Displaying publications 1841 - 1860 of 2920 in total

Abstract:
Sort:
  1. Noordin SS, Karim FA, Mohammad WMZBW, Hussein AR
    Indian J Hematol Blood Transfus, 2018 Jul;34(3):510-516.
    PMID: 30127563 DOI: 10.1007/s12288-017-0879-8
    Thawed plasma is fresh frozen plasma (FFP) that has been stored for 5 days at 1-6 °C. Duration of storage and different storage temperatures might affect the coagulation factor activity in thawed FFP. This study measured the changes of coagulation factor activities over 5 days in thawed FFP and stored at two different initial storage temperatures. Thirty-six units of FFP, which consisted of nine units each from blood groups A, B, AB, and O, were thawed at 37 °C. Each unit was divided into two separate groups (Group A and Group B) based on initial storage temperature. The first group was stored at 2-6 °C for 5 days (Group A). The second group was stored at 20-24 °C for initial 6 h followed by 2-6 °C for 5 days (Group B). Prothrombin time (PT), activated partial thromboplastin time (APTT), coagulation factor activities of fibrinogen, factor (F) II, FV, FVII, FVIII, FIX, FX, and von Willebrand factor antigen (vWF Ag) were assessed at baseline after thawing, at 6 h, and on days 1, 3, and 5 of storage for both groups. All coagulation factors mean activities in both storage groups decreased significantly over 5 days of storage. The mean FVIII activity at day 5 of storage was 36.9% in Group A and 39.8% in Group B. The other coagulation factors mean activities were > 50% on day 5 of storage in both groups. The coagulation factor activities of thawed FFP stored for 5 consecutive days were reduced in the two storage groups but most of the activities were still above 30%. This study suggests that thawed FFP stored for 5 days has the potential to ameliorate coagulation factor deficiencies in affected patients.
    Matched MeSH terms: Temperature
  2. Bharudin I, Abdul Rahim SN, Abu Bakar MF, Ibrahim SN, Kamaruddin S, Latif MT, et al.
    Data Brief, 2018 Aug;19:2416-2419.
    PMID: 30229114 DOI: 10.1016/j.dib.2018.07.020
    Lichen is a symbiotic organism that exists as a single composite body consisting of a mycobiont (fungus) and a photobiont (algae or a cyanobacterium). Many lichen species are considered as extremophiles due to their tolerance to radiation, desiccation, temperature and pollution. However, not all lichen species are tolerant to harsh environmental conditions as several species are sensitive for example to nitrogen, sulphur, acidity, heavy metals, halogens (e.g. fluoride) and ozone. Thus, to better understand why some lichens can withstand exposure to pollutants as opposed to those that are susceptible, we focused on the lichen species of Dirinaria known for their wide distribution in the tropics, subtropics and pantropical, and moderate tolerance to air pollution. Their moderate tolerance to air pollution affords them to thrive in good air quality environments as well as polluted air environments. Lichen samples of Dirinaria sp., UKM-J1 and UKM-K1, were respectively collected from two areas with different levels of air quality based on Air Pollutant Index or API (with index pollutant criteria of PM10, carbon monoxide, ozone, nitrogen dioxide and sulfur dioxide) in the outskirt of Jerantut (UKM-J1), a rural area in the middle of Peninsular Malaysia and the township of Klang (UKM-K1), in a busy area of the Klang Valley, Malaysia. API was monitored throughout 2012-2013 whereby the sample collection site in Klang showed markedly higher concentrations of pollutants in all the index pollutant criteria as compared to that of Jerantut. We performed transcriptome sequencing using Illumina RNA-seq technology and de novo assembly of the transcripts from the lichen samples. Raw reads from both libraries were deposited in the NCBI database with the accession number SRP138994.
    Matched MeSH terms: Temperature
  3. Tayyab S, Francis JA, Kabir MZ, Ghani H, Mohamad SB
    Spectrochim Acta A Mol Biomol Spectrosc, 2019 Jan 15;207:284-293.
