Two novel glycolipids have been synthesized and their phase behaviour studied. They have been characterized using FT-IR, FAB and 13C NMR and 1H NMR to ensure the purity of novel glycolipids. The two glycolipids are distinguished based on the head group of glycolipids (monosaccharide/glucose and disaccharide/maltose). These two novel glycolipids have been used as surfactant to perform two phase diagrams. Phase behaviours that have been investigated are 2-hexyldecyl-beta-D-glucopyranoside (2-HDG)/n-octane/water ternary system and 2-hexyldecyl-beta-D-maltoside (2-HDM)/n-octane/water ternary system. SAXS and polarizing optical microscope have been used to study the phase behaviours of these two surfactants in ternary phase diagram. Study of effect of the head group on branched-alkyl chain surfactants in ternary system is a strategy to derive the structure-property relationship. For comparison, 2-HDM and 2-HDG have been used as surfactant in the same ternary system. The phase diagram of 2-hexyldecyl-beta-D-maltoside/n-octane/water ternary system exhibited a Lalpha phase at a higher concentration regime, followed with two phases and a micellar solution region in a lower concentration regime. The phase diagram of 2-HDG/water/n-octane ternary system shows hexagonal phase, cubic phase, rectangular ribbon phase, lamellar phase, cubic phase as the surfactant concentration increase.
A new amide alkaloid, N-(3',4',5'-trimethoxy-cis-cinnamoyl)pyrrolidine (1), named sarmentomicine was isolated from the ethanol extract of the leaves of Malayan Piper sarmentosum, together with two known phenylpropanoids. Their structures were elucidated on the basis of spectroscopic analysis.
D-optimal design was employed to optimize the mixture of cross-linking agents formulation: microbial transglutaminase (MTGase) and ribose, and the processing parameters (i.e. incubation and heating time) in the mixture in order to obtain combined-cross-linked bovine serum albumin gels that have high gel strength, pH close to neutral and yet medium in browning. Analysis of variance (ANOVA) showed that the contribution of quadratic term to the model over the linear was significant for pH and L* value, whereas linear model was significant for gel strength. Optimization study using response surface methodology (RSM) was performed to the mixture components and process variables and the optimum conditions obtained were: MTGase of 1.34-1.43 g/100 mL, ribose of 1.07-1.16 g/100 mL, incubation time of 5 h at 40 degrees C and heating time of 3 h at 90 degrees C.
An investigation of Morinda citrifolia roots afforded a new anthraquinone, 2-ethoxy-1-hydroxyanthraquinone (1), along with five other known anthraquinones: 1-hydroxy-2-methylanthraquinone (2), damnacanthal (3), nordamnacanthal (4), 2-formyl-1-hydroxyanthraquinone (5) and morindone-6-methyl-ether (6). This is the first report on the isolation of morindone-6-methyl-ether (6) from this plant. The structures of these compounds were elucidated based on spectroscopic analyses such as NMR, MS and IR. Biological evaluation of five pure compounds and all the extracts against the larvae of Aedes aegypti indicated 1-hydroxy-2-methylanthraquinone (2) and damnacanthal (3) were the extracts to exhibit promising larvicidal activities.
The stem bark of Phoebe grandis afforded one new oxoproaporphine; (-)-grandine A (1), along with six known isoquinoline alkaloids: (-)-8,9-dihydrolinearisine (2), boldine, norboldine, lauformine, scortechiniine A and scortechiniine B. In addition to that of the new compound, complete 1H- and 13C-NMR data of the tetrahydroproaporphine (-)-8,9-dihydrolinearisine (2) is also reported. The alkaloids' structures were elucidated primarily by means of high field 1D- and 2D-NMR and HRMS spectral data.
Chitosan-tripolyphosphate (CTPP) beads were synthesized, characterized and were used for the adsorption of Pb(II) and Cu(II) ions from aqueous solution. The effects of initial pH, agitation period, adsorbent dosage, different initial concentrations of heavy metal ions and temperature were studied. The experimental data were correlated with the Langmuir, Freundlich and Dubinin-Radushkevich isotherm models. The maximum adsorption capacities of Pb(II) and Cu(II) ions in a single metal system based on the Langmuir isotherm model were 57.33 and 26.06 mg/g, respectively. However, the beads showed higher selectivity towards Cu(II) over Pb(II) ions in the binary metal system. Various thermodynamic parameters such as enthalpy (DeltaH degrees), Gibbs free energy (DeltaG degrees) and entropy (DeltaS degrees) changes were computed and the results showed that the adsorption of both heavy metal ions onto CTPP beads was spontaneous and endothermic in nature. The kinetic data were evaluated based on the pseudo-first and -second order kinetic and intraparticle diffusion models. Infrared spectra were used to elucidate the mechanism of Pb(II) and Cu(II) ions adsorption onto CTPP beads.
