Displaying publications 1 - 20 of 26 in total

Abstract:
Sort:
  1. Jayaram G, Gupta M
    Malays J Pathol, 1994 Jun;16(1):29-38.
    PMID: 16329573
    A detailed cytomorphologic study was done on fine needle aspiration smears from 651 benign breast lumps. Cytological categorization enabled the distinction of proliferative from non-proliferative and infective lesions in the majority of the cases. Lumpectomy provided the histological diagnosis in 584 cases, most of which were proliferative lesions. Gross cystic disease and fibroadenoma were the most common lesions encountered. Microcysts with apocrine change, sclerosing adenosis, proliferative disease without atypia, atypical ductal hyperplasia, atypical lobular hyperplasia, and lobular carcinoma in situ were associated with the dominant lesion in many of the cases. In all these cases, retrospective analysis of the cytological smears was done in an attempt to identify cytological features which may indicate these lesions.
  2. Jayaram G, Gupta M, Lamba S
    Malays J Pathol, 1993 Dec;15(2):137-42.
    PMID: 8065175
    Forty-eight patients with breast carcinoma were subjected to four quadrant fine needle aspiration (FNA) cytology examination of the ipsilateral and contralateral breast in an attempt to detect any accompanying benign proliferative lesion. Mastectomy of ipsilateral and open biopsy of contralateral breast provided material for histopathological study. Cytological evidence of epithelial proliferation was found in 8 (16.6%) cases which included atypical lobular hyperplasia (ALH), lobular neoplasia in-situ (LNIS), atypical ductal hyperplasia (ADH), and proliferative disease without atypia (PDWA). In lobular proliferative lesions, cytological smears showed configurations of cells that resembled filled up or expanded lobular units. The cytology was not distinctive enough to distinguish the sub-types of lobular proliferations. Likewise, the presence of ductal alterations could be suggested by cytological study but the distinction of proliferative disease without atypia (PDWA) from atypical ductal hyperplasia (ADH) was not possible on a cytological basis.
  3. Ng LC, Gupta M
    Asian J Pharm Sci, 2020 Jan;15(1):13-25.
    PMID: 32175015 DOI: 10.1016/j.ajps.2019.04.006
    Diabetes mellitus is a chronic disease in which there is an insufficient production of insulin by the pancreas, or the insulin produced is unable to be utilized effectively by the body. Diabetes affects more than 415 million people globally and is estimated to strike about 642 million people in 2040. The WHO reported that diabetes will become the seventh biggest cause of mortality in 2030. Insulin injection and oral hypoglycemic agents remain the primary treatments in diabetes management. These often present with poor patient compliance. However, over the last decade, transdermal systems in diabetes management have gained increasing attention and emerged as a potential hope in diabetes management owing to the advantages that they offer as compared to invasive injection and oral dosage forms. This review presents the recent advances and developments in transdermal research to achieve better diabetes management. Different technologies and approaches have been explored and applied to the transdermal systems to optimize diabetes management. Studies have shown that these transdermal systems demonstrate higher bioavailability compared to oral administration due to the avoidance of first-pass hepatic metabolism and a sustained drug release pattern. Besides that, transdermal systems have the advantage of reducing dosing frequency as drugs are released at a predetermined rate and control blood glucose level over a prolonged time, contributing to better patient compliance. In summary, the transdermal system is a field worth exploring due to its significant advantages over oral route in administration of antidiabetic drugs and biosensing of blood glucose level to ensure better clinical outcomes in diabetes management.
  4. Bhutani G, Kaushal J, Gupta MC
    Med J Malaysia, 2011 Dec;66(5):526-33.