    PMID: 30267976 DOI: 10.1016/j.saa.2018.09.033
    To characterize the binding of a widely used herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D) to the major transporter in human circulation, human serum albumin (HSA), multi-spectroscopic approaches such as fluorescence, absorption and circular dichroism along with computational methods were employed. Analysis of the fluorescence and absorption spectroscopic data confirmed the 2,4-D-HSA complex formation. A static quenching mechanism was evident from the inverse temperature dependence of the KSV values. The complex was stabilized by a weak binding affinity (Ka = 5.08 × 103 M-1 at 298 K). Quantitative analysis of thermodynamic data revealed participation of hydrophobic and van der Waals interactions as well as hydrogen bonds in the binding process. Circular dichroism and three-dimensional fluorescence spectral results showed structural (secondary and tertiary) changes in HSA as well as microenvironmental perturbation around protein fluorophores (Trp and Tyr residues) upon 2,4-D binding. Addition of 2,4-D to HSA was found to improve protein's thermal stability. Competitive displacement results as well as computational analyses suggested preferred location of the 2,4-D binding site as Sudlow's site I (subdomain IIA) in HSA.
    Matched MeSH terms: Temperature
  4. Musa MA, Idrus S, Hasfalina CM, Daud NNN
    PMID: 30314290 DOI: 10.3390/ijerph15102220
    In this study, the performance of a laboratory scale upflow anaerobic sludge blanket (UASB) reactor operating at mesophilic temperature (35 °C) was examined. Cattle slaughterhouse wastewater (CSWW) was used as the main substrate. The total and effective volumes of the reactor were 8 L and 6 L, respectively. Twelve different organic loading rates (OLR) were applied and the performance was evaluated. The chemical oxygen demand (COD) removal efficiency was more than 90% during batch study. In the continuous study, COD removal was also approximately 90% at OLR 0.4 g/L d-1 which subsequently dropped to below 50% when the loading rate increased to 15 g/L d-1. Approximately 5 L/d of biogas was obtained with high methane concentration at stages VI and XI corresponding to OLR of 2 and 10 g/L d-1, respectively. It was observed that the concentration of volatile fatty acids was low and that the alkalinity of the wastewater was sufficient to avoid acidification. Specific methane yields of 0.36 and 0.38 LCH₄/g COD added were achieved at OLR 7 and 10 g/L d-1. A hydraulic retention time (HRT) of 1 day was sufficient to remove greater than 70% of COD which correspond to 89% methane concentration. Parameters like soluble COD, NH₃-N, pH, alkalinity, total suspended solid (TSS), fats, oil, and grease were also investigated. The results show that the UASB reactor could serve as a good alternative for anaerobic treatment of CSWW and methane production.
    Matched MeSH terms: Temperature
  5. Ng ML, Rahmat ZB, Bin Omar MSS
    Curr Comput Aided Drug Des, 2019;15(4):308-317.
    PMID: 30345923 DOI: 10.2174/1573409914666181022141753
    BACKGROUND: Orthosiphon stamineus is a traditional medicinal plant in Southeast Asia countries with various well-known pharmacological activities such as antidiabetic, diuretics and antitumor activities. Transketolase is one of the proteins identified in the leaves of the plant and transketolase is believed able to lower blood sugar level in human through non-pancreatic mechanism. In order to understand the protein behavioral properties, 3D model of transketolase and analysis of protein structure are of obvious interest.

    METHODS: In the present study, 3D model of transketolase was constructed and its atomic characteristics revealed. Besides, molecular dynamic simulation of the protein at 310 K and 368 K deciphered transketolase may be a thermophilic protein as the structure does not distort even at elevated temperature. This study also used the protein at 310 K and 368 K resimulated back at 310 K environment.

    RESULTS: The results revealed that the protein is stable at all condition which suggest that it has high capacity to adapt at different environment not only at high temperature but also from high temperature condition to low temperature where the structure remains unchanged while retaining protein function.

    CONCLUSION: The thermostability properties of transketolase is beneficial for pharmaceutical industries as most of the drug making processes are at high temperature condition.

    Matched MeSH terms: Hot Temperature
  6. Noorul Aini Sulaiman, Nur Zazarina Ramly, Shuhaila Mat-Sharani, Nor Muhammad Mahadi
    MyJurnal
    Protease is an enzyme that catalysed the hydrolysis of protein into peptide. Application of protease in industry has been linked with cost effective substrates and complex of enzyme-substrate stability. Molecular docking approach has identified casein as a preference substrates. However, lack of data on casein mode of binding to protease and enzyme stability represents a limitation for its production and structural optimization. In this study, we have used a molecular dynamic (MD) to examine the stability of complex enzyme-substrate of protease from Bacillus lehensis G1. The 3D structure of protease (BleG1_1979) was docked with substrate casein using AutoDock Vina. Structural analysis of the substrate-binding cleft revealed a binding site of casein was predominantly at the hydrophobic region of BleG1_1979. The MD of complex BleG1_1979-casein was tested with two temperatures; 298 K and 310 K using GROMACS v5.1.4. MD simulation showed a stable behaviour of BleG1_1979 over the 20 ns simulation period. The molecular docking and MD simulation suggested that the production of protease from B. lehensis G1 by utilization of casein and the stability of complex protease-casein could be a potential application to generate a cost effective enzyme to be develop for industrial use.
