Displaying publications 1 - 20 of 96 in total

Abstract:
Sort:
  1. He C, Ding N, Li J, Li Y
    Wei Sheng Wu Xue Bao, 2002 Aug;42(4):436-41.
    PMID: 12557549
    A Chicken anemia virus has been isolated from a chicken flock in Harbin of China. The genome of the ivrus was cloned through polymerase chain reaction(PCR) and sequence of the genome was analyzed. The cycle genome is made of 2298 base pairs including three overlapping open reading frames(vp1, vp2, vp3) and a regulative region. Comparing sequence of the genome through BLAST in GenBank, this sequence exhibits 96.9% identity with other genome of CA Vs and least. Multiple alignment of this genome of this virus, 26p4, strain isolated in Germany, strain isolated in Malaysia and Cux-1 found that this sequence exhibits 98.2% (42/2298), 98.2% (42/2298), 96.9% (72/2298) and 97.5% (60/2319) identify with them, respectively. A new CAV strain was isolated and it has better identify with CAV isolated in Europe countries than is Asia country Malaysia. Multiple alignment of VP1, VP2, VP3 of 26p4, strain isolated in Germany, strain isolated in Malaysia, Cux-1 and strain isolated in Harbin of China found the VP2 the most conservative.
  2. Li Y, Wen H, Chen L, Yin T
    PLoS ONE, 2014;9(12):e115024.
    PMID: 25502754 DOI: 10.1371/journal.pone.0115024
    The growing concern about the effectiveness of reclamation strategies has motivated the evaluation of soil properties following reclamation. Recovery of belowground microbial community is important for reclamation success, however, the response of soil bacterial communities to reclamation has not been well understood. In this study, PCR-based 454 pyrosequencing was applied to compare bacterial communities in undisturbed soils with those in reclaimed soils using chronosequences ranging in time following reclamation from 1 to 20 year. Bacteria from the Proteobacteria, Chloroflexi, Actinobacteria, Acidobacteria, Planctomycetes and Bacteroidetes were abundant in all soils, while the composition of predominant phyla differed greatly across all sites. Long-term reclamation strongly affected microbial community structure and diversity. Initial effects of reclamation resulted in significant declines in bacterial diversity indices in younger reclaimed sites (1, 8-year-old) compared to the undisturbed site. However, bacterial diversity indices tended to be higher in older reclaimed sites (15, 20-year-old) as recovery time increased, and were more similar to predisturbance levels nearly 20 years after reclamation. Bacterial communities are highly responsive to soil physicochemical properties (pH, soil organic matter, Total N and P), in terms of both their diversity and community composition. Our results suggest that the response of soil microorganisms to reclamation is likely governed by soil characteristics and, indirectly, by the effects of vegetation restoration. Mixture sowing of gramineae and leguminosae herbage largely promoted soil geochemical conditions and bacterial diversity that recovered to those of undisturbed soil, representing an adequate solution for soil remediation and sustainable utilization for agriculture. These results confirm the positive impacts of reclamation and vegetation restoration on soil microbial diversity and suggest that the most important phase of microbial community recovery occurs between 15 and 20 years after reclamation.
  3. Hu L, Yu W, Li Y, Prasad N, Tang Z
    Biomed Res Int, 2014;2014:341291.
    PMID: 24719856 DOI: 10.1155/2014/341291
    The antioxidant activities and protective effects of total phenolic extracts (TPE) and their major components from okra seeds on oxidative stress induced by carbon tetrachloride (CCl4) in rat hepatocyte cell line were investigated. The major phenolic compounds were identified as quercetin 3-O-glucosyl (1 → 6) glucoside (QDG) and quercetin 3-O-glucoside (QG). TPE, QG, and QDG from okra seeds exhibited excellent reducing power and free radical scavenging capabilities including α, α-diphenyl-β-picrylhydrazyl (DPPH), superoxide anions, and hydroxyl radical. Overall, DPPH radical scavenging activity and reducing power of QG and QDG were higher than those of TPE while superoxide and hydroxyl radical scavenging activities of QG and TPE were higher than those of QDG. Furthermore, TPE, QG, and QDG pretreatments significantly alleviated the cytotoxicity of CCl4 on rat hepatocytes, with attenuated lipid peroxidation, increased SOD and CAT activities, and decreased GPT and GOT activities. The protective effects of TPE and QG on rat hepatocytes were stronger than those of QDG. However, the cytotoxicity of CCl4 on rat hepatocytes was not affected by TPE, QG, and QDG posttreatments. It was suggested that the protective effects of TPE, QG, and QDG on rat hepatocyte against oxidative stress were related to the direct antioxidant capabilities and the induced antioxidant enzymes activities.