Matched MeSH terms: Copper/chemistry*; Lead/chemistry*; Polyphosphates/chemistry*; Water Pollutants/chemistry*; Chitosan/chemistry*
(1)H NMR evidence for direct coordination between the Ln(III) ion and the oxygen atoms of the pentaethylene glycol (EO5) ligand and the picrate anion (Pic) in [Ln(Pic)(2)(EO5)][Pic] {Ln=Ce and Nd} complexes are confirmed by single X-ray diffraction. No dissociation of Ln-O bonds in dimethyl sulfoxide-d solution was observed in NMR studies conducted at different temperatures ranging 25-100 degrees C. The Ln(III) ion was chelated to nine oxygen atoms from the EO5 ligand in a hexadentate manner and the two Pic anions in each bidentate and monodentate modes. Both compounds are isostructural and crystallized in monoclinic with space group P2(1)/c. Coordination environment around the Ce1 and Nd1 atoms can be described as tricapped trigonal prismatic and monocapped square antiprismatic geometries, respectively. The crystal packing of the complexes have stabilized by one dimensional (1D) chains along the [001] direction to form intermolecular O-Hcdots, three dots, centeredO and C-Hcdots, three dots, centeredO hydrogen bonding. The molar conductance of the complexes in DMSO solution indicated that both compounds are ionic. The complexes had a good thermal stability. Under the UV-excitation, these complexes exhibited the red-shift emission.
The effects of polyethyleneimine (PEI) impregnation on the Pb(2+) adsorption kinetics of palm shell-activated carbon and pH profile of bulk solution were investigated. Adsorption data were fitted to four established adsorption kinetics models, namely, pseudo-first-order, pseudo-second-order, Elovich equation and intraparticle diffusion. It was found that PEI impregnation at 16.68 and 29.82 wt% PEI/AC increased the Pb(2+) uptake rate while the opposite was observed for PEI impregnation at 4.76 and 8.41 wt% PEI/AC. The increased uptake rates were due to higher concentration of PEI molecules on the surface of clogged pores as well as varying pore volumes. The adsorption kinetics data fitted the pseudo-second-order model better than the pseudo-first-order model, implying chemisorption was the rate-controlling step. The bulk solution pH generally showed an increasing trend from the use of virgin to PEI-impregnated activated carbon.
The objective of this study was to evaluate the chemical, physicochemical, and functional properties of agrowastes derived from okara ( Glycine max), corn cob ( Zea mays sp.), wheat straw ( Triticum sp.), and rice husk ( Oryza sativa) for potential applications in foods. The fibrous materials (FM) were treated with alkali to yield fibrous residues (FR). Rice husk contained the highest ash content (FM, 8.56%; FR, 9.04%) and lowest lightness in color (FM, 67.63; FR, 63.46), possibly due to the abundance of mineral constituents. Corn cob contained the highest amount of soluble dietary fiber (SDF), whereas okara had the highest total dietary fiber (TDF). The high dietary fiber fractions of corn cob and okara also contributed to the highest water- and oil-holding capacities, emulsifying activities, and emulsion stabilities for both FM and FR samples. These results indicate that these agrowastes could be utilized as functional ingredients in foods.
High-oleic palm oil (HOPO) with an oleic acid content of 59.0% and an iodine value (IV) of 78.2 was crystallized in a 200-kg De Smet crystallizer with a predetermined cooling program and appropriate agitation. The slurry was then fractionated by means of dry fractionation at 4, 8, 10, 12, and 15 degrees C. The oil and the fractionated products were subjected to physical and chemical analyses, including fatty acid composition, triacylglycerol and diacylglycerol composition, solid fat content, cloud point, slip melting point, and cold stability test. Fractionation at 15 degrees C resulted in the highest olein yield but with minimal oleic acid content. Due to the enhanced unsaturation of the oil, fractionation at relatively lower crystallization temperature showed a considerable effect on fatty acid composition as well as triacylglycerol and diacylglycerol composition of liquid fractions compared to higher crystallization temperature. The olein and stearin fractionated at 4 degrees C had the best cold stability at 0 degrees C and sharper melting profile, respectively.