    Matched MeSH terms: Temperature
  7. Tang, Hooi Chia, Sieo, Chin Chin, Ho, Yin Wan, Norhani Abdullah, Chong, Chun Wie
    MyJurnal
    Poultry feed consists of feed ingredients like soybean meal and corn, which contain high levels of
    phytate that is poorly utilised especially by the monogastric animals that lack of phytase. Hence,
    phytase has been extensively applied as a feed supplement in poultry production due to the
    efficiency of this enzyme in improving phosphorous (P) availability, thus reducing P excretion to
    the environment as well as reducing the feed cost by reducing inorganic P supplementation.
    Mitsuokella jalaludinii, an obligate anaerobe, Gram-negative rumen bacterium, produces high
    phytase activity. Birds supplemented with bacterial preparation of M. jalaludinii showed
    comparable performance to that of commercial phytase. However, the anaerobic nature of this
    bacterium renders difficulty in the use of live cells as feed supplement in commercial poultry
    production. Therefore, this study was conducted to determine a suitable method to preserve
    phytase activity of M. jalaludinii regardless of cells viability. Mitsuokella jalaludinii was grown
    in MF medium under anaerobic condition and the cells were subjected to various treatments to
    preserve the enzyme, including bead beating, compressed air, moist heat, dry heat and freezedrying
    under aerobic condition. The results showed that the total number of viable cells were
    significantly (p
    Matched MeSH terms: Hot Temperature
  8. Olorunnisola KS, Jamal P, Alam MZ
    3 Biotech, 2018 Oct;8(10):416.
    PMID: 30237963 DOI: 10.1007/s13205-018-1435-4
    Banana peel (BP) is a major waste produced by fruit processing industries. Pre-treatment of BP at different temperatures led to 40% reduction in saponin at 100 °C (from 9.5 to 5.7 mg/g). Sequential mixed culture of Phanerochaete chrysosporium (P. chrysosporium) and Candida utilis (C. utilis) gave highest protein enrichment (88.93 mg/g). There is 26% increase in protein synthesis (from 88.93 to 111.78 mg/g) after media screening. Inclusion of KH2PO4, FeSO4·7H2O, wheat flour and sucrose in the media contributed positively to protein synthesis, while elevated concentration of urea, peptone, K2HPO4, KCl, NH4H2PO4, and MgSO4.7H2O are required to reach optimum protein synthesis. Total soluble sugar (TSS), total reducing sugar (TRS) and total carbohydrate (CHO) consumption varied with respect to protein synthesis in all experimental runs. Optimum protein synthesis required 6 days and inclusion of 5% sucrose, 0.6% NH4H2PO4, 0.4% KCl, and 0.5% MgSO4·7H2O as concentration media constituents to reach 140.95 mg/g protein synthesis equivalent to 300% increase over the raw banana peel protein content (35.0 mg/g).
