OBJECTIVE: To probe the Clinacanthus nutans leaf extract effect on oxidative stress and inflammatory markers and the Langerhans islet area in diabetic rat models.
DESIGN: An experimental laboratory in the animal model.
METHODS: Twenty-five diabetic rat models were randomly assigned into 5 clusters. Clusters 1, 2, and 3 were administered with C. nutans leaf extract in aqueous suspension with vehicle 1% Na-CMC at 75 mg/kg body weight (BW), 150 mg/kg BW, and 300 mg/kg BW, respectively. Cluster 4 was diabetic control rats administered with metformin at a 21 mg/rat dose. Cluster 5 was a control diabetic rat only administered with 1% Na-CMC suspension. Treatment was administered orally for 14 days. On the 15th day, the rats were sacrificed to obtain blood samples and pancreatic tissues. Serum interleukin (IL)-6, malondialdehyde (MDA), and tumor necrosis factor (TNF-α) were measured using the enzyme-linked immunosorbent assay (ELISA) method. Histopathological examination was performed by counting the Langerhans islet areas.
RESULTS: The average IL-6, MDA, and TNF-α levels declined in the cluster receiving C. nutans extract and were significantly different from the untreated cluster (P
MATERIALS AND METHODS: We used a structured questionnaire to interview the case and control farm owners to evaluate the risk factors. We evaluated 244 samples, consisting of 122 case and control farm samples each. At the cattle farm level, the risk factor data related to LSD were analyzed using descriptive statistics, bivariate analysis with Chi-square, and odds ratio, while the logistic model was derived using multivariate logistic regression analysis. Using variables, such as the number of cases and risk factor variables included in the model logistic, and the temperature, humidity, and rainfall data from the Meteorology, Climatology, and Geophysical Agency, we analyzed the vulnerability map of LSD in the regency using scoring, weighting, and overlay methods.
RESULTS: Ten significant risk factors were associated with LSD occurrence. The LSD model obtained from the logistic regression analysis was LSD (Y) = -3.92095 + 1.13107 (number of cattle >3) + 1.50070 (grazing cattle together with other farmers' cattle) + 1.03500 (poor management of farm waste/dirt) + 2.49242 (presence of livestock collectors/traders near the farm location) + 1.40543 (introduction of new livestock) + 2.15196 (lack of vector control measures on the farm). The LSD vulnerability map indicated that the villages with high vulnerability levels were Rantau Bakung, Kuantan Babu, and Sungai Lala in the Rengat Barat, Rengat, and Sungai Lala subdistricts, respectively.
CONCLUSION: We found 10 significant risk factors associated with LSD occurrence. The LSD model included the number of cattle (>3), cograzing with other farmers' cattle, poor management of farm waste/dirt, the presence of livestock collectors/traders near the farm, introduction of new livestock, and lack of vector control measures on the farm. The LSD vulnerability map indicated that villages with high vulnerability levels included Rantau Bakung in the Rengat Barat subdistrict, Kuantan Babu in the Rengat subdistrict, and Sungai Lala in the Sungai Lala subdistrict.