    PMID: 22390122
    Smoking is a major health problem of the society as it causes a wide variety of health hazards and produces a strong addictive behavior. Various pharmacological and non pharmacological treatments have been tried for smoking cessation from time to time. Some of the pharmacological treatments have been able to achieve the status of first line and second line therapy for smoking cessation by the US Public Health Service Clinical Practice Guideline. Some newer and very promising drugs have come up and are in the clinical trials for establishment of their efficacy. While some other drugs have been tried from time to time but have failed to show any consistent results. Various non pharmacological therapies like behavioural therapy are also of utmost importance in this regard. This article gives a brief review and critical assessment of the existing and the emerging smoking cessation therapies.
    Non-Malaysian publication: India
  5. Shetty N, Malaviya RK, Gupta MK
    Case Rep Dent, 2012;2012:521427.
    PMID: 22844620 DOI: 10.1155/2012/521427
    Masseter muscle hypertrophy is a rare condition of idiopathic cause. It clinically presents as an enlargement of one or both masseter muscles. Most patients complain of facial asymmetry; however, symptoms such as trismus, protrusion, and bruxism may also occur. Several treatment options reported for masseter hypertrophy are present, which range from simple pharmacotherapy to more invasive surgical reduction. Keloid scar with unilateral masseter hypertrophy is a rarely seen in clinical practice. This paper reports a case of unilateral masseter hypertrophy with keloid scar in the angle of the mandible for which surgical treatment was rendered to the patient by using a single approach.
  6. Das Gupta M, Chan SK, Monteiro A
    PLoS One, 2015;10(7):e0132882.
    PMID: 26173066 DOI: 10.1371/journal.pone.0132882
    Commonly used visible markers for transgenesis use fluorescent proteins expressed at the surface of the body, such as in eyes. One commonly used marker is the 3xP3-EGFP cassette containing synthetic binding sites for the eyeless/Pax6 conserved transcription factor. This marker cassette leads to fluorescent eyes in a variety of animals tested so far. Here we show that upon reaching adulthood, transgenic Bicyclus anynana butterflies containing this marker cassette exponentially loose fluorescence in their eyes. After 12 days, transgenic individuals are no longer distinguishable from wild type individuals. The decreased eye fluorescence is likely due to significantly decreased or halted eyeless/Pax6 expression observed in wild type animals upon adult emergence. Implications from these findings include care in screening transgenic animals before these reach adulthood, or shortly thereafter, and in using adult animals of the same age for quantitative screening of likely homozygote and heterozygote individuals.
  7. Rehan F, Ahemad N, Gupta M
    Colloids Surf B Biointerfaces, 2019 Jul 01;179:280-292.
    PMID: 30981063 DOI: 10.1016/j.colsurfb.2019.03.051
    Casein nanomicelles, a major fraction of milk protein, are emerging as a novel drug delivery system owing to their various structural and functional properties. Casein is further divided into α-, β- and κ-casein, and to date various models have been proposed to describe casein structure, but still no definite structure presenting a detailed assembly of the casein micelle has been found. Thus far, the submicellar model and Horne and Holt model are the most accepted models. This article presents a detailed review of casein micelles and their fractions, and the physicochemical properties that account for their numerous applications in nutraceutics, pharmaceutics and cosmetics. Due to their nanosize and self-assembling nature, casein nanomicelles are considered as excellent delivery carriers to provide better bioavailability and stability of various compounds such as vitamins, oils, polyphenols, fattyacids and minerals. Their amphiphilic nature also provides a great opportunity to deliver hydrophobic bioactives in various drug delivery systems such as nanoparticles, nanomicelles, nanogels and nanoemulsions to improve drug binding and targeting.
  8. Gupta M, Hawari HF, Kumar P, Burhanudin ZA, Tansu N
    Nanomaterials (Basel), 2021 Mar 03;11(3).
