Displaying publications 1821 - 1840 of 3987 in total

Abstract:
Sort:
  1. Zhao X, Lim SK, Tan CS, Li B, Ling TC, Huang R, et al.
    Materials (Basel), 2015 Jan 30;8(2):462-473.
    PMID: 28787950 DOI: 10.3390/ma8020462
    Foamed mortar with a density of 1300 kg/m³ was prepared. In the initial laboratory trials, water-to-cement (w/c) ratios ranging from 0.54 to 0.64 were tested to determine the optimal value for foamed mortar corresponding to the highest compressive strength without compromising its fresh state properties. With the obtained optimal w/c ratio of 0.56, two types of foamed mortar were prepared, namely cement-foamed mortar (CFM) and slag-foamed mortar (SFM, 50% cement was replaced by slag weight). Four different curing conditions were adopted for both types of foamed mortar to assess their compressive strength, ultrasonic pulse velocity (UPV) and thermal insulation performance. The test results indicated that utilizing 50% of slag as cement replacement in the production of foamed mortar improved the compressive strength, UPV and thermal insulation properties. Additionally, the initial water curing of seven days gained higher compressive strength and increased UPV values as compared to the air cured and natural weather curing samples. However, this positive effect was more pronounced in the case of compressive strength than in the UPV and thermal conductivity of foamed mortar.
    Matched MeSH terms: Water
  2. Al-Gheethi AA, Mohamed RM, Jais NM, Efaq AN, Abd Halid A, Wurochekke AA, et al.
    J Water Health, 2017 Oct;15(5):741-756.
    PMID: 29040077 DOI: 10.2166/wh.2017.080
    The present study aims to investigate the influence of Staphylococcus aureus, Escherichia coli and Enterococcus faecalis in public market wastewater on the removal of nutrients in terms of ammonium (NH4-) and orthophosphate (PO43) using Scenedesmus sp. The removal rates of NH4- and orthophosphate PO43- and batch kinetic coefficient of Scenedesmus sp. were investigated. The phycoremediation process was carried out at ambient temperature for 6 days. The results revealed that the pathogenic bacteria exhibited survival potential in the presence of microalgae but they were reduced by 3-4 log at the end of the treatment process. The specific removal rates of NH4- and PO43- have a strong relationship with initial concentration in the public market wastewater (R2 = 0.86 and 0.80, respectively). The kinetic coefficient of NH4- removal by Scenedesmus sp. was determined as k = 4.28 mg NH4- 1 log10 cell mL-1 d-1 and km = 52.01 mg L-1 (R2 = 0.94) while the coefficient of PO43- removal was noted as k = 1.09 mg NH4- 1 log10 cell mL-1 d-1 and km = 85.56 mg L-1 (R2 = 0.92). It can be concluded that Scenedesmus sp. has high competition from indigenous bacteria in the public market wastewater to remove nutrients, with a higher coefficient of removal of NH4- than PO43.
    Matched MeSH terms: Water Pollutants, Chemical/metabolism*; Waste Water/analysis*
  3. Noorlaila A, Hasanah HN, Yusoff A, Sarijo SH, Asmeda R
    J Food Sci Technol, 2017 Oct;54(11):3532-3542.
    PMID: 29051648 DOI: 10.1007/s13197-017-2810-6
    The effects of xanthan gum (XG) and hydroxypropyl methylcellulose (HPMC) in sponge cakes were studied. Hydrocolloids enhanced the thickening effect in batter that affected the textural attributes of sponge cakes. During storage, the structural changes in XG-cake resulted in higher hardness compared to HPMC-cake. Similar to XG, HPMC also contributed moistness to cake. The moisture loss of cake containing XG was slower than HPMC-cake. FTIR study showed absorption of OH at region of 3600-2900 cm-1 that explained the strong interaction of water in cake containing XG compared to other cake formulations.
    Matched MeSH terms: Water
  4. Aldawsari A, Khan MA, Hameed BH, Alqadami AA, Siddiqui MR, Alothman ZA, et al.
    PLoS One, 2017;12(9):e0184493.
