Displaying publications 1 - 20 of 21 in total

Abstract:
Sort:
  1. Angelopoulou E, Paudel YN, Papageorgiou SG, Piperi C
    ACS Chem Neurosci, 2021 08 04;12(15):2749-2764.
    PMID: 34275270 DOI: 10.1021/acschemneuro.1c00295
    Alzheimer's disease (AD) is the most common neurodegenerative disorder with obscure pathogenesis and no disease-modifying therapy to date. AD is multifactorial disease that develops from the complex interplay of genetic factors and environmental exposures. The E4 allele of the gene encoding apolipoprotein E (APOE) is the most common genetic risk factor for AD, whereas the E2 allele acts in a protective manner. A growing amount of epidemiological evidence suggests that several lifestyle habits and environmental factors may interact with APOE alleles to synergistically affect the risk of AD development. Among them, physical exercise, dietary habits including fat intake and ketogenic diet, higher education, traumatic brain injury, cigarette smoking, coffee consumption, alcohol intake, and exposure to pesticides and sunlight have gained increasing attention. Although the current evidence is inconsistent, it seems that younger APOE4 carriers in preclinical stages may benefit mostly from preventive lifestyle interventions, whereas older APOE4 noncarriers with dementia may show the most pronounced effects. The large discrepancies between the epidemiological studies may be attributed to differences in the sample sizes, the demographic characteristics of the participants, including age and sex, the methodological design, and potential related exposures and comorbidities as possible cofounding factors. In this Review, we aim to discuss available evidence of the prominent APOE genotype-environment interactions in regard to cognitive decline with a focus on AD, providing an overview of the current landscape in this field and suggesting future directions.
    Matched MeSH terms: Apolipoproteins E/genetics
  2. Wisam, Nabil lbrahim, Norsidah KZ, Samsul D, Zamzila A, Rafidah HM
    MyJurnal
    Essential hypertension is a multifactorial disease. Many experimental studies have elucidated
    the role of oxidative stress and atherosclerosis in the pathogenesis of essential hypertension. Apolipoprotein
    E is a plasma protein that is found to have antioxidant properties, and it also protects against atherosclerosis.
    Interestingly, the biological function of apolipoprotein E is strongly affected by polymorphisms in its gene.
    Based on this evidence, our aim was to investigate the association of apolipoprotein E gene polymorphisms with
    essential hypertension.
    Matched MeSH terms: Apolipoproteins E
  3. Gajra B, Candlish JK, Saha N, Mak JW, Tay JS
    Hum. Hered., 1994 Jul-Aug;44(4):209-13.
    PMID: 8056432
    Members of the Semai group of Orang Asli ('aborigines') in peninsular Malaysia were examined for apolipoprotein E (apo E) variants in relation to plasma total cholesterol (TC), high density lipoprotein cholesterol, low density lipoprotein cholesterol (LDLC), triglycerides (TG), apolipoprotein AI and apolipoprotein B (apo B). The e2 and e4 alleles were found to be higher than in most other groups as reported. The sample as a whole was normotriglyceridaemic (mean plasma TG, 1.5 mmol/l) and very markedly hypocholesterolaemic (mean plasma TC 1.7 mmol/l). The distribution of apo E variants was not related to any of the plasma lipids or apolipoprotein fractions using results from all subjects, but if a distinctly hypertriglyceridaemic sub-section was omitted (TG > 1.7 mmol/l) then apo E variants were determinants of plasma TC, LDLC, and apo B concentrations, the lower values of these being associated with the 2-2 and 2-3 genotypes, and the higher with 3-4, and 4-4.
    Matched MeSH terms: Apolipoproteins E/genetics*; Apolipoproteins E/physiology*
  4. Corbo RM, Scacchi R
    Ann. Hum. Genet., 1999 Jul;63(Pt 4):301-10.
    PMID: 10738542
    Apolipoprotein E (APOE = gene, apoE = protein) plays a central role in plasma lipoprotein metabolism and in lipid transport within tissues. The APOE shows a genetic polymorphism determined by three common alleles, APOE*2, APOE*3, APOE*4 and the product of the three alleles differs in several functional properties. APOE is involved in the development of certain pathological conditions. In particular, the APOE*4 allele is a risk factor for susceptibility to coronary artery disease (CAD) and Alzheimer's Disease (AD). In the present study we analyzed the APOE allele distribution in the world. The APOE*3 is the most frequent in all the human groups, especially in populations with a long-established agricultural economy like those of the Mediterranean basin (0.849-0.898). The frequency of APOE*4, the ancestral allele, remains higher in populations like Pygmies (0.407) and Khoi San (0.370), aborigines of Malaysia (0.240) and Australia (0.260), Papuans (0.368), some Native Americans (0.280), and Lapps (0.310) where an economy of foraging still exists, or food supply is (or was until the recent past) scarce and sporadically available. The APOE*2 frequency fluctuates with no apparent trend (0.145-0.02) and is absent in Native Americans. We suggest that the APOE*4, based on some functional properties it has and on its distribution among human populations, could be identified as a 'thrifty' allele. The exposure of APOE*4 to the contemporary environmental conditions (Western diet, longer lifespans) could have rendered it a susceptibility allele for CAD and AD. The absence of the association of APOE*4 with CAD and AD in Sub-Saharan Africans, and its presence in African Americans, seems to confirm this hypothesis.