    Matched MeSH terms: Temperature
  9. Bello B, Mustafa S, Tan JS, Ibrahim TAT, Tam YJ, Ariff AB, et al.
    3 Biotech, 2018 Aug;8(8):346.
    PMID: 30073131 DOI: 10.1007/s13205-018-1362-4
    This paper deliberates the extraction, characterization and examination of potential application of soluble polysaccharides of palm kernel cake (PKC) as a prebiotic. The PKC was defatted and crude polysaccharide was obtained through water, citric acid or NaOH extraction. The physiochemical properties of the extracted polysaccharides viz. total carbohydrates, protein content, solubility rate, monosaccharides composition, structural information and thermal properties were also determined. The extracted soluble polysaccharides were further subjected to a digestibility test using artificial human gastric juice. Finally, their prebiotic potential on two probiotics, namely Lactobacillus plantarum ATCC 8014 and Lb. rhamnosus ATCC 53103 were evaluated in vitro. It was observed that PKC contained ash (5.2%), moisture (7.4%), carbohydrates (65.8%), protein (16.5%) and fat (5.1%). There were significant differences (P  95%). Protein content in SCPW, SCPCA and SCPN are 0.72, 0.40 and 0.58, respectively, and the peaks which indicated the presence of protein were observed at approximately 1640 cm-1 (amide I). FTIR spectroscopy revealed that the polysaccharides extracts were linked to β and α-glycosidic bonds and thermal analysis using differential scanning calorimeter (DSC) showed the main degradation temperature of SP is about 121 to 125 °C. The SP were found to be highly resistance (> 96%) to hydrolysis when subjected to artificial human gastric juice. The prebiotics potentials of the polysaccharides on probiotics in vitro demonstrated an increase in proliferation of Lb. plantarum ATCC 8014 and Lb. rhamnosus ATCC 53103 with decrease in the pH of the medium and producing organic acids.All the above findings strongly indicated that polysaccharides extracted from PKC, an industrial waste, have a potential to be exploited as novel prebiotics.
    Matched MeSH terms: Temperature
  10. Jaganathan SK, Mani MP
    3 Biotech, 2018 Aug;8(8):327.
    PMID: 30073112 DOI: 10.1007/s13205-018-1356-2
    In this study, a wound dressing based on polyurethane (PU) blended with copper sulphate nanofibers was developed using an electrospinning technique. The prepared PU and PU nanocomposites showed smooth fibers without any bead defects. The prepared nanocomposites showed smaller fiber (663 ± 156.30 nm) and pore (888 ± 70.93 nm) diameter compared to the pristine PU (fiber diameter 1159 ± 147.48 nm and pore diameter 1087 ± 62.51 nm). The interaction of PU with copper sulphate was evident in the infrared spectrum through hydrogen-bond formation. Thermal analysis displayed enhanced weight residue at higher temperature suggesting interaction of PU with copper sulphate. The contact angle measurements revealed the hydrophilic nature of the prepared nanocomposites (71° ± 2.309°) compared with pure PU (100° ± 0.5774°). The addition of copper sulphate into the PU matrix increased the surface roughness, as revealed in the atomic force microscopy (AFM) analysis. Mechanical testing demonstrated the enhanced tensile strength behavior of the fabricated nanocomposites (18.58 MPa) compared with the pristine PU (7.12 MPa). The coagulation assays indicated the enhanced blood compatibility of the developed nanocomposites [activated partial thromboplastin time (APTT)-179 ± 3.606 s and partial thromboplastin time (PT)-105 ± 2.646 s] by showing a prolonged blood clotting time compared with the pristine PU (APTT-147.7 ± 3.512 s and PT-84.67 ± 2.517 s). Furthermore, the hemolysis and cytotoxicity studies suggested a less toxicity nature of prepared nanocomposites by displaying low hemolytic index and enhanced cell viability rates compared with the PU membrane. It was observed that the fabricated novel wound dressing possesses better physicochemical and enhanced blood compatibility properties, and may be utilized for wound-healing applications.
    Matched MeSH terms: Temperature
  11. Nikol L, Kuan G, Ong M, Chang YK, Terry PC
    Front Psychol, 2018;9:1114.
    PMID: 30072929 DOI: 10.3389/fpsyg.2018.01114
    Running in high heat and humidity increases psychophysiological strain, which typically impairs running performance. Listening to synchronous music has been shown to provide psychophysiological benefits, which may enhance running performance. The present randomized, crossover study examined effects of listening to synchronous music on psychophysiological parameters and running performance in hot and humid conditions. Twelve male runners (21.7 ± 2.2 y; 166.17 ± 7.18 cm; 60.32 ± 9.52 kg; 59.29 ± 5.95 ml kg-1 min-1) completed two running trials in simulated conditions (31°C and 70% humidity) with and without synchronous music. Participants ran on a treadmill inside a climatic chamber for 60 min at 60%

    V
    ˙

    O2max and continued to run to exhaustion at 80%

    V
    ˙

    O2max. Time-to-exhaustion under the synchronous music condition was 66.59% longer (mean = 376.5 s vs. 226.0 s, p = 0.02, d = 0.63) compared to the no music condition. Ratings of perceived exertion were significantly lower for the synchronous music condition at each time point (15, 30, 45, and 60 min) of the steady state portion of the running trials. Small differences in heart rate were detected between conditions. No significant between-condition differences were found in urine specific gravity, percentage of body weight loss, thermal comfort, and blood lactate. Findings suggest that listening to synchronous music is beneficial to running performance and perceived exertion in hot and humid conditions.