    PMID: 28910368 DOI: 10.1371/journal.pone.0184493
    A substantive approach converting waste date pits to mercerized mesoporous date pit activated carbon (DPAC) and utilizing it in the removal of Cd(II), Cu(II), Pb(II), and Zn(II) was reported. In general, rapid heavy metals adsorption kinetics for Co range: 25-100 mg/L was observed, accomplishing 77-97% adsorption within 15 min, finally, attaining equilibrium in 360 min. Linear and non-linear isotherm studies revealed Langmuir model applicability for Cd(II) and Pb(II) adsorption, while Freundlich model was fitted to Zn(II) and Cu(II) adsorption. Maximum monolayer adsorption capacities (qm) for Cd(II), Pb(II), Cu(II), and Zn(II) obtained by non-linear isotherm model at 298 K were 212.1, 133.5, 194.4, and 111 mg/g, respectively. Kinetics modeling parameters showed the applicability of pseudo-second-order model. The activation energy (Ea) magnitude revealed physical nature of adsorption. Maximum elution of Cu(II) (81.6%), Zn(II) (70.1%), Pb(II) (96%), and Cd(II) (78.2%) were observed with 0.1 M HCl. Thermogravimetric analysis of DPAC showed a total weight loss (in two-stages) of 28.3%. Infra-red spectral analysis showed the presence of carboxyl and hydroxyl groups over DPAC surface. The peaks at 820, 825, 845 and 885 cm-1 attributed to Zn-O, Pb-O, Cd-O, and Cu-O appeared on heavy metals saturated DPAC, confirmed their binding on DPAC during the adsorption.
    Matched MeSH terms: Water Pollutants, Chemical/isolation & purification*; Water Purification/instrumentation*
  5. Rosli MAF, Azizan KA, Baharum SN, Goh HH
    Data Brief, 2017 Oct;14:295-297.
    PMID: 28795107 DOI: 10.1016/j.dib.2017.07.068
    Hybridisation plays a significant role in the evolution and diversification of plants. Hybridisation among Nepenthes species is extensive, either naturally or man-made. To investigate the effects of hybridisation on the chemical compositions, we carried out metabolomics study on pitcher tissue of Nepenthes ampullaria, Nepenthes rafflesiana and their hybrid, Nepenthes × hookeriana. Pitcher samples were harvested and extracted in methanol:chloroform:water via sonication-assisted extraction before analysed using LC-TOF-MS. MS data were analysed using XCMS online version 2.2.5. This is the first MS data report towards the profiling, identification and comprehensive comparison of metabolites present in Nepenthes species.
    Matched MeSH terms: Water
  6. Toni B, Monfared HH, Mat Isa MN, Md Isa N, Ismail I, Zainal Z
    Data Brief, 2017 Oct;14:260-266.
    PMID: 28795103 DOI: 10.1016/j.dib.2017.07.043
    Drought stress is the main abiotic factor affecting rice production. Rain-fed upland rice which is grown on unbounded fields and totally dependent on rainfall for moisture is more prone to drought stress compared to rice from other ecosystems. However, upland rice has adapted to this limited water condition, thus are more drought tolerant than rice from other ecosystems. We performed the first transcriptome sequencing of drought tolerant indica upland rice cultivar Kuku Belang to identify differentially expressed genes related to drought tolerance mechanism. Raw reads for non-treated and PEG-treated Oryza sativa subspecies indica cv. Kuku Belang were deposited in the NCBI SRA database with accession number SRP074520 (https://www.ncbi.nlm.nih.gov/sra?term=SRP074520).