    Matched MeSH terms: Apolipoproteins E/genetics*
  5. Li T, Pappas C, Le ST, Wang Q, Klinedinst BS, Larsen BA, et al.
    Neurobiol Aging, 2022 Jan;109:158-165.
    PMID: 34740077 DOI: 10.1016/j.neurobiolaging.2021.09.020
    The Apolipoprotein E ε4 (APOE ε4) haplotype is the strongest genetic risk factor for late-onset Alzheimer's disease (AD). The Translocase of Outer Mitochondrial Membrane-40 (TOMM40) gene maintains cellular bioenergetics, which is disrupted in AD. TOMM40 rs2075650 ('650) G versus A carriage is consistently related to neural and cognitive outcomes, but it is unclear if and how it interacts with APOE. We examined 21 orthogonal neural networks among 8,222 middle-aged to aged participants in the UK Biobank cohort. ANOVA and multiple linear regression tested main effects and interactions with APOE and TOMM40 '650 genotypes, and if age and sex acted as moderators. APOE ε4 was associated with less strength in multiple networks, while '650 G versus A carriage was related to more language comprehension network strength. In APOE ε4 carriers, '650 G-carriage led to less network strength with increasing age, while in non-G-carriers this was only seen in women but not men. TOMM40 may shift what happens to network activity in aging APOE ε4 carriers depending on sex.
    Matched MeSH terms: Apolipoproteins E/genetics*
  6. Seet WT, Mary Anne TJ, Yen TS
    Clin Chim Acta, 2004 Feb;340(1-2):201-5.
    PMID: 14734213 DOI: 10.1016/j.cccn.2003.11.001
    BACKGROUND: Apolipoprotein E (apoE) is encoded by a polymorphic gene located on chromosome 19. The three common apoE alleles are epsilon2, epsilon3 and epsilon4. We studied the frequencies of the apoE alleles and genotypes in the three ethnic groups-Malay, Chinese and Indian-in Malaysia using DNA amplification followed by agarose gel electrophoresis.
    METHODS: EDTA blood was collected and DNA was extracted using proteinase K-SDS digestion and purified by phenol-chloroform extraction. The apoE gene sequence was amplified using the PCR and apoE genotyping was performed by restriction enzyme digestion with HhaI.
    RESULTS: Genotyping of the apoE gene produces six genotypes-E2/E2, E2/E3, E3/E3, E2/E4, E3/E4 and E4/E4. The most common apoE genotype in the Malays, Chinese and Indians studied was E3/E3, thus the most common apoE allele was epsilon3. The three common apoE genotypes were E3/E3 followed by E3/E4 and E2/E3, except in the Indians where E2/E3 was not detected. The three apoE alleles were confirmed in the Malays, Chinese and Indians except for the epsilon2 allele which was absent in the Indians.
    CONCLUSION: The combined frequency of the apoE alleles in the Malays, Chinese and Indians was 0.058, 0.829 and 0.114 for epsilon2, epsilon3 and epsilon4, respectively.
    Matched MeSH terms: Apolipoproteins E/genetics*
  7. Lee LK, Shahar S, Rajab N, Yusoff NA, Jamal RA, Then SM
    J Nutr Biochem, 2013 May;24(5):803-8.
    PMID: 22898566 DOI: 10.1016/j.jnutbio.2012.04.014
    The present work explores the effect of dietary omega-3 polyunsaturated fatty acids (PUFAs) intake on lipid peroxidation among mild cognitive impairment (MCI) patients. The plasma lipid hydroperoxide (LPO) levels in 67 MCI patients were compared to those of 134 healthy elderly controls. Omega-3 PUFA intake was assessed using an interviewer-administered food frequency questionnaire. Apolipoprotein E genotyping was performed using polymerase chain reaction and restriction enzyme digestion. The association between various confounders and lipid peroxidation was evaluated using regression analysis. The influence of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) intake on LPO level was investigated. The results revealed that LPO levels were significantly higher in the MCI group than in the control group. Inverse correlations were found between DHA and EPA intake and LPO level among the MCI group. LPO levels decreased significantly with increasing DHA and EPA intake. In summary, the findings revealed that DHA and EPA can play a role in alleviating oxidative stress and reducing the risk of neurodegenerative diseases.
    Matched MeSH terms: Apolipoproteins E/blood; Apolipoproteins E/genetics
  8. Lai LY, Petrone AB, Pankow JS, Arnett DK, North KE, Ellison RC, et al.
    Diabetes Metab Res Rev, 2015 Sep;31(6):582-7.
    PMID: 25656378 DOI: 10.1002/dmrr.2638
    OBJECTIVE: Metabolic syndrome (MetS), characterized by abdominal obesity, atherogenic dyslipidaemia, elevated blood pressure and insulin resistance, is a major public health concern in the United States. The effects of apolipoprotein E (Apo E) polymorphism on MetS are not well established.

