Displaying publications 1861 - 1880 of 2693 in total

Abstract:
Sort:
  1. Abubakar B, Zawawi N, Omar AR, Ismail M
    PLoS One, 2017;12(7):e0181309.
    PMID: 28727791 DOI: 10.1371/journal.pone.0181309
    Type 2 diabetes is a metabolic disorder with established, well-defined precursors. Obesity and insulin resistance are amongst most important factors in predisposition to diabetes. Rice is a staple for about half the global population and its consumption has been strongly linked with diabetogenesis. We assert that tackling the prevalence of predisposing factors by modifying certain rice cultivars could reduce the global burden of obesity and insulin resistance, and by extension type 2 diabetes. Several rice cultivars with various properties were fed to nulliparous rats (five weeks old at the start of the experiment) for 90 days. They were then returned to a diet of standard pellets and mated with males raised on a standard diet. The resulting pups and dams were investigated for obesity and insulin resistance markers. We found that germination did more to reduce predisposition to obesity and insulin resistance than high amylose content. The combined reducing effect of germination and high amylose content on predisposition to obesity and insulin resistance was greater than the sum of their independent effects. Polished (white) rice with a low amylose content predisposed dams on a high-fat diet to markers of insulin resistance and obesity and this predisposition was inherited (in biochemical terms) by their F1 offspring. Overall, the results suggest that harnessing the beneficial properties of germination and amylose in rice would reduce the burden of obesity and insulin resistance, which are known to be key risk factors for development of type 2 diabetes.
    Matched MeSH terms: Rats
  2. Hamezah HS, Durani LW, Yanagisawa D, Ibrahim NF, Aizat WM, Bellier JP, et al.
    Exp Gerontol, 2018 Oct 01;111:53-64.
    PMID: 29981398 DOI: 10.1016/j.exger.2018.07.002
    Decrease in multiple functions occurs in the brain with aging, all of which can contribute to age-related cognitive and locomotor impairments. Brain atrophy specifically in hippocampus, medial prefrontal cortex (mPFC), and striatum, can contribute to this age-associated decline in function. Our recent metabolomics analysis showed age-related changes in these brain regions. To further understand the aging processes, analysis using a proteomics approach was carried out. This study was conducted to identify proteome profiles in the hippocampus, mPFC, and striatum of 14-, 18-, 23-, and 27-month-old rats. Proteomics analysis using ultrahigh performance liquid chromatography coupled with Q Exactive HF Orbitrap mass spectrometry identified 1074 proteins in the hippocampus, 871 proteins in the mPFC, and 241 proteins in the striatum. Of these proteins, 97 in the hippocampus, 25 in mPFC, and 5 in striatum were differentially expressed with age. The altered proteins were classified into three ontologies (cellular component, molecular function, and biological process) containing 44, 38, and 35 functional groups in the hippocampus, mPFC, and striatum, respectively. Most of these altered proteins participate in oxidative phosphorylation (e.g. cytochrome c oxidase and ATP synthase), glutathione metabolism (e.g. peroxiredoxins), or calcium signaling pathway (e.g. protein S100B and calmodulin). The most prominent changes were observed in the oldest animals. These results suggest that alterations in oxidative phosphorylation, glutathione metabolism, and calcium signaling pathway are involved in cognitive and locomotor impairments in aging.
    Matched MeSH terms: Rats
  3. Colley HE, Said Z, Santocildes-Romero ME, Baker SR, D'Apice K, Hansen J, et al.
    Biomaterials, 2018 09;178:134-146.