    Matched MeSH terms: Water
  7. Siow, L.F., Hui, Y.W.
    MyJurnal
    Antioxidant properties of both fresh and convection oven-dried guavas (Psidium guajava L.) were determined. Guava slices of 1.0 cm wide, 3.0 cm long and 0.5cm thick (20 g) were subjected to convection drying at 40°C for 9, 12 and 14 hours, respectively, and their water activity, total phenolic content (TPC) and antioxidant activities were measured. Guavas that had been subjected to drying for 9, 12 and 14 hours were shown to achieve the water activity of 0.36-0.49. Ascorbic Acid Equivalent Antioxidant Capacity (AEAC) of guava was found to decrease for all the drying durations. Convection oven-drying of guava for 12 and 14 hours showed a significant decrease in TPC (p < 0.01) and Ferric Reducing Power Assay (FRP) (p < 0.01). Nine hours of convection oven-drying was shown to retain most of the TPC, AEAC and FRP of guava.
    Matched MeSH terms: Water
  8. Normah, I., Noorasma, M.
    MyJurnal
    Physicochemical properties of mud clam (Polymesoda erosa) hydrolysate produced using two microbial enzymes; alcalase and flavourzyme were determined. Hydrolysis using alcalase at 20.28% degree of hydrolysis (DH) resulted in 25.06 % yield and 45.37% protein while flavourzyme hydrolysis showed 22.93 % DH, 46.67 % protein and 30.68 % yield. Both hydrolysates were yellowish. Better emulsifying properties, foaming properties and water and oil holding capacity were exhibited by flavourzyme hydrolysate compared to the alcalase hydrolysate. However, in terms of amino acid composition, alcalase hydrolysate contained higher amino acid composition (75.06%) than flavourzyme hydrolysate (62.37%). The study suggested that mud clam hydrolysate had the potential to be used in food formulations for human consumption.
    Matched MeSH terms: Water
  9. Alsabery AI, Chamkha AJ, Saleh H, Hashim I
    Sci Rep, 2017 05 24;7(1):2357.
    PMID: 28539585 DOI: 10.1038/s41598-017-02241-x
    This work analyses free convection flow of a nanofluid in an inclined square enclosure consisting of a porous layer and a nanofluid layer using the finite difference methodology. Sinusoidal temperature boundary conditions are imposed on the two opposing vertical walls. Nanofluids with water as base and Ag or Cu or Al2O3 or TiO2 nanoparticles are considered for the problem. The related parameters of this study are the Darcy number, nanoparticle volume fraction, phase deviation, amplitude ratio, porous layer thickness and the inclination angle of the cavity. A comparison with previously published work is performed and the results are in good agreement. Detailed numerical data for the fluid flow and thermal distributions inside the square enclosure, and the Nusselt numbers are presented. The obtained results show that the heat transfer is considerably affected by the porous layer increment. Several nanoparticles depicted a diversity improvement on the convection heat transfer.
    Matched MeSH terms: Water
  10. Chen CY, Nagarajan D, Cheah WY
    Bioresour Technol, 2018 Apr;253:1-7.
    PMID: 29328929 DOI: 10.1016/j.biortech.2017.12.102
    In this study, Nannochloropsis oceanica CY2 was grown in deep-sea water (DSW)-based medium in 5-L plastic bag-type photobioreactors (PBRs) for the autotrophic production of Eicosapentaenoic acid (EPA, 20:5n-3). EPA production of N. oceanica CY2 was stimulated when it was grown in 100% DSW amended with 1.5 g L-1 NaNO3, achieving a EPA content of 3.1% and a biomass concentration of 3.3 g L-1. An outdoor-simulated microalgae cultivation system was also conducted to validate the feasibility of outdoor cultivation of the CY2 strain in plastic bag-type PBRs. Using an inoculum size of 0.6 g/L, the biomass concentration in the PBR culture was 3.5 g L-1, while the EPA content and productivity reached a maximal level of 4.12% and 7.49 mg L-1 d-1, respectively. When the PBRs were operated on semi-batch mode, the EPA productivity could further increase to 9.9 mg L-1 d-1 with a stable EPA content of 4.1%.
    Matched MeSH terms: Seawater; Water
  11. Almashwali AA, Khan MS, Lal B, Jin QC, Sabil KM, Khor SF
    Chemosphere, 2023 Jan;312(Pt 2):137325.
