10 therapy on semen parameters, oxidative stress markers and SDF in infertile men, specifically with idiopathic oligoasthenozoospermia (OA).

    MATERIALS AND METHODS: In this case-control study, sixty-five infertile patients with idiopathic OA and forty fertile men (control) were included. All participants underwent semen analysis based on the World Health Organization guidelines (5th edition, 2010). Patients received CoQ10 at the dose of 200 mg/d orally for three months. Seminal plasma CoQ10, total antioxidant capacity (TAC), total reactive oxygen species (ROS), glutathione peroxidase (GPx), and SDF levels were measured in controls (baseline) and infertile patients pre- and post-CoQ10 treatment.

    RESULTS: CoQ10 treatment for three months significantly improved sperm concentration (p<0.05), progressive motility (p<0.05), total motility (p<0.01), seminal fluid CoQ10 concentration (p<0.001), TAC (p<0.001), and GPx (p<0.001) levels in infertile men with OA. Further, ROS level (p<0.05) and SDF percentage (p<0.001) were reduced in OA patients as compared to the baseline. CoQ10 levels also correlated positively with sperm concentration (r=0.48, p=0.01) and total motility (r=0.59, p=0.003) while a negative correlation was recorded between SDF and sperm motility (r=-0.54, p=0.006).

    CONCLUSIONS: CoQ10 supplementation for three months could improve semen parameters, oxidative stress markers and reduce SDF in infertile men with idiopathic OA.

    Matched MeSH terms: Oxidative Stress
  16. Alahmar AT, Calogero AE, Singh R, Cannarella R, Sengupta P, Dutta S
    Clin Exp Reprod Med, 2021 Jun;48(2):97-104.
    PMID: 34078005 DOI: 10.5653/cerm.2020.04175
    Male infertility has a complex etiopathology, which mostly remains elusive. Although research has claimed that oxidative stress (OS) is the most likely underlying mechanism of idiopathic male infertility, the specific treatment of OS-mediated male infertility requires further investigation. Coenzyme Q10 (CoQ10), a vitamin-like substance, has been found in measurable levels in human semen. It exhibits essential metabolic and antioxidant functions, as well as playing a vital role in mitochondrial bioenergetics. Thus, CoQ10 may be a key player in the maintenance of biological redox balance. CoQ10 concentrations in seminal plasma directly correlate with semen parameters, especially sperm count and sperm motility. Seminal CoQ10 concentrations have been shown to be altered in various male infertility states, such as varicocele, asthenozoospermia, and medical or surgical regimens used to treat male infertility. These observations imply that CoQ10 plays an important physiological role in the maintenance and amelioration of semen quality. The present article thereby aimed to review the possible mechanisms through which CoQ10 plays a role in the regulation of male reproductive function, and to concisely discuss its efficacy as an ameliorative agent in restoring semen parameters in male infertility, as well as its impact on OS markers, sperm DNA fragmentation, pregnancy, and assisted reproductive technology outcomes.
    Matched MeSH terms: Oxidative Stress
  17. Bisong SA, Ukoh IE, Nna VU, Ebong PE
    Andrologia, 2018 Sep;50(7):e13050.
    PMID: 29806220 DOI: 10.1111/and.13050
    Previous studies showed that exposure to stress or nicotine induced reproductive impairment in male rats. Here, we assessed the effect of an antioxidant (vitamin E) on nicotine-, stress- and nicotine + stress-induced reproductive impairment in male rats. Forty-eight male albino Wistar rats were divided into eight groups as follows; control, stress (generator noise 90-120 dB, 8 hr/day), nicotine (1.5 mg kg-1 day-1 ), nicotine + stress, vitamin E (100 mg kg-1 day-1 ), stress + vitamin E, nicotine + vitamin E and stress + nicotine + vitamin E. Sperm count, viability, motility and rapid progressive forward movement decreased significantly (p stress, nicotine and nicotine + stress groups, compared with control. Serum testosterone and follicle-stimulating hormone decreased significantly (p stress, nicotine and nicotine + stress groups, compared with control. Serum luteinising hormone decreased (p stress and nicotine + stress groups, compared with the control. Histology of the testes showed loss of germ cells in numerous seminiferous tubules, and epididymal histology showed decreased sperm density in stress, nicotine and nicotine + stress groups compared with the control. These negative changes were more severe in the nicotine + stress group. Vitamin E ameliorated the negative changes in the above parameters. This may be attributable to its antioxidant property.
    Matched MeSH terms: Oxidative Stress/drug effects*
  18. Farooq SM, Boppana NB, Devarajan A, Asokan D, Sekaran SD, Shankar EM, et al.
    PLoS One, 2014;9(4):e93056.
    PMID: 24691130 DOI: 10.1371/journal.pone.0093056
    Oxalate toxicity is mediated through generation of reactive oxygen species (ROS) via a process that is partly dependent on mitochondrial dysfunction. Here, we investigated whether C-phycocyanin (CP) could protect against oxidative stress-mediated intracellular damage triggered by oxalate in MDCK cells. DCFDA, a fluorescence-based probe and hexanoyl-lysine adduct (HEL), an oxidative stress marker were used to investigate the effect of CP on oxalate-induced ROS production and membrane lipid peroxidation (LPO). The role of CP against oxalate-induced oxidative stress was studied by the evaluation of mitochondrial membrane potential by JC1 fluorescein staining, quantification of ATP synthesis and stress-induced MAP kinases (JNK/SAPK and ERK1/2). Our results revealed that oxalate-induced cells show markedly increased ROS levels and HEL protein expression that were significantly decreased following pre-treatment with CP. Further, JC1 staining showed that CP pre-treatment conferred significant protection from mitochondrial membrane permeability and increased ATP production in CP-treated cells than oxalate-alone-treated cells. In addition, CP treated cells significantly decreased the expression of phosphorylated JNK/SAPK and ERK1/2 as compared to oxalate-alone-treated cells. We concluded that CP could be used as a potential free radical-scavenging therapeutic strategy against oxidative stress-associated diseases including urolithiasis.
    Matched MeSH terms: Oxidative Stress/drug effects*
  19. Jinam TA, Phipps ME, Indran M, Kuppusamy UR, Mahmood AA, Hong LC, et al.
    Ethn Health, 2008 Jun;13(3):277-87.
    PMID: 18568977 DOI: 10.1080/13557850801930478
    Health scenarios are constantly evolving, particularly in developing countries but little is known regarding the health status of indigenous groups in Malaysia. This study aims to elucidate the current health status in four indigenous populations in the country, who by and large been left out of mainstream healthcare developments.
    Matched MeSH terms: Oxidative Stress/physiology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links