  4. Usman A, Fun HK, Li Y, Xu JH
    Acta Crystallogr C, 2003 Jun;59(Pt 6):o308-10.
    PMID: 12794347
    9,10-Diphenyl-9,10-epidioxyanthracene, C(26)H(18)O(2), (I), was accidentally used in a photooxygenation reaction that produced 9,10-dihydro-10,10-dimethoxy-9-phenylanthracen-9-ol, C(22)H(20)O(3), (II). In both compounds, the phenyl rings are approximately orthogonal to the anthracene moiety. The conformation of the anthracene moiety differs as a result of substitution. Intramolecular C-H.O interactions in (I) form two approximately planar S(5) rings in each of the two crystallographically independent molecules. The packing of (I) and (II) consists of molecular dimers stabilized by C-H.O interactions and of molecular chains stabilized by O-H.O interactions, respectively.
  5. Huang D, Li Y, Cui F, Chen J, Sun J
    Carbohydr Polym, 2016 Feb 10;137:701-708.
    PMID: 26686182 DOI: 10.1016/j.carbpol.2015.10.102
    A novel polysaccharide-peptide complex CNP-1-2 with molecular weight of 9.17 × 10(4) Da was obtained from Clinacanthus nutans Lindau leaves by hot water extraction, ethanol precipitation, and purification with Superdex 200 and DEAE-Sepharose Fast Flow column chromatography. CNP-1-2 exhibited the highest growth inhibitory effect on human gastric cancer cells SGC-7901 with inhibition ratio of 92.34% and stimulated activation of macrophages with NO secretion level of 47.53 μmol/L among the polysaccharide fractions. CNP-1-2 comprised approximately 87.25% carbohydrate and 9.37% protein. Monosaccharide analysis suggested that CNP-1-2 was composed of L-rhamnose, l-arabinose, D-mannose, D-glucose and D-galactose with a molar ratio of 1.30:1.00:2.56:4.95:5.09. Methylation analysis, FT-IR, and (1)H NMR spectroscopy analysis revealed that CNP-1-2 might have a backbone consisting of 1,4-linked Glcp, 1,3-linked Glcp, 1,3-linked Manp, 1,4-linked Galp, 1,2,6-linked Galp and 1,2,6-linked Galp. Its side chain might be composed of 1-linked Araf, 1,6-linked Galp and 1-linked Rhap residues. AFM (atomic force micrograph) analysis revealed that CNP-1-2 had the molecular aggregation along with branched and entangled structure.
  6. Zhong X, Li Y, Zhang J, Han FS
    Org. Lett., 2015 Feb 6;17(3):720-3.
    PMID: 25602274 DOI: 10.1021/ol503734x
    The synthesis of a pentacyclic indole compound corresponding to the core structure of the misassigned indole alkaloid, tronoharine (1), is presented. The key reactions were a formal [3 + 3] cycloaddition of an indol-2-yl carbinol with an azadiene for the construction of the 6/5/6/6 tetracyclic system containing an all-carbon quaternary center and an intramolecular substitution reaction of an amine and a triflate for the creation of the bridged azepine ring. In addition, some other interesting transformations discovered during the synthetic studies are also discussed.
  7. Low W, Azmi S, Li Y, Yee SL, Abdat A, Kalita P, et al.
    Value Health, 2014 Nov;17(7):A767.
    PMID: 27202816 DOI: 10.1016/j.jval.2014.08.292
  8. Harreld JH, Mohammed N, Goldsberry G, Li X, Li Y, Boop F, et al.
    AJNR Am J Neuroradiol, 2015 May;36(5):993-9.