    PMID: 36423723 DOI: 10.1016/j.chemosphere.2022.137325
    This experimental study evaluates the inhibition performance of kinetic hydrates inhibitors (KHIs) of three amino acids, namely: glycine, proline, and alanine. It includes the performance comparison with the conventional inhibitor i.e., polyvinyl pyrrolidine (PVP) on methane (CH4) hydrate in oil systems in two different systems, i.e., deionized and brine water systems. The experiments were conducted in a high-pressure hydrate reactor replicating subsea pipeline conditions, i.e., the temperature of 274 K, pressure 8 MPa, and concentration of 1 wt%, by applying the isochoric cooling technique. The formation kinetics results suggest that all the studied amino acids effectively worked as kinetic inhibitors by potentially delaying CH4 hydrate formations due to their steric hindrance abilities. The interesting phenomenon was observed that the different studied amino acids behave differently in the brine-oil and deionized water-oil systems due to their side chain interaction. In a deionized water-oil system, glycine gives the highest inhibition performance by reducing the hydrate formation risk. On the contrary, in the brine-oil system, proline showed a significant inhibition effect. It should be noted that both glycine and proline were giving almost similar inhibition performance compared to the conventional hydrate inhibitor PVP, however glycine and proline significantly reduced CH4 consumption into hydrate due to their high surface active under CH4 conditions, which strengths the surface tension of the liquid/CH4 interface. Furthermore, according to the findings, it shows that increased side alkyl chain lengths of amino acids increase the efficacy of their kinetic hydration inhibition performance due to better surface adsorption abilities. The amino acids' ability to suppress growth is also linked strongly with hydrophobicity and alkyl side chain length. The findings of this study contribute significantly to current efforts to limit gas hydrate formation in offshore pipelines, particularly in oil-dominant pipelines.
    Matched MeSH terms: Water
  12. Alrosan M, Tan TC, Easa AM, Gammoh S, Alu'datt MH, Aleid GM, et al.
    Food Chem, 2023 Mar 15;404(Pt B):134614.
    PMID: 36444092 DOI: 10.1016/j.foodchem.2022.134614
    The utilisation of quinoa protein concentrates (QPCs) is limited due to their poor protein digestibility (78.54 %). In this study, QPCs (1 % w/v) were fermented in 5 % (v/v) water kefir grains (WKG) for 5 days at 25 °C. The protein quality of the fermented QPCs was enhanced, whereby the protein digestibility increased significantly (P 
    Matched MeSH terms: Water
  13. Taengphu S, Kayansamruaj P, Kawato Y, Delamare-Deboutteville J, Mohan CV, Dong HT, et al.
    PeerJ, 2022;10:e13157.
    PMID: 35462762 DOI: 10.7717/peerj.13157
    BACKGROUND: Tilapia tilapinevirus, also known as tilapia lake virus (TiLV), is a significant virus that is responsible for the die-off of farmed tilapia across the globe. The detection and quantification of the virus using environmental RNA (eRNA) from pond water samples represents a potentially non-invasive and routine strategy for monitoring pathogens and early disease forecasting in aquaculture systems.

    METHODS: Here, we report a simple iron flocculation method for concentrating viruses in water, together with a newly-developed hydrolysis probe quantitative RT-qPCR method for the detection and quantification of TiLV.