    PMID: 33802318 DOI: 10.3390/nano11030623
    The demand for carbon dioxide (CO2) gas detection is increasing nowadays. However, its fast detection at room temperature (RT) is a major challenge. Graphene is found to be the most promising sensing material for RT detection, owing to its high surface area and electrical conductivity. In this work, we report a highly edge functionalized chemically synthesized reduced graphene oxide (rGO) thin films to achieve fast sensing response for CO2 gas at room temperature. The high amount of edge functional groups is prominent for the sorption of CO2 molecules. Initially, rGO is synthesized by reduction of GO using ascorbic acid (AA) as a reducing agent. Three different concentrations of rGO are prepared using three AA concentrations (25, 50, and 100 mg) to optimize the material properties such as functional groups and conductivity. Thin films of three different AA reduced rGO suspensions (AArGO25, AArGO50, AArGO100) are developed and later analyzed using standard FTIR, XRD, Raman, XPS, TEM, SEM, and four-point probe measurement techniques. We find that the highest edge functionality is achieved by the AArGO25 sample with a conductivity of ~1389 S/cm. The functionalized AArGO25 gas sensor shows recordable high sensing properties (response and recovery time) with good repeatability for CO2 at room temperature at 500 ppm and 50 ppm. Short response and recovery time of ~26 s and ~10 s, respectively, are achieved for 500 ppm CO2 gas with the sensitivity of ~50 Hz/µg. We believe that a highly functionalized AArGO CO2 gas sensor could be applicable for enhanced oil recovery, industrial and domestic safety applications.
  9. Rominski SD, Gupta M, Aborigo R, Adongo P, Engman C, Hodgson A, et al.
    Int J Gynaecol Obstet, 2014 Sep;126(3):217-22.
    PMID: 24920181 DOI: 10.1016/j.ijgo.2014.03.031
    OBJECTIVE: To investigate factors associated with self-reported pregnancy termination in Ghana and thereby appreciate the correlates of abortion-seeking in order to understand safe abortion care provision.
    METHODS: In a retrospective study, data from the Ghana 2008 Demographic and Health Survey were used to investigate factors associated with self-reported pregnancy termination. Variables on an individual and household level were examined by both bivariate analyses and multivariate logistic regression. A five-point autonomy scale was created to explore the role of female autonomy in reported abortion-seeking behavior.
    RESULTS: Among 4916 women included in the survey, 791 (16.1%) reported having an abortion. Factors associated with abortion-seeking included being older, having attended school, and living in an urban versus a rural area. When entered into a logistic regression model with demographic control variables, every step up the autonomy scale (i.e. increasing autonomy) was associated with a 14.0% increased likelihood of reporting the termination of a pregnancy (P < 0.05).
    CONCLUSION: Although health system barriers might play a role in preventing women from seeking safe abortion services, autonomy on an individual level is also important and needs to be addressed if women are to be empowered to seek safe abortion services.
    KEYWORDS: Abortion; Autonomy; Empowerment; Low-resource countries; Maternal health; Reproductive health
  10. Aina A, Gupta M, Boukari Y, Morris A, Billa N, Doughty S
    Saudi Pharm J, 2016 Mar;24(2):227-31.
    PMID: 27013917 DOI: 10.1016/j.jsps.2015.03.015
    The microencapsulation of three model drugs; metronidazole, paracetamol and sulphapyridine into Poly (dl-Lactide-Co-Glycolide) (PLGA) scaffolds were probed using X-ray Powder Diffraction (XRPD). Changes in the diffraction patterns of the PLGA scaffolds after encapsulation was suggestive of a chemical interaction between the pure drugs and the scaffolds and not a physical intermixture.
  11. Aslantas K, Danish M, Hasçelik A, Mia M, Gupta M, Ginta T, et al.
    Materials (Basel), 2020 Jul 06;13(13).
    PMID: 32640567 DOI: 10.3390/ma13132998
    Micro-turning is a micro-mechanical cutting method used to produce small diameter cylindrical parts. Since the diameter of the part is usually small, it may be a little difficult to improve the surface quality by a second operation, such as grinding. Therefore, it is important to obtain the good surface finish in micro turning process using the ideal cutting parameters. Here, the multi-objective optimization of micro-turning process parameters such as cutting speed, feed rate and depth of cut were performed by response surface method (RSM). Two important machining indices, such as surface roughness and material removal rate, were simultaneously optimized in the micro-turning of a Ti6Al4V alloy. Further, the scanning electron microscope (SEM) analysis was done on the cutting tools. The overall results depict that the feed rate is the prominent factor that significantly affects the responses in micro-turning operation. Moreover, the SEM results confirmed that abrasion and crater wear mechanism were observed during the micro-turning of a Ti6Al4V alloy.