    PMID: 25614472 DOI: 10.3174/ajnr.A4221
    Postoperative intraspinal subdural collections in children after posterior fossa tumor resection may temporarily hinder metastasis detection by MR imaging or CSF analysis, potentially impacting therapy. We investigated the incidence, imaging and clinical features, predisposing factors, and time course of these collections after posterior fossa tumor resection.
  9. Matinmanesh A, Li Y, Nouhi A, Zalzal P, Schemitsch EH, Towler MR, et al.
    J Mech Behav Biomed Mater, 2018 02;78:273-281.
    PMID: 29190533 DOI: 10.1016/j.jmbbm.2017.11.015
    It has been reported that the adhesion of bioactive glass coatings to Ti6Al4V reduces after degradation, however, this effect has not been quantified. This paper uses bilayer double cantilever (DCB) specimens to determine GIC and GIIC, the critical mode I and mode II strain energy release rates, respectively, of bioactive coating/Ti6Al4V substrate systems degraded to different extents. Three borate-based bioactive glass coatings with increasing amounts of incorporated SrO (0, 15 and 25mol%) were enamelled onto Ti6Al4V substrates and then immersed in de-ionized water for 2, 6 and 24h. The weight loss of each glass composition was measured and it was found that the dissolution rate significantly decreased with increasing SrO content. The extent of dissolution was consistent with the hypothesis that the compressive residual stress tends to reduce the dissolution rate of bioactive glasses. After drying, the bilayer DCB specimens were created and subjected to nearly mode I and mode II fracture tests. The toughest coating/substrate system (one composed of the glass containing 25mol% SrO) lost 80% and 85% of its GIC and GIIC, respectively, in less than 24h of degradation. The drop in GIC and GIIC occurred even more rapidly for other coating/substrate systems. Therefore, degradation of borate bioactive glass coatings is inversely related to their fracture toughness when coated onto Ti6A4V substrates. Finally, roughening the substrate was found to be inconsequential in increasing the toughness of the system as the fracture toughness was limited by the cohesive toughness of the glass itself.
  10. Li Y, Ren S, Yan B, Zainal Abidin IM, Wang Y
    Sensors (Basel), 2017 Jul 31;17(8).
    PMID: 28758985 DOI: 10.3390/s17081747
    A corrosive environment leaves in-service conductive structures prone to subsurface corrosion which poses a severe threat to the structural integrity. It is indispensable to detect and quantitatively evaluate subsurface corrosion via non-destructive evaluation techniques. Although the gradient-field pulsed eddy current technique (GPEC) has been found to be superior in the evaluation of corrosion in conductors, it suffers from a technical drawback resulting from the non-uniform field excited by the conventional pancake coil. In light of this, a new GPEC probe with uniform field excitation for the imaging of subsurface corrosion is proposed in this paper. The excited uniform field makes the GPEC signal correspond only to the field perturbation due to the presence of subsurface corrosion, which benefits the corrosion profiling and sizing. A 3D analytical model of GPEC is established to analyze the characteristics of the uniform field induced within a conductor. Following this, experiments regarding the imaging of subsurface corrosion via GPEC have been carried out. It has been found from the results that the proposed GPEC probe with uniform field excitation not only applies to the imaging of subsurface corrosion in conductive structures, but provides high-sensitivity imaging results regarding the corrosion profile and opening size.
  11. Matinmanesh A, Li Y, Clarkin O, Zalzal P, Schemitsch EH, Towler MR, et al.
    J Mech Behav Biomed Mater, 2017 11;75:212-221.
    PMID: 28756281 DOI: 10.1016/j.jmbbm.2017.07.030
    Bioactive glasses have been used as coatings for biomedical implants because they can be formulated to promote osseointegration, antibacterial behavior, bone formation, and tissue healing through the incorporation and subsequent release of certain ions. However, shear loading on coated implants has been reported to cause the delamination and loosening of such coatings. This work uses a recently developed fracture mechanics testing methodology to quantify the critical strain energy release rate under nearly pure mode II conditions, GIIC, of a series of borate-based glass coating/Ti6Al4V alloy substrate systems. Incorporating increasing amounts of SrCO3in the glass composition was found to increase the GIICalmost twofold, from 25.3 to 46.9J/m2. The magnitude and distribution of residual stresses in the coating were quantified, and it was found that the residual stresses in all cases distributed uniformly over the cross section of the coating. The crack was driven towards, but not into, the glass/Ti6Al4V substrate interface due to the shear loading. This implied that the interface had a higher fracture toughness than the coating itself.