    Matched MeSH terms: Hot Temperature
  12. Othman, A.R., Rahman, M.F., Shukor, M.Y., Abu Zeid, I.M., Ariffin, F.
    MyJurnal
    Chemical toxins and organic contaminants such as hydrocarbons and dyes are major global
    contaminants with countless tones of those chemicals are created yearly with a significant
    amount release to the environment. In this work we screen the ability of a molybdenum-reducing
    bacterium isolated from contaminated soil to decolorize various azo and triphenyl methane dyes
    independent of molybdenum reduction. Biochemical analysis resulted in a tentative identification
    of the bacterium as Enterobacter sp. strain Zeid-6. The bacterium was able to decolorize the azo
    dye Orange G. The bacterium reduces molybdate to Mo-blue optimally at pH between 5.5 and
    8.0 and temperatures of between 30 and 37 oC. Other requirements include a phosphate
    concentration of 5 mM and a molybdate concentration of 20 mM. The absorption spectrum of the
    Mo-blue produced was similar to previous Mo-reducing bacterium, and closely resembles a
    reduced phosphomolybdate. Molybdenum reduction was inhibited by copper, lead, mercury and
    silver which showed 36.8, 16.9, 64.9 and 67.6% inhibition to Mo-reducing activity of
    Enterobacter sp. strain Zeid-6, respectively. The resultant molybdenum blue spectrum closely
    resembles the spectrum of molybdenum blue from the phosphate determination method. The
    ability of this bacterium to detoxify molybdenum and decolorize azo dye makes this bacterium
    an important tool for bioremediation.
    Matched MeSH terms: Temperature
  13. Zin, M.H., Abdan, K., Norizan, M.N., Mazlan, N.
    MyJurnal
    The main focus of this study was to obtain the optimum alkaline treatment for banana fibre and the its effect on the mechanical and chemical properties of banana fibre, its surface topography, its heat resistivity, as well as its interfacial bonding with epoxy matrix. Banana fibre was treated with sodium hydroxide (NaOH) under various treatment conditions. The treated fibres were characterised using FTIR spectroscopy. The morphology of a single fibre observed under a Digital Image Analyser indicated slight reduction in fibre diameter with increasing NaOH concentration. The Scanning Electron Microscope (SEM) results showed the deteriorating effect of alkali, which can be seen from the removal of impurities and increment in surface roughness. The mechanical analysis indicates that 6% NaOH treatment with a two-hour immersion time gave the highest tensile strength. The adhesion between single fibre and epoxy resin was analysed through the micro-droplet test. It was found that 6% NaOH treatment with a two-hour immersion yielded the highest interfacial shear stress of 3.96 MPa. The TGA analysis implies that alkaline treatment improved the thermal and heat resistivity of the fibre.
    Matched MeSH terms: Hot Temperature
  14. Al-Juhaimi F, Ghafoor K, Özcan MM, Jahurul MHA, Babiker EE, Jinap S, et al.
    J Food Sci Technol, 2018 Oct;55(10):3872-3880.
    PMID: 30228385 DOI: 10.1007/s13197-018-3370-0
    Bioactive compounds from plant sources are generally categorized as natural antioxidants with well-known health benefits. The health-promoting characteristics of natural antioxidants include anti-inflammatory, anti-diabetic, and hepatic effects as well as free radical scavenging. Herein, a comprehensive and comparative review are presented about the effects of conventional (thermal and mechanical) and relatively new (non-thermal) processing methods on phytochemicals and discussed the importance of implementing the use of those methods that could be of very helpful retaining the quality of the bioactive compounds in plant-based foods. Plant-based foods rich in phenolics, vitamin C, carotenoids, and other compounds undergo a range of processing operations before they are consumed. Most of these methods involve thermal treatments of fruits, stems, leaves, and roots. These techniques have varying effects on bioactive compounds and their activities, and the magnitude of these effects depends on process parameters such as temperature, time, and the food matrix. Thermal processing can be detrimental to bioactive compounds while nonthermal procedures may not cause significant deterioration of important health-promoting phytochemicals and in some cases can improve their bio-activity and bio-availability. The detrimental effects of conventional processing on the quality of natural antioxidants have been compared to the effects of innovative nonthermal food treatments such as gamma and ultraviolet irradiation, ultraviolet light, pulsed electric fields, and high hydrostatic pressure.