    PMID: 29929183 DOI: 10.1016/j.biomaterials.2018.06.009
    Oral lichen planus (OLP) and recurrent aphthous stomatitis (RAS) are chronic inflammatory conditions often characterised by erosive and/or painful oral lesions that have a considerable impact on quality of life. Current treatment often necessitates the use of steroids in the form of mouthwashes, creams or ointments, but these are often ineffective due to inadequate drug contact times with the lesion. Here we evaluate the performance of novel mucoadhesive patches for targeted drug delivery. Electrospun polymeric mucoadhesive patches were produced and characterised for their physical properties and cytotoxicity before evaluation of residence time and acceptability in a human feasibility study. Clobetasol-17-propionate incorporated into the patches was released in a sustained manner in both tissue-engineered oral mucosa and ex vivo porcine mucosa. Clobetasol-17 propionate-loaded patches were further evaluated for residence time and drug release in an in vivo animal model and demonstrated prolonged adhesion and drug release at therapeutic-relevant doses and time points. These data show that electrospun patches are adherent to mucosal tissue without causing tissue damage, and can be successfully loaded with and release clinically active drugs. These patches hold great promise for the treatment of oral conditions such as OLP and RAS, and potentially many other oral lesions.
    Matched MeSH terms: Rats
  4. Xu J, Zheng X, Cheng KK, Chang X, Shen G, Liu M, et al.
    Sci Rep, 2017 03 30;7:45580.
    PMID: 28358020 DOI: 10.1038/srep45580
    Chronic atrophic gastritis (CAG) is a common gastrointestinal disease which has been considered as precancerous lesions of gastric carcinoma. Previously, electro-acupuncture stimulation has been shown to be effective in ameliorating symptoms of CAG. However the underlying mechanism of this beneficial treatment is yet to be established. In the present study, an integrated histopathological examination along with molecular biological assay, as well as 1H NMR analysis of multiple biological samples (urine, serum, stomach, cortex and medulla) were employed to systematically assess the pathology of CAG and therapeutic effect of electro-acupuncture stimulation at Sibai (ST 2), Liangmen (ST 21), and Zusanli (ST 36) acupoints located in the stomach meridian using a rat model of CAG. The current results showed that CAG caused comprehensive metabolic alterations including the TCA cycle, glycolysis, membrane metabolism and catabolism, gut microbiota-related metabolism. On the other hand, electro-acupuncture treatment was found able to normalize a number of CAG-induced metabolomics changes by alleviating membrane catabolism, restoring function of neurotransmitter in brain and partially reverse the CAG-induced perturbation in gut microbiota metabolism. These findings provided new insights into the biochemistry of CAG and mechanism of the therapeutic effect of electro-acupuncture stimulations.
    Matched MeSH terms: Rats
  5. Huang P, Kuo PH, Lee MT, Chiou LC, Fan PC
    Front Pharmacol, 2018;9:1095.
    PMID: 30319425 DOI: 10.3389/fphar.2018.01095
    Background: Valproic acid (VPA) and topiramate (TPM), initially developed as antiepileptics, are approved for migraine prophylaxis in adults but not children. The differences in their antimigraine mechanism(s) by age remain unclear. Methods: A migraine model induced by intra-cisternal (i.c.) capsaicin instillation in pediatric (4-5 weeks) and adult (8-9 weeks) rats was pretreated with VPA (30, 100 mg/kg) or TPM (10, 30, 100 mg/kg). Noxious meningeal stimulation by the irritant capsaicin triggered trigeminovascular system (TGVS) activation mimicking migraine condition, which were assessed peripherally by the depletion of calcitonin gene-related peptide (CGRP) in sensory nerve fibers of the dura mater, the increased CGRP immunoreactivity at trigeminal ganglia (TG) and centrally by the number of c-Fos-immunoreactive (c-Fos-ir) neurons in the trigeminocervical complex (TCC). Peripherally, CGRP released from dural sensory nerve terminals of TG triggered pain signal transmission in the primary afferent of trigeminal nerve, which in turn caused central sensitization of the TGVS due to TCC activation and hence contributed to migraine. Results: In the VPA-treated group, the central responsiveness expressed by reducing the number of c-Fos-ir neurons, which had been increased by i.c. capsaicin, was significant in pediatric, but not adult, rats. Inversely, VPA was effective in peripheral inhibition of elevated CGRP immunoreactivity in the TG and CGRP depletion in the dura mater of adult, but not pediatric, rats. In TPM group, the central responsiveness was significant in both adult and pediatric groups. Peripherally, TPM significantly inhibited capsaicin-induced CGRP expression of TG in adult, but not pediatric, rats. Interestingly, the capsaicin-induced depletion of CGRP in dura was significantly rescued by TPM at high doses in adults, but at low dose in pediatric group. Conclusion: These results suggest VPA exerted peripheral inhibition in adult, but central suppression in pediatric migraine-rats. In contrast, TPM involves both central and peripheral inhibition of migraine with an optimal therapeutic window in both ages. These findings may clarify the age-dependent anti-migraine mechanism of VPA and TPM, which may guide the development of new pediatric anti-migraine drugs in the future.