  12. Gupta M, Aina A, Boukari Y, Doughty S, Morris A, Billa N
    Pharm Dev Technol, 2018 Feb;23(2):207-210.
    PMID: 28290217 DOI: 10.1080/10837450.2017.1304415
    Poly(lactic-co-glycolic acid) (PLGA) is a well-studied biodegradable polymer used in drug delivery and other medical applications such as in tissue regeneration. It is often necessary to impart porosity within the scaffold (microparticles) in order to promote the growth of tissue during the regeneration process. Sodium chloride and ammonium bicarbonate have been extensively used as porogens in the generation of porous microstructure. In this study, we compared the effect of volumes (250 μl, 500 μl and 750 μl) of two porogens, sodium chloride (1.71 M) and ammonium bicarbonate (1.71 M), on the porosity of PLGA microparticles.
  13. Gupta M, Gulati M, Kapoor B, Kumar B, Kumar R, Kumar R, et al.
    J Ethnopharmacol, 2021 Jul 15;275:114115.
    PMID: 33852947 DOI: 10.1016/j.jep.2021.114115
    ETHNOPHARMACOLOGICAL RELEVANCE: Elaeagnus conferta Roxb. (Elaeagnaceae) is a subtropical shrub mainly native to India, Vietnam, Malaysia and South China, whose various parts are used for treatment of diabetes, gastric ulcers, pain, oxidative stress and pulmonary disorders. Though the other parts of the plant have been reported for their ethnic use i.e. fruits as astringent locally and for cancer systemically, leaves for body pain and flowers for pain in chest and the seeds are mentioned as edible, there is no report per se on the medicinal use of seeds. Based on the fact that seeds of closely resembling species i.e. Elaeagnus rhamnoides has demonstrated significant anti-gastroulcerative property, the probability of the seeds of E. conferta possessing similar activity seemed quite significant.

    AIM OF THE STUDY: Phytochemical investigation and assessment of pharmacological mechanism(s) involved in anti-ulcer effect of methanolic extract of the seeds of E. conferta.

    MATERIALS AND METHODS: Bioactive phytoconstituents were isolated by column chromatography. These were identified by spectroscopic techniques including infrared (IR) spectroscopy, nuclear magnetic resonance (NMR) and mass spectrometry. Methanolic extract (MEC) of the seeds was prepared by cold maceration and its anti-ulcerogenic potential was evaluated using indomethacin (50 mg/kg) and water immersion stress models in male rats. The animals were pre-treated with different doses of MEC (400 and 800 mg/kg) and the therapeutic effect was compared with standard drug i.e. ranitidine (RANT; 50 mg/kg). The ameliorative effects of MEC were investigated on gastric juice pH, total acidity, free acidity and ulcer index. The assays of malionaldehyde (MDA), catalase (CAT), superoxide dismutase (SOD), glutathione (GSH) and pro-inflammatory cytokines i.e. interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) were carried out to find out the possible mechanism(s) of protection. Further, histopathological changes were also studied.

    RESULTS: Chromatography studies and further confirmation by spectroscopic techniques revealed the presence of four different compounds in MEC i.e oleic acid (1), stearic acid (2), ascorbic acid (3) and quercetin (4). MEC exhibited anti-ulcerogenic effect in dose dependent manner which may be attributed to suppression of pro-inflammatory cytokines (IL-6, TNF-α) and MDA (112.7%), and up-regulation of protective factors such as CAT (90.48%), SOD (92.77%) and GSH (90.01%). Ulcer inhibition, reduction in total and free acidity and increase in gastric juice pH were observed in MEC treated rats as compared to disease control animals. Histopathological findings confirmed decreased cell infiltration, less epithelial cell damage and regeneration of gastric mucosa in dose dependent manner.