    RESULTS: The RT-qPCR method designed to target a conserved region of the TiLV genome segment 9 has a detection limit of 10 viral copies per µL of template. The method had a 100% analytical specificity and sensitivity for TiLV. The optimized iron flocculation method was able to recover 16.11 ± 3.3% of the virus from water samples spiked with viral cultures. Tilapia and water samples were collected for use in the detection and quantification of TiLV disease during outbreaks in an open-caged river farming system and two earthen fish farms. TiLV was detected from both clinically sick and asymptomatic fish. Most importantly, the virus was successfully detected from water samples collected from different locations in the affected farms (i.e., river water samples from affected cages (8.50 × 103 to 2.79 × 105 copies/L) and fish-rearing water samples, sewage, and reservoir (4.29 × 103 to 3.53 × 104 copies/L)). By contrast, TiLV was not detected in fish or water samples collected from two farms that had previously experienced TiLV outbreaks and from one farm that had never experienced a TiLV outbreak. In summary, this study suggests that the eRNA detection system using iron flocculation, coupled with probe based-RT-qPCR, is feasible for use in the concentration and quantification of TiLV from water. This approach may be useful for the non-invasive monitoring of TiLV in tilapia aquaculture systems and may support evidence-based decisions on biosecurity interventions needed.

    Matched MeSH terms: Water
  14. Krisdiyanto, Bin Raja Ghazilla RA, Azuddin M, Bin Ahmad Hairuddin MKF, Muflikhun MA, Risdiana N, et al.
    Medicine (Baltimore), 2022 Dec 09;101(49):e31812.
    PMID: 36626504 DOI: 10.1097/MD.0000000000031812
    A syringe is used to inject fluid or medicine into the patient's soft tissue. The main components of the syringe were the needle, barrel, and plunger. The use of syringes in the medical world is relatively high, and especially since the COVID-19 pandemic, the use of hypodermic syringes increased sharply due to vaccination. The syringe used must be effective and of good quality, so the International Organization for Standardization (ISO) has published test procedures and minimum specifications for hypodermic syringes. The performance of the syringe can be observed from the dead space, force piston operation, water and air leakage, and fitting position of the plunger in the barrel. This review shows that most researchers use the weighing method to measure the dead space, although some use other methods. The researchers found that most of the products met the minimum specifications of the ISO, and that the dimensions and shape of the syringe affected the dead space. Researchers have not examined other performance measures recommended by the ISO. Researchers have focused more on force injection than force piston operation, leakage after injection or back spray than air and water leakage, and reduction the friction of the plunger without considering the fitting position of the plunger in the barrel.
    Matched MeSH terms: Water
  15. Zhao Y, Lu K, Piao X, Song Y, Wang L, Zhou R, et al.
    Food Chem, 2023 May 01;407:135157.
    PMID: 36529012 DOI: 10.1016/j.foodchem.2022.135157
    Surimi products have unsatisfactory gel properties. Hence, this study evaluates the effect of collagen-adding on surimi gel properties and provides the first observation results regarding collagen type influence. With higher water solubility and more charged amino acids than type II, collagen type I intertwines with surimi myofibrillar proteins better to induce higher exposure of protein functional domains, more sufficient conformational changes of myosin and greater formation of chemical forces among proteins. These enhancements accelerate the gelation rate, leading to a well-stabilized surimi gel. The collagen I-containing surimi gels show more compact structures with uniformly distributed smaller pores than those containing collagen II, thereby providing the final products with higher water holding capacity and better textural profiles. As such, the surimi gel fortification performance of collagen I and the well-elucidated collagen-myofibrillar protein interaction mechanism will guide the further exploitation of collagen as an effective additive in the food industry.
    Matched MeSH terms: Water
  16. Ranjithkumar R, Van Nguyen C, Wong LS, Thiruvengadam Nandagopal JG, Djearamane S, Palanisamy G, et al.
    Int J Biol Macromol, 2023 Jan 15;225:103-111.