    Matched MeSH terms: Temperature
  15. Shaari N, Kamarudin SK, Basri S
    Heliyon, 2018 Sep;4(9):e00808.
    PMID: 30246163 DOI: 10.1016/j.heliyon.2018.e00808
    The influence of methanol as a solvent on the properties of sodium alginate/sulfonated graphene oxide (SA/SGO) membranes was explored in water-methanol mixed conditions with various methanol concentrations and temperatures through molecular dynamics simulations. The methanol uptake of the membrane showed an isolation phase determined from the simulation results. The distance between the sulfonic acid groups increased in higher methanol concentrations, as observed from S-S RDFs. Furthermore, the distance between the SA-chain RDFs and the solvent molecules was analysed to determine a) the affinity of water towards the sulfonic acid groups and b) the affinity of the aromatic backbone of the SA towards methanol molecules. A decrease in water molecule diffusion led to an increase in methanol diffusion and uptake. SA/SGO membranes exhibited a smaller diffusion coefficient than that for the Nafion membranes, as calculated from simulation results and compared to the experimental work. Additionally, the diffusion ability increased at higher temperatures for all permeants. The interaction information obtained is useful for DMFC applications.
    Matched MeSH terms: Temperature
  16. Yakasai, H.M., Karamba, K.I., Yasid, N.A., Abd. Rahman, F., Shukor, M.Y., Halmi, M.I.E.
    MyJurnal
    Molybdenum, an emerging pollutant, has being demonstrated recently to be toxic to
    spermatogenesis in several animal model systems. Metal mines especially gold mine often use
    cyanide and hence isolation of metal-reducing and cyanide-degrading bacteria can be useful for
    the bioremediation of these pollutants. Preliminary screening shows that three cyanide-degrading
    bacteria were able to reduce molybdenum to molybdenum blue (Mo-blue) when grown on a
    molybdate low phosphate minimal salts media. Phylogenetic analyses of the 16S rRNA gene of
    the best reducer indicates that it belongs to the Serratia genus. A variety of mathematical models
    such as logistic, Gompertz, Richards, Schnute, Baranyi-Roberts, von Bertalanffy, Buchanan
    three-phase and Huang were used to model molybdenum reduction, and the best model based on
    statistical analysis was modified Gompertz with lowest values for RMSE and AICc, highest
    adjusted R2 values, with Bias Factor and Accuracy Factor nearest to unity (1.0). The reduction
    constants obtained from the model will be used to carry out secondary modelling to study the
    effect of various parameters such as substrate, pH and temperature to molybdenum reduction.
    Matched MeSH terms: Temperature
  17. Yakasai, M.H., Rahman, M.F., Khayat, M.E., Shukor, M.Y., Shamaan, N.A., Rahim, M.B.H.A.
    MyJurnal
    The presence of both heavy metals and organic xenobiotic pollutants in a contaminated site
    justifies the application of either a multitude of microbial degraders or microorganisms having
    the capacity to detoxify a number of pollutants at the same time. Molybdenum is an essential
    heavy metal that is toxic to ruminants at a high level. Ruminants such as cow and goats
    experience severe hypocuprosis leading to scouring and death at a concentration as low as
    several parts per million. In this study, a molybdenum-reducing bacterium with amide-degrading
    capacity has been isolated from contaminated soils. The bacterium, using glucose as the best
    electron donor reduces molybdenum in the form of sodium molybdate to molybdenum blue. The
    maximal pH reduction occurs between 6.0 and 6.3, and the bacterium showed an excellent
    reduction in temperatures between 25 and 40 oC. The reduction was maximal at molybdate
    concentrations of between 15 and 25 mM. Molybdenum reduction incidentally was inhibited by
    several toxic heavy metals. Other carbon sources including toxic xenobiotics such as amides
    were screened for their ability to support molybdate reduction. Of all the amides, only
    acrylamide can support molybdenum reduction. The other amides; such as acetamide and
    propionamide can support growth. Analysis using phylogenetic analysis resulted in a tentative
    identification of the bacterium as Pseudomonas sp. strain 135. This bacterium is essential in
    remediating sites contaminated with molybdenum, especially in agricultural soil co-contaminated
    with acrylamide, a known soil stabilizer.