    CONCLUSIONS: The anti-ulcer effect of MEC may be attributed to its ability to scavenge free radicals and anti-inflammatory property via suppression of TNF-α and IL-6, thus offers a complete and holistic approach for management of peptic ulcer.

  14. Gupta V, Jain N, Sachdeva J, Gupta M, Mohan S, Bajuri MY, et al.
    Multimed Tools Appl, 2022;81(26):37657-37680.
    PMID: 35968409 DOI: 10.1007/s11042-022-13509-4
    The novel coronavirus disease, which originated in Wuhan, developed into a severe public health problem worldwide. Immense stress in the society and health department was advanced due to the multiplying numbers of COVID carriers and deaths. This stress can be lowered by performing a high-speed diagnosis for the disease, which can be a crucial stride for opposing the deadly virus. A good large amount of time is consumed in the diagnosis. Some applications that use medical images like X-Rays or CT-Scans can pace up the time used in diagnosis. Hence, this paper aims to create a computer-aided-design system that will use the chest X-Ray as input and further classify it into one of the three classes, namely COVID-19, viral Pneumonia, and healthy. Since the COVID-19 positive chest X-Rays dataset was low, we have exploited four pre-trained deep neural networks (DNNs) to find the best for this system. The dataset consisted of 2905 images with 219 COVID-19 cases, 1341 healthy cases, and 1345 viral pneumonia cases. Out of these images, the models were evaluated on 30 images of each class for the testing, while the rest of them were used for training. It is observed that AlexNet attained an accuracy of 97.6% with an average precision, recall, and F1 score of 0.98, 0.97, and 0.98, respectively.
  15. Nisar K, Sabir Z, Asif Zahoor Raja M, Ag Ibrahim AA, J P C Rodrigues J, Refahy Mahmoud S, et al.
    Sensors (Basel), 2021 Sep 29;21(19).
    PMID: 34640818 DOI: 10.3390/s21196498
    The aim of this work is to solve the case study singular model involving the Neumann-Robin, Dirichlet, and Neumann boundary conditions using a novel computing framework that is based on the artificial neural network (ANN), global search genetic algorithm (GA), and local search sequential quadratic programming method (SQPM), i.e., ANN-GA-SQPM. The inspiration to present this numerical framework comes through the objective of introducing a reliable structure that associates the operative ANNs features using the optimization procedures of soft computing to deal with such stimulating systems. Four different problems that are based on the singular equations involving Neumann-Robin, Dirichlet, and Neumann boundary conditions have been occupied to scrutinize the robustness, stability, and proficiency of the designed ANN-GA-SQPM. The proposed results through ANN-GA-SQPM have been compared with the exact results to check the efficiency of the scheme through the statistical performances for taking fifty independent trials. Moreover, the study of the neuron analysis based on three and 15 neurons is also performed to check the authenticity of the proposed ANN-GA-SQPM.
  16. Md S, Alhakamy NA, Neamatallah T, Alshehri S, Mujtaba MA, Riadi Y, et al.
    Gels, 2021 Nov 24;7(4).