Ethanol and aqueous extracts of the different parts of Piper sarmentosum were analysed by HPLC for marker compounds to standardise these extracts. The standardised extracts were investigated for antioxidant activity (beta-carotene linoleate model and DPPH model), anti-TB activity (microplate tetrazolium assay), and estimation of total phenolic and amide contents. The extracts of the different parts exhibited different antioxidant activity, phenolic and amide contents (p < 0.01). The ethanol extracts exhibited better antioxidant activity as compared to the aqueous extracts. The leaf ethanol extract was further investigated for dose response relationship and its EC(50) was found to be 38 microg mL(-1). All the extracts have exhibited anti-TB activity with MIC/MBC 12.5 microg mL(-1). The leaf methanol extract was fractionated and the ethyl acetate fraction exhibited anti-TB activity with MIC/MBC 3.12 microg mL(-1) while MIC/MBC of isoniazid (INH) was found to be 0.5 microg mL(-1). A positive correlation was found between antioxidant activity and total polyphenols, flavonoids and amides, in the beta-carotene linoleate model (p = 0.05) and in the DPPH model (p = 0.01). The analytical method was found to have linearity >0.9922, coefficient of variance <5% and accuracy 95.5 +/- 5 to 96.9 +/- 5. This plant possesses promising antioxidant as well as anti-TB properties.
A capillary electrophoretic (CE) method for the baseline separation of the enantiomers of primaquine diphosphate (PQ) and quinocide (QC) (a major contaminant) in pharmaceutical formulations is proposed. Both components were separated under the following conditions: 50 mm tris phosphate buffer (pH 3.0) containing 15 mm hydroxypropyl-gamma-cyclodextrin (HP-gamma-CD) as background electrolyte; applied voltage, 16 kV; capillary temperature, 25 degrees C; detection wavelength, 254 nm; hydrostatic injection, 10 s. The separations were conducted using a 35 cm length and 50 microm i.d. uncoated fused silica capillary column. Under the optimized conditions, the components were successfully separated in about 5 min. Intraday precision of migration time and corrected peak areas when expressed as relative standard deviation ranged from 0.17 to 0.45 and 2.60 to 3.94%, respectively, while the interday precision ranged from 2.59 to 4.20 and 3.15 to 4.21%, respectively. After the validation exercise, the proposed method was applied for the determination of QC impurity in PQ formulations.
The liquid-phase adsorption of phenol onto coconut shell-based activated carbon, CS850A was investigated for its equilibrium studies and kinetic modeling. Coconut shell was converted into high quality activated carbon through physiochemical activation at 850 degrees C under the influence of CO(2) flow. Beforehand, the coconut shell was carbonized at 700 degrees C and the resulted char was impregnated with KOH at 1:1 weight ratio. In order to evaluate the performance of CS850A, a series of batch adsorption experiments were conducted with initial phenol concentrations ranging from 100 to 500 mg l(-1), adsorbent loading of 0.2g and the adsorption process was maintained at 30+/-1 degrees C. The adsorption isotherms were in conformation to both Langmuir and Freundlich isotherm models. Chemical reaction was found to be a rate-controlling parameter to this phenol-CS850A batch adsorption system due to strong agreement with the pseudo-second-order kinetic model. Adsorption capacity for CS850A was found to be 205.8 mg g(-1).
Seven new indole alkaloids of the Aspidosperma type, jerantinines A-G (1-7), were isolated from a leaf extract of the Malayan Tabernaemontana corymbosa. The structures were established using NMR and MS analysis. Five of the alkaloids isolated and two derivatives (1-5, 8, 9) displayed pronounced in vitro cytotoxicity against human KB cells (IC50 < 1 microg/mL).
Two seco-tabersonine alkaloids, jerantiphyllines A and B, in addition to a tabersonine hydroxyindolenine, jerantinine H, and a recently reported vincamine alkaloid 7, were isolated from the leaf extract of the Malayan Tabernaemontana corymbosa and the structures were established using NMR and MS analysis. Biomimetic conversion of jerantinines A and E to their respective vincamine and 16-epivincamine derivatives were also carried out.
Oligostilbenoids are polyphenols that are widely distributed in nature with multifaceted biological activities. To achieve biomimetic synthesis of unnatural derivatives, we subjected three resveratrol analogues to oligomerization by means of one-electron oxidants. Upon varying the metal oxidant (AgOAc, CuBr(2), FeCl(3)6 H(2)O, FeCl(3)6 H(2)O/NaI, PbO(2), VOF(3)), the solvent (over the whole range of polarities), and the oxygenated substitution pattern of the starting material, stilbenoid oligomers with totally different carbon skeletons were obtained. Here we propose to explain the determinism of the type of skeleton produced with the aid of hard and soft acid/base concepts in conjunction with the solvating properties of the solvents and the preferred alignment by the effect of pi stacking.