  12. Li Y, Tian Q, Li Z, Dang M, Lin Y, Hou X
    Drug Dev. Res., 2019 Jul 13.
    PMID: 31301179 DOI: 10.1002/ddr.21567
    The objective of this study was to evaluate the neuroprotective effect of sitagliptin (Sita), quercetin (QCR) and its combination in β-amyloid (Aβ) induced Alzheimer's disease (AD). Male Sprague-Dawley rats, weighing between 220 and 280 g were used for experiment. Rats were divided into 5 groups (n = 10) and the groups were as follows: (a) Sham control; (b) Aβ injected; (c) Aβ injected + Sita 100; (d) Aβ injected + QCR 100; and (e) Aβ injected + Sita 100 + QCR 100. Cognitive performance was observed by the Morris water maze (MWM), biochemical markers, for example, MDA, SOD, CAT, GSH, Aβ1-42 level, Nrf2/HO-1 expression and histopathological study of rat brain were estimated. Pretreatment with Sita, QCR and their combination showed a significant increase in escape latency in particular MWM cognitive model. Further co-administration of sita and QCR significantly reduced Aβ1-42 level when compared with individual treatment. Biochemical markers, for example, increased SOD, CAT and GSH, decreased MDA were seen, and histopathological studies revealed the reversal of neuronal damage in the treatment group. Additionally, Nrf2/HO-1 pathway in rat's brain was significantly increased by Sita, QCR and their combination. Pretreatment with QCR potentiates the action of Sita in Aβ induced AD in rats. The improved cognitive memory could be because of the synergistic effect of the drugs by decreasing Aβ1-42 level, antioxidant activity and increased expression of Nrf2/HO-1 in rat brain.
  13. Barathan M, Mohamed R, Vadivelu J, Chang LY, Saeidi A, Yong YK, et al.
    Eur. J. Clin. Invest., 2016 Feb;46(2):170-80.
    PMID: 26681320 DOI: 10.1111/eci.12581
    Mucosal-associated invariant T (MAIT) cells play an important role in innate host defence. MAIT cells appear to undergo exhaustion and are functionally weakened in chronic viral infections. However, their role in chronic hepatitis C virus (HCV) infection remains unclear.
  14. Barathan M, Mohamed R, Saeidi A, Vadivelu J, Chang LY, Gopal K, et al.
    Eur. J. Clin. Invest., 2015 May;45(5):466-74.
    PMID: 25721991 DOI: 10.1111/eci.12429
    Hepatitis C virus (HCV) causes persistent disease in ~85% of infected individuals, where the viral replication appears to be tightly controlled by HCV-specific CD8+ T cells. Accumulation of senescent T cells during infection results in considerable loss of functional HCV-specific immune responses.
  15. Négrier C, Abdul Karim F, Lepatan LM, Lienhart A, López-Fernández MF, Mahlangu J, et al.
    Haemophilia, 2016 Jul;22(4):e259-66.
    PMID: 27333467 DOI: 10.1111/hae.12972
    INTRODUCTION: Recombinant factor IX fusion protein (rIX-FP) has been developed to improve the pharmacokinetic (PK) profile of factor IX (FIX), allowing maintenance of desired FIX activity between injections at extended intervals, ultimately optimizing haemophilia B treatment.
    AIM: To determine the efficacy and safety of rIX-FP in the perioperative setting.
    METHODS: Subjects were adult and paediatric patients with severe to moderately severe haemophilia B (FIX ≤ 2%) participating in three Phase III clinical trials and undergoing a surgical procedure. PK profiles were established prior to surgery for each patient. Haemostatic efficacy was assessed by the investigator for up to 72 h after surgery. Safety measurements during the study included adverse events and inhibitors to FIX. FIX activity was monitored during and after surgery to determine if repeat dosing was required.