    METHODS: We conducted a cross-sectional study consisting of 1551 participants from the National Heart, Lung and Blood Institute Family Heart Study to assess the relation of Apo E polymorphism with the prevalence of MetS. MetS was defined according to the American Heart Association-National Heart, Lung and Blood Institute-International Diabetes Federation-World Health Organization harmonized criteria. We used generalized estimating equations to estimate adjusted odds ratios (ORs) for prevalent MetS and the Bonferroni correction to account for multiple testing in the secondary analysis.

    RESULTS: Our study population had a mean age (standard deviation) of 56.5 (11.0) years, and 49.7% had MetS. There was no association between the Apo E genotypes and the MetS. The multivariable adjusted ORs (95% confidence interval) were 1.00 (reference), 1.26 (0.31-5.21), 0.89 (0.62-1.29), 1.13 (0.61-2.10), 1.13 (0.88-1.47) and 1.87 (0.91-3.85) for the Ɛ3/Ɛ3, Ɛ2/Ɛ2, Ɛ2/Ɛ3, Ɛ2/Ɛ4, Ɛ3/Ɛ4 and Ɛ4/Ɛ4 genotypes, respectively. In a secondary analysis, Ɛ2/Ɛ3 genotype was associated with 41% lower prevalence odds of low high-density lipoprotein [multivariable adjusted ORs (95% confidence interval) = 0.59 (0.36-0.95)] compared with Ɛ3/Ɛ3 genotype.

    CONCLUSIONS: Our findings do not support an association between Apo E polymorphism and MetS in a multicentre population-based study of predominantly White US men and women.