    Matched MeSH terms: Rats
  6. Anyanwu GO, Iqbal J, Khan SU, Zaib S, Rauf K, Onyeneke CE, et al.
    J Ethnopharmacol, 2018 Oct 18.
    PMID: 30342966 DOI: 10.1016/j.jep.2018.10.021
    ETHNOPHARMACOLOGICAL RELEVANCE: Anthocleista vogelii Planch is a medicinal plant traditionally used in West Africa for the management and treatment of diabetes mellitus.

    AIM OF THE STUDY: To determine the antidiabetic activities of chloroform fraction (CF) of Anthocleista vogelii Planch root bark in rats with diet- and alloxan-induced obesity-diabetes.

    MATERIALS AND METHODS: Inhibitory activities of CF against α-amylase and α-glucosidase activities were determined in vitro. Three weeks old rats were fed with high-fat diet for 9 weeks to induce obesity prior to further induction of diabetes using alloxan (150mg/kg body weight, i.p.). Blood glucose levels and body weight were measured every 7 days throughout the experiment. Glucose tolerance was assessed in normal and CF-treated rats on day 21. Terminal blood samples were collected from sacrificed animals for the measurement of serum insulin levels. Pancreases were excised from treated and untreated animals for histopathological examination.

    RESULTS: LCMS/MS chromatographic profile of CF via positive and negative modes revealed 13 and 23 compounds respectively. Further analysis revealed quebrachitol (QCT), loganin, sweroside, oleoside 11-methyl ester and ferulic acid, which have been previously reported for their antidiabetic activities, as constituents of CF. CF inhibited activities of α-amylase (IC50 = 51.60 ± 0.92µg/ml) and α-glucosidase (IC50 = 5.86 ± 0.97µg/ml) in a dose-dependent manner. Treatment of animals with obesity-diabetes with 100 and 200mg/kg CF significantly improved glucose tolerance (P<0.001) and enhanced serum insulin levels (P<0.05) compared to diabetic control rats.

    CONCLUSIONS: Antidiabetic activities of CF might be mediated via inhibition of α-amylase and α-glucosidase activities, elevation of serum insulin concentration, and enhancement of insulin and leptin sensitivity in obesity-diabetes rats. This study further substantiates the traditional use of A. vogelii in the management and treatment of diabetes in Africa and encourages further studies to investigate its mechanism of action.

    Matched MeSH terms: Rats
  7. Usman UZ, Bakar ABA, Mohamed M
    BMC Complement Altern Med, 2018 Dec 05;18(1):324.
    PMID: 30518366 DOI: 10.1186/s12906-018-2391-6
    BACKGROUND: This study assessed the effects of propolis alone or combined with insulin on maternal status, pregnancy outcomes and placental oxidative stress in streptozotocin-induced diabetic rats.

    METHODS: Forty female rats were randomly assigned into five groups (n = 8/group) i.e. non-DM (non-diabetes), DM (diabetes), DM + Propolis (diabetes on propolis orally); DM + Insulin (diabetes on insulin subcutaneously) and DM + Combined (diabetes on propolis and insulin) groups. Propolis and insulin were given at 300 mg/kg/day orally and 5.0 IU/kg/day subcutaneously, respectively, for 4 weeks.