    RESULTS: Twenty-one, both major and minor, surgeries were performed in 19 patients. Haemostatic efficacy was rated as excellent (n = 17) or good (n = 4) in all surgeries. A single preoperative dose maintained intraoperative haemostasis in 20 of 21 surgeries. Nine major orthopaedic surgeries were conducted in eight patients with a mean of 7 (range: 6-12) rIX-FP injections during surgery and the 14-day postoperative period. Median rIX-FP consumption for orthopaedic surgeries was 87 IU kg(-1) preoperatively and 375 IU kg(-1) overall. No subject developed inhibitors to FIX or antibodies to rIX-FP.
    CONCLUSION: Recombinant factor IX fusion protein was well tolerated and effectively maintained haemostasis during and after surgery. Stable FIX activity was achieved with a prolonged dosing interval and reduced consumption compared to conventional or currently available long-acting recombinant FIX.
    KEYWORDS: albumin fusion proteins; factor IX; haemophilia B; orthopaedic surgery; recombinant fusion proteins
  16. Li Y, Qin T, Ingle T, Yan J, He W, Yin JJ, et al.
    Arch. Toxicol., 2017 Jan;91(1):509-519.
    PMID: 27180073 DOI: 10.1007/s00204-016-1730-y
    In spite of many reports on the toxicity of silver nanoparticles (AgNPs), the mechanisms underlying the toxicity are far from clear. A key question is whether the observed toxicity comes from the silver ions (Ag(+)) released from the AgNPs or from the nanoparticles themselves. In this study, we explored the genotoxicity and the genotoxicity mechanisms of Ag(+) and AgNPs. Human TK6 cells were treated with 5 nM AgNPs or silver nitrate (AgNO3) to evaluate their genotoxicity and induction of oxidative stress. AgNPs and AgNO3 induced cytotoxicity and genotoxicity in a similar range of concentrations (1.00-1.75 µg/ml) when evaluated using the micronucleus assay, and both induced oxidative stress by measuring the gene expression and reactive oxygen species in the treated cells. Addition of N-acetylcysteine (NAC, an Ag(+) chelator) to the treatments significantly decreased genotoxicity of Ag(+), but not AgNPs, while addition of Trolox (a free radical scavenger) to the treatment efficiently decreased the genotoxicity of both agents. In addition, the Ag(+) released from the highest concentration of AgNPs used for the treatment was measured. Only 0.5 % of the AgNPs were ionized in the culture medium and the released silver ions were neither cytotoxic nor genotoxic at this concentration. Further analysis using electron spin resonance demonstrated that AgNPs produced hydroxyl radicals directly, while AgNO3 did not. These results indicated that although both AgNPs and Ag(+) can cause genotoxicity via oxidative stress, the mechanisms are different, and the nanoparticles, but not the released ions, mainly contribute to the genotoxicity of AgNPs.
  17. Lu J, Li Y, Hu D, Chen X, Liu Y, Wang L, et al.
    Saudi J Biol Sci, 2016 Jan;23(1):S22-31.
    PMID: 26858562 DOI: 10.1016/j.sjbs.2015.06.012
    A novel interpenetrating network hydrogel for drug controlled release, composed of modified poly(aspartic acid) (KPAsp) and carboxymethyl chitosan (CMCTS), was prepared in aqueous system. The surface morphology and composition of hydrogels were characterized by SEM and FTIR. The swelling properties of KPAsp, KPAsp/CMCTS semi-IPN and KPAsp/CMCTS IPN hydrogels were investigated and the swelling dynamics of the hydrogels was analyzed based on the Fickian equation. The pH, temperature and salt sensitivities of hydrogels were further studied, and the prepared hydrogels showed extremely sensitive properties to pH, temperature, the ionic salts kinds and concentration. The results of controlled drug release behaviors of the hydrogels revealed that the introduction of IPN observably improved the drug release properties of hydrogels, the release rate of drug from hydrogels can be controlled by the structure of the hydrogels and pH value of the external environment, a relative large amount of drug released was preferred under simulated intestinal fluid. These results illustrated high potential of the KPAsp/CMCTS IPN hydrogels for application as drug carriers.