The continuous adsorption of lead ions from aqueous solution on commercial, granular, unpretreated palm shell activated carbon (PSAC) was studied. Effect of pH, flow rates and presence of complexing agents (malonic and boric acids) were examined. The breakthrough period was longer at pH 5 indicating higher adsorption capacity of lead ions at higher pH. Increase of the flow rate, expectedly, resulted in the faster saturation of the carbon bed. Presence of complexing agents did not improve adsorption uptake of lead ions. However, presence of malonic acid resulted in smoother pH stabilization of solution compared to single lead and lead with boric acid systems. The results on continuous adsorption of lead were applied to the model proposed by Wang et al. [Y.-H. Wang, S.-H. Lin, R.-S. Juang, Removal of heavy metals ions from aqueous solutions using various low-cost adsorbents, J. Hazard. Mater. B 102 (2003) 291-302]. The agreement between experimental and modelled breakthrough curves was satisfactory at both pHs.
Silica supported iron catalyst was prepared from rice husk ash (RHA) via the sol-gel technique using an aqueous solution of iron(III) salt in 3.0 M HNO3. The sample was dried at 110 degrees C and labeled as RHA-Fe. A sample of RHA-Fe was calcined at 700 degrees C for 5 h and labeled as RHA-Fe700. X-ray diffraction spectrogram showed that both RHA-Fe and RHA-Fe700 were amorphous. The SEM/EDX results showed that the metal was present as agglomerates and the Fe ions were not homogeneously distributed in RHA-Fe but RHA-Fe700 was shown to be homogeneous. The specific surface areas for RHA-Fe and RHA-Fe700 were determined by BET nitrogen adsorption studies and found to be 87.4 and 55.8 m(2) g(-1), respectively. Both catalysts showed high activity in the reaction between toluene and benzyl chloride. The mono-substituted benzyltoluene was the major product and both catalysts yielded more than 92% of the product. The GC showed that both the ortho- and para-substituted monoisomers were present in about equal quantities. The minor products consisting of 16 di-substituted isomers were also observed in the GC-MS spectra of both catalytic products. The catalyst was found to be reusable without loss of activity and with no leaching of the metal.
The process for the production of biodegradable plastic material (polyhydroxyalkanoates, PHAs) from microbial cells by mixed-bacterial cultivation using readily available waste (renewable resources) is the main consideration nowadays. These observations have shown impressive results typically under high carbon fraction, COD/N and COD/P (usually described as nutrient-limiting conditions) and warmest temperature (moderate condition). Therefore, the aim of this work is predominantly to select mixed cultures under high storage responded by cultivation on a substrate - non limited in a single batch reactor with shortest period for feeding and to characterize their storage response by using specific and kinetics determination. In that case, the selected-fixed temperature is 30 degrees C to establish tropical conditions. During the accumulated steady-state period, the cell growth was inhibited by high PHA content within the cells because of the carbon reserve consumption. From the experiments, there is no doubt about the PHA accumulation even at high carbon fraction ratio. Apparently, the best accumulation occurred at carbon fraction, 160 +/- 7.97 g COD/g N (PHAmean, = 44.54% of dried cells). Unfortunately, the highest PHA productivity was achieved at the high carbon fraction, 560 +/- 1.62 g COD/g N (0.152 +/- 0.17 g/l. min). Overall results showed that with high carbon fraction induced to the cultivation, the PO4 and NO3 can remove up to 20% in single cultivation.
Oil palm empty fruit bunch (EFB) fibers were employed to remove dyes from aqueous solutions via adsorption approaches. The EFB fibers were modified using citric acid (CA) and polyethylenimine (PEI) to produce anionic and cationic adsorbents, respectively. The CA modified EFB fibers (CA-EFB) and PEI-modified EFB fibers (PEI-EFB) were used to study the efficiency in removing cationic methylene blue (MB) and anionic phenol red (PR) from aqueous solutions, respectively, at different pHs, temperatures and initial dye concentrations. The adsorption data for MB on the CA-EFB fitted the Langmuir isotherm, while the adsorption of PR on the PEI-EFB fitted the Freundlich isotherm, suggesting a monolayer and heterogeneous adsorption behavior of the adsorption processes, respectively. Both modified fibers can be regenerated up to seven adsorption/desorption cycles while still providing as least 70% of the initial adsorption capacity.