    PMID: 36481334 DOI: 10.1016/j.ijbiomac.2022.11.302
    The industrial discharge of dye pollutant contaminated wastewater is the major cause of water and soil pollution. Photocatalysis is a promising and green remediation technology, which has received widespread attention in the remediation of hazardous dyes from aqueous environment and convert them into harmless compounds. Herein, we report the synthesis of chitosan (CS) functionalized bismuth oxychloride/zinc oxide (BiOCl/ZnO) nanocomposite by a modified hydrothermal route. The physiochemical characterization revealed that the synthesized nanocomposite have crystalline, agglomerated spherical along with rod shaped morphology and size range from 35 to 160 nm. FTIR peaks at 825, 727, 662 and 622 cm-1 specified the presence of BiO and ZnO bonds, whereas peak at 1635 cm-1 revealed the existence of amine groups which confirms the presence of CS in the synthesized CS-BiOCl/ZnO nanocomposite. Catalytic property of synthesized nanocomposite was evaluated by the degradation of Congo red (CR) under UV-light irradiation. CR dye degradation percentage was found to be 93 % within a short period of 40 min by utilizing UV-light. Furthermore, reusability of CS-BiOCl/ZnO photocatalyst was also investigated, and it remained significant photocatalytic activity after three consecutive cycles. Hence, the results obtained in this study revealed that CS-BiOCl/ZnO nanocomposite can be used as a potential photocatalyst to remediate organic pollutants in various industries.
    Matched MeSH terms: Water
  17. Jimoh JO, Rahmah S, Mazelan S, Jalilah M, Olasunkanmi JB, Lim LS, et al.
    Environ Pollut, 2023 Jan 15;317:120769.
    PMID: 36455766 DOI: 10.1016/j.envpol.2022.120769
    Microplastic pollution in our environment, especially water bodies is an emerging threat to food security and human health. Inevitably, the outbreak of Covid-19 has necessitated the constant use of face masks made from polymers such as polypropylene, polyurethane, polyacrylonitrile, polystyrene, polycarbonate, polyethylene, or polyester which eventually will disintegrate into microplastic particles. They can be broken down into microplastics by the weathering action of UV radiation from the sun, heat, or ocean wave-current and precipitate in natural environments. The global adoption of face masks as a preventive measure to curb the spread of Covid-19 has made the safe management of wastes from it cumbersome. Microplastics gain access into aquaculture facilities through water sources and food including planktons. The negative impacts of microplastics on aquaculture cannot be overemphasized. The impacts includes low growth rates of animals, hindered reproductive functions, neurotoxicity, low feeding habit, oxidative stress, reduced metabolic rate, and increased mortality rate among aquatic organisms. With these, there is every tendency of microplastic pollution to negatively impact fish production through aquaculture if the menace is not curbed. It is therefore recommended that biodegradable materials rather than plastics to be considered in the production of face mask while recycle of already produced ones should be encouraged to reduce waste.
    Matched MeSH terms: Water
  18. Kamaruddin NAL, Taha MF, Wilfred CD
    Molecules, 2023 Jan 13;28(2).
    PMID: 36677888 DOI: 10.3390/molecules28020830
    The main objectives of this study are to synthesize a new solid-supported ionic liquid (SSIL) that has a covalent bond between the solid support, i.e., activated silica gel, with thiosalicylate-based ionic liquid and to evaluate the performance of this new SSIL as an extractant, labelled as Si-TS-SSIL, and to remove Pb(II) ions from an aqueous solution. In this study, 1-methyl-3-(3-trimethoxysilylpropyl) imidazolium thiosalicylate ([MTMSPI][TS]) ionic liquid was synthesized and the formation of [MTMSPI][TS] was confirmed through structural analysis using NMR, FTIR, IC, TGA, and Karl Fischer Titration. The [MTMSPI][TS] ionic liquid was then chemically immobilized on activated silica gel to produce a new thiosalicylate-based solid-supported ionic liquid (Si-TS-SSIL). The formation of these covalent bonds on Si-TS-SSIL was confirmed by solid-state NMR analysis. Meanwhile, BET analysis was performed to study the surface area of the activated silica gel and the prepared Si-TS-SSIL (before and after washing with solvent) with the purpose to show that all physically immobilized [MTMSPI][TS] has been washed off from Si-TS-SSIL, leaving only chemically immobilized [MTMSPI][TS] on Si-TS-SSIL before proceeding with removal study. The removal study of Pb(II) ions from an aqueous solution was carried out using Si-TS-SSIL as an extractant, whereby the amount of Pb(II) ions removed was determined by AAS. In this removal study, the experiments were carried out at a fixed agitation speed (400 rpm) and fixed amount of Si-TS-SSIL (0.25 g), with different contact times ranging from 2 to 250 min at room temperature. The maximum removal capacity was found to be 8.37 mg/g. The kinetics study was well fitted with the pseudo-second order model. Meanwhile, for the isotherm study, the removal process of Pb(II) ions was well described by the Freundlich isotherm model, as this model exhibited a higher correlation coefficient (R2), i.e., 0.99, as compared to the Langmuir isotherm model.