    PMID: 34842729 DOI: 10.3390/gels7040230
    The aim of this study was to prepare and evaluate α-mangostin-loaded polymeric nanoparticle gel (α-MNG-PLGA) formulation to enhance α-mangostin delivery in an epidermal carcinoma. The poly (D, L-lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) were developed using the emulsion-diffusion-evaporation technique with a 3-level 3-factor Box-Behnken design. The NPs were characterized and evaluated for particle size distribution, zeta potential (mV), drug release, and skin permeation. The formulated PLGA NPs were converted into a preformed carbopol gel base and were further evaluated for texture analysis, the cytotoxic effect of PLGA NPs against B16-F10 melanoma cells, and in vitro radical scavenging activity. The nanoscale particles were spherical, consistent, and average in size (168.06 ± 17.02 nm), with an entrapment efficiency (EE) of 84.26 ± 8.23% and a zeta potential of -25.3 ± 7.1 mV. Their drug release percentages in phosphate-buffered solution (PBS) at pH 7.4 and pH 6.5 were 87.07 ± 6.95% and 89.50 ± 9.50%, respectively. The release of α-MNG from NPs in vitro demonstrated that the biphasic release system, namely, immediate release in the initial phase, was accompanied by sustained drug release. The texture study of the developed α-MNG-PLGA NPs gel revealed its characteristics, including viscosity, hardness, consistency, and cohesiveness. The drug flux from α-MNG-PLGA NPs gel and α-MNG gel was 79.32 ± 7.91 and 16.88 ± 7.18 µg/cm2/h in 24 h, respectively. The confocal study showed that α-MNG-PLGA NPs penetrated up to 230.02 µm deep into the skin layer compared to 15.21 µm by dye solution. MTT assay and radical scavenging potential indicated that α-MNG-PLGA NPs gel had a significant cytotoxic effect and antioxidant effect compared to α-MNG gel (p < 0.05). Thus, using the developed α-MNG-PLGA in treating skin cancer could be a promising approach.
  17. Ashique S, Garg A, Mishra N, Raina N, Ming LC, Tulli HS, et al.
    Naunyn Schmiedebergs Arch Pharmacol, 2023 Nov;396(11):2769-2792.
    PMID: 37219615 DOI: 10.1007/s00210-023-02522-5
    Lung cancer is the most common type of cancer, with over 2.1 million cases diagnosed annually worldwide. It has a high incidence and mortality rate, leading to extensive research into various treatment options, including the use of nanomaterial-based carriers for drug delivery. With regard to cancer treatment, the distinct biological and physico-chemical features of nano-structures have acquired considerable impetus as drug delivery system (DDS) for delivering medication combinations or combining diagnostics and targeted therapy. This review focuses on the use of nanomedicine-based drug delivery systems in the treatment of lung cancer, including the use of lipid, polymer, and carbon-based nanomaterials for traditional therapies such as chemotherapy, radiotherapy, and phototherapy. The review also discusses the potential of stimuli-responsive nanomaterials for drug delivery in lung cancer, and the limitations and opportunities for improving the design of nano-based materials for the treatment of non-small cell lung cancer (NSCLC).
  18. Ashique S, Mishra N, Mantry S, Garg A, Kumar N, Gupta M, et al.
    PMID: 39196392 DOI: 10.1007/s00210-024-03392-1
    A significant number of deaths and disabilities worldwide are brought on by inflammatory lung diseases. Many inflammatory lung disorders, including chronic respiratory emphysema, resistant asthma, resistance to steroids, and coronavirus-infected lung infections, have severe variants for which there are no viable treatments; as a result, new treatment alternatives are needed. Here, we emphasize how oxidative imbalance contributes to the emergence of provocative lung problems that are challenging to treat. Endogenic antioxidant systems are not enough to avert free radical-mediated damage due to the induced overproduction of ROS. Pro-inflammatory mediators are then produced due to intracellular signaling events, which can harm the tissue and worsen the inflammatory response. Overproduction of ROS causes oxidative stress, which causes lung damage and various disease conditions. Invasive microorganisms or hazardous substances that are inhaled repeatedly can cause an excessive amount of ROS to be produced. By starting signal transduction pathways, increased ROS generation during inflammation may cause recurrent DNA damage and apoptosis and activate proto-oncogenes. This review provides information about new targets for conducting research in related domains or target factors to prevent, control, or treat such inflammatory oxidative stress-induced inflammatory lung disorders.
  19. Abioye KJ, Harun NY, Sufian S, Yusuf M, Jagaba AH, Waqas S, et al.
    Environ Res, 2024 Apr 01;246:118027.