    RESULTS: Fasting blood glucose, conception period, implantation losses, foetal blood glucose and placental oxidative stress markers such as malonaldehyde and protein carbonyl were significantly higher while maternal weight gain, foetal body weight and total antioxidant capacity were significantly lower in DM group compared with non-DM group. These changes were significantly improved in rats treated with propolis or insulin alone with greater significant effects in rats treated with both propolis and insulin.

    CONCLUSION: This study may suggest the protective effects of propolis against DM-induced impaired pregnancy outcomes and placental oxidative stress with greater effects when combined with insulin.

    Matched MeSH terms: Rats
  8. Retinasamy T, Shaikh MF, Kumari Y, Othman I
    Front Pharmacol, 2019;10:1216.
    PMID: 31736744 DOI: 10.3389/fphar.2019.01216
    Alzheimer's disease (AD) is a chronic neurodegenerative brain disease which is characterized by impairment in cognitive functioning. Orthosiphon stamineus (OS) Benth. (Lamiaceae) is a medicinal plant found around Southeast Asia that has been employed as treatments for various diseases. OS extract contains many active compounds that have been shown to possess various pharmacological properties whereby in vitro studies have demonstrated neuroprotective as well as cholinesterase inhibitory effects. This study, therefore aimed at determining whether this Malaysian plant derived flavonoid can reverse scopolamine induced learning and memory dysfunction in the novel object recognition (NOR) test and the elevated plus maze (EPM) test. In the present study, rats were treated once daily with OS 50 mg/kg, 100 mg/kg, 200 mg/kg and donepezil 1 mg/kg via oral dosing and were given intraperitoneal (ip) injection of scopolamine 1 mg/kg daily to induce cognitive deficits. Rats were subjected to behavioral analysis to assess learning and memory functions and hippocampal tissues were extracted for gene expression and immunohistochemistry studies. All the three doses demonstrated improved scopolamine-induced impairment by showing shortened transfer latency as well as the higher inflexion ratio when compared to the negative control group. OS extract also exhibited memory-enhancing activity against chronic scopolamine-induced memory deficits in the long-term memory novel object recognition performance as indicated by an increase in the recognition index. OS extract was observed to have modulated the mRNA expression of CREB1, BDNF, and TRKB genes and pretreatment with OS extract were observed to have increased the immature neurons against hippocampal neurogenesis suppressed by scopolamine, which was confirmed by the DCX-positive stained cells. These research findings suggest that the OS ethanolic extract demonstrated an improving effect on memory and hence could serve as a potential therapeutic target for the treatment of neurodegenerative diseases like AD.
    Matched MeSH terms: Rats
  9. Wong SK, Chin KY, Ima-Nirwana S
    Drug Des Devel Ther, 2019;13:3497-3514.
    PMID: 31631974 DOI: 10.2147/DDDT.S227738
    Kaempferol is a dietary bioflavonoid ubiquitously found in various types of plant. It possesses a wide range of medicinal properties suggesting its potential clinical utility that requires further investigation. The present review intends to highlight the efficacy of kaempferol and its molecular mechanisms of action in regulating bone metabolism. Many reports have acknowledged the bone-protecting property of kaempferol and kaempferol-containing plants using in vitro and in vivo experimental models. Kaempferol supplementation showed bone-sparing effects in newborn rats, glucocorticoid-induced and ovariectomy-induced osteoporotic models as well as bone fracture models. It achieves the bone-protective effects by inhibiting adipogenesis, inflammation, oxidative stress, osteoclastic autophagy and osteoblastic apoptosis while activating osteoblastic autophagy. The anti-osteoporotic effects of kaempferol are mediated through regulation of estrogen receptor, bone morphogenetic protein-2 (BMP-2), nuclear factor-kappa B (NF-κB), mitogen-activated protein kinase (MAPK) and mammalian target of rapamycin (mTOR) signaling pathways. In summary, kaempferol exhibits beneficial effects on skeleton, thus is potentially effective for the prophylaxis and treatment of osteoporosis.
    Matched MeSH terms: Rats
  10. Almabhouh FA, Md Mokhtar AH, Malik IA, Aziz NAAA, Durairajanayagam D, Singh HJ
    Andrologia, 2020 Feb;52(1):e13433.