    Matched MeSH terms: Temperature
  18. Chang YK, Show PL, Lan JC, Tsai JC, Huang CR
    Bioresour Technol, 2018 Dec;270:320-327.
    PMID: 30241065 DOI: 10.1016/j.biortech.2018.07.138
    An aqueous two-phase system (ATPS) with ionic liquids (ILs) was used for the isolate of C-phycocyanin (CPC) from Spirulina platensis microalga. Various imidazolium ILs and potassium salts were studied. The effect of ILs-ATPS on the extraction efficiency of CPC was also studied. The experimental parameters like pH, loading volume, algae concentration, temperature, and alkyl chain length of IL were well-covered in this report. The experimental results showed that the extraction efficiency, the partition coefficient, and the separation factor for CPC were 99%, 36.6, and 5.8, respectively, for an optimal pH value of 7 and a temperature of 308 K. The order of extraction efficiency for CPC using IL-ATPS was: 1-octyl-3-methylimidazolium bromide (C8MIM-Br) > 1-hexyl-3-methylimidazolium bromide (C6MIM-Br) > 1-butyl-3-methylimidazolium bromide (C4MIM-Br). The isolation process followed the pseudo second-order kinetic model and the thermodynamic results were obviously spontaneous.
    Matched MeSH terms: Temperature
  19. Nik Nor Aziati, A.A., Mimi Sakinah, A.M.
    Food Research, 2018;2(1):110-118.
    MyJurnal
    The increase in the price of commercial succinic acid has necessitated the need for its
    synthesis from waste materials such as glycerol. Glycerol residue is a waste product of
    Oleochemical production which is cheaply available and a very good source of carbon.
    The use of immobilized cells can further reduce the overall cost of the production process.
    This study primarily aims to produce succinic acid from glycerol residue through the use
    of immobilized Escherichia coli in a batch fermentation process. The parameters which
    affect bacterial fermentation process such as the mass substrate, temperature, inoculum
    size and duration of fermentation were screened using One-Factor-At-a-Time (OFAT)
    method. The result of the screening process shows that a substrate (glycerol) concentration
    of 30 g, inoculum size 20% v/v, and time 4 h produced the maximum succinic acid
    concentration of 117.99 g/L. The immobilized cells were found to be stable as well as
    retain their fermentative ability up to the 6th cycle of recycling, thereby presenting as an
    advantage over the free cell system. Therefore, conclude that using immobilized cells can
    contribute immensely to the cost-effective production of succinic acid from glycerol
    residue.
    Matched MeSH terms: Temperature
  20. Agi A, Junin R, Rasol M, Gbadamosi A, Gunaji R
    PLoS One, 2018;13(8):e0200595.
    PMID: 30089104 DOI: 10.1371/journal.pone.0200595
    Treated Rhizopora mucronata tannin (RMT) as a corrosion inhibitor for carbon steel and copper in oil and gas facilities was investigated. Corrosion rate of carbon-steel and copper in 3wt% NaCl solution by RMT was studied using chemical (weight loss method) and spectroscopic (FTIR) techniques at various temperatures in the ranges of 26-90°C. The weight loss data was compared to the electrochemical by the application of Faraday's law for the conversion of corrosion rate data from one system to another. The inhibitive efficiency of RMT was compared with commercial inhibitor sodium benzotriazole (BTA-S). The best concentration of RMT was 20% (w/v), increase in concentration of RMT decreased the corrosion rate and increased the inhibitive efficiency. Increase in temperature increased the corrosion rate and decreased the inhibitive efficiency but, the rate of corrosion was mild with RMT. The FTIR result shows the presence of hydroxyl group, aromatic group, esters and the substituted benzene group indicating the purity of the tannin. The trend of RMT was similar to that of BTA-S, but its inhibitive efficiency for carbon-steel was poor (6%) compared to RMT (59%). BTA-S was efficient for copper (76%) compared to RMT (74%) at 40% (w/v) and 20% (w/v) concentration respectively. RMT was efficient even at low concentration therefore, the use of RMT as a cost effective and environmentally friendly corrosion inhibiting agent for carbon steel and copper is herein proposed.
    Matched MeSH terms: Temperature
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links