    Matched MeSH terms: Water
  19. Satya ADM, Cheah WY, Yazdi SK, Cheng YS, Khoo KS, Vo DN, et al.
    Environ Res, 2023 Feb 01;218:114948.
    PMID: 36455634 DOI: 10.1016/j.envres.2022.114948
    Water usage increased alongside its competitiveness due to its finite amount. Yet, many industries still rely on this finite resource thus recalling the need to recirculate their water for production. Circular bioeconomy is presently the new approach emphasizing on the 'end-of-life' concept with reusing, recycling, and recovering materials. Microalgae are the ideal source contributing to circular bioeconomy as it exhibits fast growth and adaptability supported by biological rigidity which in turn consumes nutrients, making it an ideal and capable bioremediating agent, therefore allowing water re-use as well as its biomass potential in biorefineries. Nevertheless, there are challenges that still need to be addressed with consideration of recent advances in cultivating microalgae in wastewater. This review aimed to investigate the potential of microalgae biomass cultivated in wastewater. More importantly, how it'll play a role in the circular bioeconomy. This includes an in-depth look at the production of goods coming from wastes tattered by emerging pollutants. These emerging pollutants include microplastics, antibiotics, ever-increasingly sewage water, and heavy metals which have not been comprehensively compared and explored. Therefore, this review is aiming to bring new insights to researchers and industrial stakeholders with interest in green alternatives to eventually contribute towards environmental sustainability.
    Matched MeSH terms: Waste Water
  20. Koo PL, Choong ZY, He C, Bao Y, Jaafar NF, Oh WD
    Chemosphere, 2023 Mar;318:137915.
    PMID: 36702411 DOI: 10.1016/j.chemosphere.2023.137915
    In this study, a facile hydrothermal method was employed to prepare Me-doped Bi2Fe4O9 (Me = Zn, Cu, Co, and Mn) as peroxymonosulfate (PMS) activator for ciprofloxacin (CIP) degradation. The characteristics of the Me-doped bismuth ferrites were investigated using various characterization instruments including SEM, TEM, FTIR and porosimeter indicating that the Me-doped Bi2Fe4O9 with nanosheet-like square orthorhombic structure was successfully obtained. The catalytic activity of various Me-doped Bi2Fe4O9 was compared and the results indicated that the Cu-doped Bi2Fe4O9 at 0.08 wt.% (denoted as BFCuO-0.08) possessed the greatest catalytic activity (kapp = 0.085 min-1) over other Me-doped Bi2Fe4O9 under the same condition. The synergistic interaction between Cu, Fe and oxygen vacancies are the key factors which enhanced the performance of Me-doped Bi2Fe4O9. The effects of catalyst loading, PMS dosage, and pH on CIP degradation were also investigated indicating that the performance increased with increasing catalyst loading, PMS dosage, and pH. Meanwhile, the dominant reactive oxygen species was identified using the chemical scavengers with SO4•-, •OH, and 1O2 playing a major role in CIP degradation. The performance of BFCuO-0.08 deteriorated in real water matrix (tap water, river water and secondary effluent) due to the presence of various water matrix species. Nevertheless, the BFCuO-0.08 catalyst possessed remarkable stability and can be reused for at least four successive cycles with >70% of CIP degradation efficiency indicating that it is a promising catalyst for antibiotics removal.
    Matched MeSH terms: Water
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links