    PMID: 31773771 DOI: 10.1111/and.13433
    Infertility is somewhat more prevalent in men who are obese. They are also reported to have low sperm concentration, higher fraction of spermatozoa that look morphologically abnormal, higher DNA fragmentation index and evidence of oxidative stress. The precise cause for this remains uncertain. Leptin levels in serum and percentage body fat correlate positively, and obese men therefore usually have elevated serum leptin levels. Although leptin is important for normal reproductive function, but when present in excess, leptin could seriously affect reproductive function in men. Reports on the findings of sperm parameters in obese men, particularly those who are subfertile or infertile, seem to be similar to those reported from studies on normal-weight rats treated with leptin. Collectively, the observations reported in human and experimental animal studies point to leptin as a possible link between infertility and obesity. Herein, we review some findings on sperm function in obese subfertile or infertile men and those from animal studies following leptin treatment, and discuss the possible link between leptin and reproductive dysfunction in obese men. The large amounts of leptin secreted by the adipose tissue and its higher circulating levels could indeed be responsible for the higher prevalence of infertility in obese men.
    Matched MeSH terms: Rats
  11. Daddiouaissa, Djabir, Azura Amid
    MyJurnal
    Medicinal plants become very important in our days for their therapeutic benefits to humankind. It sustains human health, and it is commonly known as herbal medicines since ancient times. Annona muricata is a heart-shaped fruit that is consumed raw or as the fruit juice in the tropical area. A. muricata is used in traditional and alternative medicine to treat different ailments such as diabetes, hypertension, respiratory and skin illness, inflammation and cancer. A. muricata contains essential anticancer agents named acetogenins that play the significant role in various cancer types. Acetogenins are strong nicotinamide adenine dinucleotide oxidase inhibitors of the cancer cell's mitochondrial membrane but showed neurotoxic effects in rats. Therefore, acetogenins need to be further investigated to determine the exact mechanisms of action, long-term safety, optimal dosage, and potential side effects. Given the extensive studies on A. muricata, this review focuses on the phytochemistry, medicinal uses, biological activities and the mechanisms of action for the fruit extracts and acetogenins, to stimulate further studies on the fruit pulp used for human consumption.
    Matched MeSH terms: Rats
  12. Hazwani M.Y., Hasmah A., Wan Amir Nizam W.A.
    MyJurnal
    Introduction: Cervical cancer is the third leading cause of cancer death among females in less developed countries. Drugs used in the treatment of cervical cancer were reported to exert a cytotoxic effect on the normal cells. This study aimed to determine the effectiveness of Quercus infectoria (QI) vaginal cream towards cervical cancer cell, HeLa and its toxicity effect on the female rat model. Methods: MTT assays were utilized to determine the median concentration (IC50) for cell cytotoxicity of QIA and QI vaginal cream against cervical cancer cells, HeLa. Expression of HPV E6 and E7 protein in HeLa cells treated with QI vaginal cream for 24 hours were conducted by Western blot analysis. In separate experiments, the toxicity of QI vaginal cream on a lower reproductive tract of the female rat model has been assessed by histopathological examination after application for three weeks. The antioxidant activity of QIA extract and QI vaginal cream were assessed by DPPH radical scavenging assay. Results: A moderate cytotoxicity activity exerted by QIA extract and QI vaginal cream against HeLa cell with IC50 values of 13.90 ± 2.27, and 20.80 ± 1.94 respectively. Furthermore, QI vaginal cream suppressed the expression of HPV E6 and E7. Daily application of QI vaginal did not exert any inflammation to the vaginal mucosa and cervix. QIA extract and QI vaginal cream demonstrated high DPPH radical scavenging activity. Conclusion: Formulated QI vaginal cream has cytotoxic effect on HeLa cells without causing an adverse effect on the lower reproductive tract in female rat model.
    Matched MeSH terms: Rats
  13. Bao R, Liu M, Wang D, Wen S, Yu H, Zhong Y, et al.
    Front Pharmacol, 2019;10:1464.