    Matched MeSH terms: Apolipoproteins E/genetics*; Apolipoproteins E/metabolism
  9. Veeramuthu, Vigneswaran, Pancharatnam, Devaraj, Poovindran, Anada Raj, Nur Atikah Mustapha, Wong, Kum Thong, Mazlina Mazlan, et al.
    Neurology Asia, 2014;19(1):69-77.
    MyJurnal
    The complex pathophysiology of traumatic brain injury, its cascading effects and a varied outcome suggest that factors such as genetics may permeate and modulate the neurocognitive outcomes in patients with mild traumatic brain injury (mTBI). This study was conducted to determine the relationship between genetic polymorphism of apolipoprotein E, and neurocognitive and functional outcomes in mTBI. Twenty-one patients with mTBI were recruited prospectively. The severity of the injury was established with the Glasgow Coma Score (GCS). Other assessments included the CT Scan of the head on admission, Disability Rating Scale, Chessington Occupational Therapy Neurological Assessment (COTNAB) and Glasgow Outcome Scale (GOS). The Spearmen correlation analysis of ApoE allele status and the cognitive and functional assessments saw some association with the Sensory Motor Ability - Coordination (-0.526, p
    Matched MeSH terms: Apolipoproteins E
  10. Yeap SK, Beh BK, Ho WY, Mohd Yusof H, Mohamad NE, Ali NM, et al.
    PMID: 26074993 DOI: 10.1155/2015/508029
    Legumes have previously been reported with hypolipidemic effect caused by the presence of flavonoid. This study was carried out to evaluate the antioxidant and hypolipidemic effects of fermented mung bean on hypercholesterolemic mice. Blood from all mice was collected and subjected to serum lipid and liver profiles biochemical analysis and quantitative RT-PCR for atherosclerosis related gene expressions. Besides, livers were collected for antioxidant assays and histopathology evaluation. Fermented mung bean was found to reduce the level of serum lipid and liver enzyme profiles of hypercholesterolemic mice. Furthermore, liver antioxidant and nitric oxide levels were also significantly restored by fermented mung bean in a dosage dependent manner. The gene expression study indicated that Apoe and Bcl2a1a were upregulated while Npy and Vwf expressions were downregulated after the treatment. The effects of fermented mung bean were greater than nonfermented mung bean. These results indicated that fermented mung bean possessed antioxidants that lead to its hypolipidemic effect on hypercholesterolemic mice.
    Matched MeSH terms: Apolipoproteins E
  11. Yeap SK, Beh BK, Kong J, Ho WY, Mohd Yusof H, Mohamad NE, et al.
    PMID: 25031606 DOI: 10.1155/2014/707829
    Fermented red yeast rice has been traditionally consumed as medication in Asian cuisine. This study aimed to determine the in vivo hypocholesterolemic and antioxidant effects of fermented red yeast rice water extract produced using Malaysian Agricultural Research and Development Institute (MARDI) Monascus purpureus strains in mice fed with high cholesterol diet. Absence of monacolin-k, lower level of γ-aminobutyric acid (GABA), higher content of total amino acids, and antioxidant activities were detected in MARDI fermented red yeast rice water extract (MFRYR). In vivo MFRYR treatment on hypercholesterolemic mice recorded similar lipid lowering effect as commercial red yeast rice extract (CRYR) as it helps to reduce the elevated serum liver enzyme and increased the antioxidant levels in liver. This effect was also associated with the upregulation of apolipoproteins-E and inhibition of Von Willebrand factor expression. In summary, MFRYR enriched in antioxidant and amino acid without monacolin-k showed similar hypocholesterolemic effect as CRYR that was rich in monacolin-k and GABA.
    Matched MeSH terms: Apolipoproteins E
  12. Wei LK, Menon S, Griffiths LR, Gan SH
    J Hum Hypertens, 2015 Feb;29(2):99-104.
    PMID: 25055800 DOI: 10.1038/jhh.2014.53
    Irregular atrial pressure, defective folate and cholesterol metabolism contribute to the pathogenesis of hypertension. However, little is known about the combined roles of the methylenetetrahydrofolate reductase (MTHFR), apolipoprotein-E (ApoE) and angiotensin-converting enzyme (ACE) genes, which are involved in metabolism and homeostasis. The objective of this study is to investigate the association of the MTHFR 677 C>T and 1298A>C, ACE insertion-deletion (I/D) and ApoE genetic polymorphisms with hypertension and to further explore the epistasis interactions that are involved in these mechanisms. A total of 594 subjects, including 348 normotensive and 246 hypertensive ischemic stroke subjects were recruited. The MTHFR 677 C>T and 1298A>C, ACE I/D and ApoEpolymorphisms were genotyped and the epistasis interaction were analyzed. The MTHFR 677 C>T and ApoE polymorphisms demonstrated significant associations with susceptibility to hypertension in multiple logistic regression models, multifactor dimensionality reduction and a classification and regression tree. In addition, the logistic regression model demonstrated that significant interactions between the ApoE E3E3, E2E4, E2E2 and MTHFR 677 C>T polymorphisms existed. In conclusion, the results of this epistasis study indicated significant association between the ApoE and MTHFR polymorphisms and hypertension.
    Matched MeSH terms: Apolipoproteins E/genetics*
  13. Heng EC, Karsani SA, Abdul Rahman M, Abdul Hamid NA, Hamid Z, Wan Ngah WZ
    Eur J Nutr, 2013 Oct;52(7):1811-20.
    PMID: 23287846 DOI: 10.1007/s00394-012-0485-3
    PURPOSE: Tocotrienol possess beneficial effects not exhibited by tocopherol. In vitro studies using animal models have suggested that these effects are caused via modulation of gene and protein expression. However, human supplementation studies using tocotrienol-rich isomers are limited. This study aims to identify plasma proteins that changed in expression following tocotrienol-rich fraction (TRF) supplementation within two different age groups.

    METHODS: Subjects were divided into two age groups-32 ± 2 (young) and 52 ± 2 (old) years old. Four subjects from each group were assigned with TRF (78% tocotrienol and 22% tocopherol, 150 mg/day) or placebo capsules for 6 months. Fasting plasma were obtained at 0, 3, and 6 months. Plasma tocopherol and tocotrienol levels were determined. Plasma proteome was resolved by 2DE, and differentially expressed proteins identified by MS. The expressions of three proteins were validated by Western blotting.