    PMID: 38159670 DOI: 10.1016/j.envres.2023.118027
    The study explores co-gasification of palm oil decanter cake and alum sludge, investigating the correlation between input variables and syngas production. Operating variables, including temperature (700-900 °C), air flow rate (10-30 mL/min), and particle size (0.25-2 mm), were optimized to maximize syngas production using air as the gasification agent in a fixed bed horizontal tube furnace reactor. Response Surface Methodology with the Box-Behnken design was used employed for optimization. Fourier Transformed Infra-Red (FTIR) and Field Emission Scanning Electron Microscopic (FESEM) analyses were used to analyze the char residue. The results showed that temperature and particle size have positive effects, while air flow rate has a negative effect on the syngas yield. The optimal CO + H2 composition of 39.48 vol% was achieved at 900 °C, 10 mL/min air flow rate, and 2 mm particle size. FTIR analysis confirmed the absence of C─Cl bonds and the emergence of Si─O bonds in the optimized char residue, distinguishing it from the raw sample. FESEM analysis revealed a rich porous structure in the optimized char residue, with the presence of calcium carbonate (CaCO3) and aluminosilicates. These findings provide valuable insights for sustainable energy production from biomass wastes.
  20. Gautam D, Dolma KG, Khandelwal B, Goyal RK, Mitsuwan W, Pereira MLG, et al.
    Indian J Med Res, 2023 Oct 01;158(4):439-446.
    PMID: 38006347 DOI: 10.4103/ijmr.ijmr_3470_21
    BACKGROUND OBJECTIVES: Acinetobacter baumannii has emerged as a nosocomial pathogen with a tendency of high antibiotic resistance and biofilm production. This study aimed to determine the occurrence of A. baumannii from different clinical specimens of suspected bacterial infections and furthermore to see the association of biofilm production with multidrug resistance and expression of virulence factor genes in A. baumannii.

    METHODS: A. baumannii was confirmed in clinical specimens by the detection of the blaOXA-51-like gene. Biofilm production was tested by microtitre plate assay and virulence genes were detected by real-time PCR.

    RESULTS: A. baumannii was isolated from a total of 307 clinical specimens. The isolate which showed the highest number of A. baumannii was an endotracheal tube specimen (44.95%), then sputum (19.54%), followed by pus (17.26%), urine (7.49%) and blood (5.86%), and <2 per cent from body fluids, catheter-tips and urogenital specimens. A resistance rate of 70-81.43 per cent against all antibiotics tested, except colistin and tigecycline, was noted, and 242 (78.82%) isolates were multidrug-resistant (MDR). Biofilm was detected in 205 (66.78%) with a distribution of 54.1 per cent weak, 10.42 per cent medium and 2.28 per cent strong biofilms. 71.07 per cent of MDR isolates produce biofilm (P<0.05). Amongst virulence factor genes, 281 (91.53%) outer membrane protein A (OmpA) and 98 (31.92%) biofilm-associated protein (Bap) were detected. Amongst 100 carbapenem-resistant A. baumannii, the blaOXA-23-like gene was predominant (96%), the blaOXA-58-like gene (6%) and none harboured the blaOXA-24-like gene. The metallo-β-lactamase genes blaIMP-1 (4%) and blaVIM-1(8%) were detected, and 76 per cent showed the insertion sequence ISAba1.

    INTERPRETATION CONCLUSIONS: The majority of isolates studied were from lower respiratory tract specimens. The high MDR rate and its positive association with biofilm formation indicate the nosocomial distribution of A. baumannii. The biofilm formation and the presence of Bap were not interrelated, indicating that biofilm formation was not regulated by a single factor. The MDR rate and the presence of OmpA and Bap showed a positive association (P<0.05). The isolates co-harbouring different carbapenem resistance genes were the predominant biofilm producers, which will seriously limit the therapeutic options suggesting the need for strict antimicrobial stewardship and molecular surveillance in hospitals.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links