    PMID: 31920654 DOI: 10.3389/fphar.2019.01464
    Background:Eurycoma longifolia is a tropical medicinal plant belonging to Simaroubaceae distributed in South East Asia. The stems are traditionally used for the treatment of sexual insufficiency, fever, hypertension, and malaria. Furthermore, it has antidiabetic and anticancer activities. Recently, it has been reported to reduce uric acid, but the mechanism is unclear. Hypothesis/Purpose: The aim of this study is to explore the effect and mechanism of E. longifolia stem 70% ethanol extract (EL) and its active compounds on uric acid excretion. Study Design and Methods: Potassium oxonate (PO) induced hyperuricemia rats model and adenine-PO induced hyperuricemia mice model were used to evaluate the effects of EL. Ultraperformance liquid chromatography was used to determine the levels of plasma or serum uric acid and creatinine. Hematoxylin-eosin staining was applied to observe kidney pathological changes, and western blot was applied to detect protein expression levels of uric acid transporters. Effects of constituents on urate uptake were tested in hURAT1-expressing HEK293T cells. Results: EL significantly reduced serum and plasma uric acid levels at dosages of 100, 200, and 400 mg/kg in hyperuricemia rats and mice, increased the clearance rate of uric acid and creatinine, and improved the renal pathological injury. The protein expression levels of urate reabsorption transporter 1 (URAT1) and glucose transporter 9 were down-regulated, while sodium-dependent phosphate transporter 1 and ATP-binding cassette transporter G2 were up-regulated in the kidney after EL treatment. The quassinoids isolated from EL showed inhibitory effects on urate uptake in hURAT1-expressing HEK293T cells, and the effect of eurycomanol was further confirmed in vivo. Conclusion: Our findings revealed that EL significantly reduced blood uric acid levels, prevented pathological changes of kidney in PO induced hyperuricemia animal model, and improved renal urate transports. We partly clarified the mechanism was related to suppressing effect of URAT1 by quassinoid in EL. This study is the first to demonstrate that EL plays a role in hyperuricemia by promoting renal uric acid excretion.
    Matched MeSH terms: Rats
  14. Wei J, Yang F, Gong C, Shi X, Wang G
    J Biochem Mol Toxicol, 2019 Jun;33(6):e22319.
    PMID: 30897277 DOI: 10.1002/jbt.22319
    Oxidative stress is performing an essential role in developing Alzheimer's disease (AD), and age-related disorder and other neurodegenerative diseases. In existing research, we have aimed at investigating the daidzein (4',7-dihydroxyisoflavone) effect (10 and 20 mg/kg of body weight), as a free radical scavenger and antioxidant in streptozotocin (STZ) infused AD in rat model. Daidzein treatment led to significant improvement in intracerebroventricular-streptozotocin (ICV-STZ)-induced memory and learning impairments that was evaluated by Morris water maze test and spontaneous locomotor activity. It significantly restored the alterations in malondialdehyde, catalase, superoxide dismutase, and reduced glutathione levels. In addition, histopathological observations in cerebral cortex and hippocampal areas confirmed the neuroprotective effect of daidzein. These outcomes provide experimental proof showing preventive effect of daidzein on memory, learning dysfunction and oxidative stress in case of ICV-STZ rats. In conclusion, daidzein offers a potential treatment module for various neurodegenerative disorders with regard to mental deficits like AD.
    Matched MeSH terms: Rats
  15. Zielinski MS, Vardar E, Vythilingam G, Engelhardt EM, Hubbell JA, Frey P, et al.
    Commun Biol, 2019;2:69.