  18. Yong KW, Li Y, Huang G, Lu TJ, Safwani WK, Pingguan-Murphy B, et al.
    Am. J. Physiol. Heart Circ. Physiol., 2015 Aug 15;309(4):H532-42.
    PMID: 26092987 DOI: 10.1152/ajpheart.00299.2015
    Cardiac myofibroblast differentiation, as one of the most important cellular responses to heart injury, plays a critical role in cardiac remodeling and failure. While biochemical cues for this have been extensively investigated, the role of mechanical cues, e.g., extracellular matrix stiffness and mechanical strain, has also been found to mediate cardiac myofibroblast differentiation. Cardiac fibroblasts in vivo are typically subjected to a specific spatiotemporally changed mechanical microenvironment. When exposed to abnormal mechanical conditions (e.g., increased extracellular matrix stiffness or strain), cardiac fibroblasts can undergo myofibroblast differentiation. To date, the impact of mechanical cues on cardiac myofibroblast differentiation has been studied both in vitro and in vivo. Most of the related in vitro research into this has been mainly undertaken in two-dimensional cell culture systems, although a few three-dimensional studies that exist revealed an important role of dimensionality. However, despite remarkable advances, the comprehensive mechanisms for mechanoregulation of cardiac myofibroblast differentiation remain elusive. In this review, we introduce important parameters for evaluating cardiac myofibroblast differentiation and then discuss the development of both in vitro (two and three dimensional) and in vivo studies on mechanoregulation of cardiac myofibroblast differentiation. An understanding of the development of cardiac myofibroblast differentiation in response to changing mechanical microenvironment will underlie potential targets for future therapy of cardiac fibrosis and failure.
  19. Wang L, Li Y, Huang G, Zhang X, Pingguan-Murphy B, Gao B, et al.
    Crit. Rev. Biotechnol., 2016 Jun;36(3):553-65.
    PMID: 25641330 DOI: 10.3109/07388551.2014.993588
    Natural cellular microenvironment consists of spatiotemporal gradients of multiple physical (e.g. extracellular matrix stiffness, porosity and stress/strain) and chemical cues (e.g. morphogens), which play important roles in regulating cell behaviors including spreading, proliferation, migration, differentiation and apoptosis, especially for pathological processes such as tumor formation and progression. Therefore, it is essential to engineer cellular gradient microenvironment incorporating various gradients for the fabrication of normal and pathological tissue models in vitro. In this article, we firstly review the development of engineering cellular physical and chemical gradients with cytocompatible hydrogels in both two-dimension and three-dimension formats. We then present current advances in the application of engineered gradient microenvironments for the fabrication of disease models in vitro. Finally, concluding remarks and future perspectives for engineering cellular gradients are given.
  20. Keynan Y, Card CM, Ball BT, Li Y, Plummer FA, Fowke KR
    Clin. Microbiol. Infect., 2010 Aug;16(8):1179-86.
    PMID: 20670292 DOI: 10.1111/j.1469-0691.2010.03142.x
    Influenza vaccine provides protection against infection with matched strains, and this protection correlates with serum antibody titres. In addition to antibodies, influenza-specific CD8+ T-lymphocyte responses are important in decreasing disease severity and facilitating viral clearance. Because this response is directed at internal, relatively conserved antigens, it affords some cross-protection within a given subtype of influenza virus. With the possibility of a broader A(H1N1) Mexico outbreak in the fall of 2009, it appeared worthwhile studying the degree of cellular immune response-mediated cross-reactivity among influenza virus isolates. The composition of the 2006-2007 influenza vaccine included the A/New Caledonia/20/1999 strain (comprising a virus that has been circulating, and was included in vaccine preparations, for 6-7 years) and two strains not previously included (Wisconsin and Malaysia). This combination afforded us the opportunity to determine the degree of cross-reactive cellular immunity after exposure to new viral strains. We analysed the antibody responses and the phenotype and function of the T cell response to vaccine components. The results obtained show that antibody responses to A/New-Caledonia were already high and vaccination did not increase antibody or cytotoxic T lymphocyte responses. These data suggest that repeated exposure to the same influenza stain results in limited boosting of humoral and cellular immune responses.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links