    PMID: 30793047 DOI: 10.1038/s42003-019-0313-x
    By analyzing isolated collagen gel samples, we demonstrated in situ detection of spectrally deconvoluted auto-cathodoluminescence signatures of specific molecular content with precise spatial localization over a maximum field of view of 300 µm. Correlation of the secondary electron and the hyperspectral images proved ~40 nm resolution in the optical channel, obtained due to a short carrier diffusion length, suppressed by fibril dimensions and poor electrical conductivity specific to their organic composition. By correlating spectrally analyzed auto-cathodoluminescence with mass spectroscopy data, we differentiated spectral signatures of two extracellular matrices, namely human fibrin complex and rat tail collagen isolate, and uncovered differences in protein distributions of isolated extracellular matrix networks of heterogeneous populations. Furthermore, we demonstrated that cathodoluminescence can monitor the progress of a human cell-mediated remodeling process, where human collagenous matrix was deposited within a rat collagenous matrix. The revealed change of the heterogeneous biological composition was confirmed by mass spectroscopy.
    Matched MeSH terms: Rats
  16. Olaiya NG, Nuryawan A, Oke PK, Khalil HPSA, Rizal S, Mogaji PB, et al.
    Polymers (Basel), 2020 Mar 05;12(3).
    PMID: 32151004 DOI: 10.3390/polym12030592
    The current research trend for excellent miscibility in polymer mixing is the use of plasticizers. The use of most plasticizers usually has some negative effects on the mechanical properties of the resulting composite and can sometimes make it toxic, which makes such polymers unsuitable for biomedical applications. This research focuses on the improvement of the miscibility of polymer composites using two-step mixing with a rheomixer and a mix extruder. Polylactic acid (PLA), chitin, and starch were produced after two-step mixing, using a compression molding method with decreasing composition variation (between 8% to 2%) of chitin and increasing starch content. A dynamic mechanical analysis (DMA) was used to study the mechanical behavior of the composite at various temperatures. The tensile strength, yield, elastic modulus, impact, morphology, and compatibility properties were also studied. The DMA results showed a glass transition temperature range of 50 °C to 100 °C for all samples, with a distinct peak value for the loss modulus and factor. The single distinct peak value meant the polymer blend was compatible. The storage and loss modulus increased with an increase in blending, while the loss factor decreased, indicating excellent compatibility and miscibility of the composite components. The mechanical properties of the samples improved compared to neat PLA. Small voids and immiscibility were noticed in the scanning electron microscopy images, and this was corroborated by X-ray diffraction graphs that showed an improvement in the crystalline nature of PLA with starch. Bioabsorption and toxicity tests showed compatibility with the rat system, which is similar to the human system.
    Matched MeSH terms: Rats
  17. Khan SH, Ali F, Shah A, Kamran F, Jahan S
    Sains Malaysiana, 2016;45:1517-1523.
    The present study was aimed at evaluating antihyperglycemic and antihyperlipidemic activity of nuciferin and
    norcoclaurine constituents of N. nucifera seeds, a well-known medicinal plant. The alloxan (100 mg/kg b.w) induced
    diabetic rats (200-250 g) were divided into seven groups (n = 6). Group I; normal control, Group II; diabetic control,
    Group III; standard, Group lV-VII were fed with methanolic crude extracts (100, 200 mg/kg), nuciferin and norcoclaurine
    (10 mg/kg b.w.), received for 15 days in dose dependent manner. The study included different parameters; examination of
    oral glucose, fasting blood glucose, serum lipid profile and checking for body weight changes. In oral glucose examination,
    within 60 and 80 min of treatment, extracts, nuciferin and norcoclaurine significantly reduced blood glucose (p<0.05)
    and restored body weight in diabetic rats. Alloxan- induced diabetic rats showed 30-50% reduction of blood glucose
    level (p<0.05) and recovered 5-20% body weight at day 15 after ingestion of crude extracts (100-200 mg/kg b.w.); and
    nuciferin and norcoclaurine (each at 10 mg/kg b.w.). It also recovered significantly elevated biochemical parameters such
    as triglycerides (TG), low density lipoprotein (LDL), high density lipoprotein (HDL), total cholesterol (TC), serum urea and
    creatinine. Our findings indicated that N. nucifera seeds possess significant antihyperglycemic and antihyperlipidemic
    activity in diabetic rats.
    Matched MeSH terms: Rats
  18. Narayanan SN, Kumar RS
    Acta. Biol. Hung., 2018 Dec;69(4):371-384.
    PMID: 30587025 DOI: 10.1556/018.69.2018.4.1
    In the behavioral science field, many of the oldest tests have still most frequently been used almost in the same way for decades. The subjective influence of human observer and the large inter-observer and interlab differences are substantial among these tests. This necessitates the possibility of using technological innovations for behavioral science to obtain new parameters, results and insights as well. The light-dark box (LDB) test is a characteristic tool used to assess anxiety in rodents. A complete behavioral analysis (including both anxiety and locomotion parameters) is not possible by performing traditional LDB test protocol, as it lacks the usage of a real-time video recording of the test. In the current report, we describe an improved approach to conduct LDB test using a real-time video tracking system.
    Matched MeSH terms: Rats, Wistar
  19. Ramalingam A, Siti Balkis Budin, Lim Yc, Lislivia Si Yn, Satirah Zainalabidin
    Sains Malaysiana, 2016;45:1131-1137.
    UKMR-1, a local variant of mutant Roselle strain (Hibiscus sabdariffa) is enriched with free radical scavenging polyphenols
    such as anthocyanin, vitamin C and hydroxycitric acid. However, pharmacological actions of UKMR-1 are not fully known.
    This study was conducted to determine whether supplementation of aqueous UKMR-1 calyx extract was able to protect
    against nicotine-induced cardiac injury in rats. In this experimental study, healthy male albino rats were randomly
    allotted into three groups (n=7 per group): control, nicotine and UKMR-1+Nicotine groups. Nicotine (0.6 mg/kg, i.p.)
    was administered to both nicotine and UKMR-1+Nicotine groups for 28 consecutive days. UKMR-1+Nicotine group also
    received 100 mg/kg UKMR-1 extract orally via gavage 30 min prior to nicotine injection, daily. UKMR-1+Nicotine group
    had significantly (p<0.05) higher lactate dehydrogenase (LDH) activity, as well as lower malondialdehyde content in
    heart tissue homogenate than nicotine group, suggesting its cardio protective activity by inhibition of lipid peroxidation.
    UKMR-1 also lowered (p<0.05) the blood pressure in nicotine-administered rats. In addition, UKMR-1 significantly (p<0.05)
    restored activities of cytosolic superoxide dismutase, glutathione peroxidase and glutathione-S-transferase as well as
    redox balance ratio (GSH:GSSG). In conclusion, UKMR-1 was a
    Matched MeSH terms: Rats
  20. Jaafar MHM, Hamid KA
    Curr Drug Deliv, 2019;16(7):672-686.
    PMID: 31250754 DOI: 10.2174/1567201816666190620110748
    BACKGROUND: In this study, four nanoparticle formulations (F1 to F4) comprising varying ratios of alginate, Pluronic F-68 and calcium chloride with a constant amount of insulin and chitosan as a coating material were prepared using polyelectrolyte complexation and ionotropic gelation methods to protect insulin against enzymatic degradation.

    METHODS: This study describes the formulation design, optimisation, characterisation and evaluation of insulin concentration via oral delivery in rats. A reversed-phase high-performance liquid chromatography (HPLC) method was developed and validated to quantify insulin concentration in rat plasma. The proposed method produced a linear response over the concentration range of 0.39 to 50 µg/ml.

    RESULTS: In vitro release study showed that dissolution of insulin in simulated gastric juice of pH 1.2 was prevented by alginate core and chitosan coating but rapidly released in simulated intestinal fluid (pH 6.8). Additionally, Formulation 3 (F3) has a particle size of 340.40 ± 2.39 nm with narrow uniformity exhibiting encapsulation efficiency (EE) of 72.78 ± 1.25 % produced highest absorption profile of insulin with a bioavailability of 40.23 ±1.29% and reduced blood glucose after its oral administration in rats.

    CONCLUSION: In conclusion, insulin oral delivery system containing alginate and chitosan as a coating material has the ability to protect the insulin from enzymatic degradation thus enhance its absorption in the intestine. However, more work should be done for instance to involve human study to materialise this delivery system for human use.

    Matched MeSH terms: Rats
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links