    RESULTS: Six months of TRF supplementation significantly increased plasma levels of tocopherols and tocotrienols. Proteins identified as being differentially expressed were related to cholesterol homeostasis, acute-phase response, protease inhibitor, and immune response. The expressions of Apolipoprotein A-I precursor, Apolipoprotein E precursor, and C-reactive protein precursor were validated. The old groups showed more proteins changing in expression.

    CONCLUSIONS: TRF appears to not only affect plasma levels of tocopherols and tocotrienols, but also the levels of plasma proteins. The identity of these proteins may provide insights into how TRF exerts its beneficial effects. They may also be potentially developed into biomarkers for the study of the effects and effectiveness of TRF supplementation.

    Matched MeSH terms: Apolipoproteins E/blood*
  14. Tan CE, Tai ES, Tan CS, Chia KS, Lee J, Chew SK, et al.
    Atherosclerosis, 2003 Oct;170(2):253-60.
    PMID: 14612205
    BACKGROUND: Serum lipid concentrations are modulated by environmental factors such as exercise, alcohol intake, smoking, obesity and dietary intake and genetic factors. Polymorphisms at the Apolipoprotein E (APOE) locus have consistently shown a significant association with total and LDL-cholesterol (LDL-C). However, their impact on HDL-cholesterol (HDL-C) may be population dependent. Having three major ethnic groups within a similar social environment allows us to study the role of genetics and their interactions with lifestyle factors on the serum lipid profile and coronary risk in Asians.

    METHODS: This study included 1740 males (1146 Chinese, 327 Malays and 267 Asian Indians) and 1950 females (1329 Chinese, 360 Malays and 261 Asian Indians) with complete data on anthropometric indices, fasting lipids, smoking status, alcohol consumption, exercise frequency and genotype at the APOE locus.

    RESULTS: Malays and Asian Indians were more obese compared with the Chinese. Smoking was uncommon in all females but Malay males had significantly higher prevalence of smokers. Malays had the highest LDL-C whilst Indians had the lowest HDL-C, The epsilon 3 allele was the most frequent allele in all three ethnic groups. Malays had the highest frequency of epsilon 4 (0.180 and 0.152) compared with Chinese (0.085 and 0.087) and Indians (0.108 and 0.075) in males and females, respectively. The epsilon 2 allele was the least common in Asian Indians. Total cholesterol (TC) and LDL-C was highest in epsilon 4 carriers and lowest in epsilon 2 carriers. The reverse was seen in HDL-C with the highest levels seen in epsilon 2 subjects. The association between ethnic group and HDL-C differed according to APOE genotype and gender. Asian Indians had the lowest HDL-C for each APOE genotype except in Asian Indian males with epsilon 2, where HDL-C concentrations were intermediate between Chinese and Malays.

    CONCLUSION: Ethnic differences in lipid profile could be explained in part by the higher prevalence of epsilon 4 in the Malays. Ethnicity may influence the association between APOE genotypes and HDL-C. APOE genotype showed no correlation with HDL-C in Malay males whereas the association in Asian Indians was particularly marked. Further studies of interactions between genes and environmental factors will contribute to the understanding of differences of coronary risk amongst ethnic groups.

    Matched MeSH terms: Apolipoproteins E/genetics*
  15. Gopal K, Nagarajan P, Jedy J, Raj AT, Gnanaselvi SK, Jahan P, et al.
    PLoS One, 2013;8(6):e67098.
    PMID: 23826202 DOI: 10.1371/journal.pone.0067098
    Abdominal aortic aneurysm (AAA) is a common chronic degenerative disease characterized by progressive aortic dilation and rupture. The mechanisms underlying the role of α-tocopherol and β-carotene on AAA have not been comprehensively assessed. We investigated if α-tocopherol and β-carotene supplementation could attenuate AAA, and studied the underlying mechanisms utilized by the antioxidants to alleviate AAA. Four-months-old Apoe(-/-) mice were used in the induction of aneurysm by infusion of angiotensin II (Ang II), and were orally administered with α-tocopherol and β-carotene enriched diet for 60 days. Significant increase of LDL, cholesterol, triglycerides and circulating inflammatory cells was observed in the Ang II-treated animals, and gene expression studies showed that ICAM-1, VCAM-1, MCP-1, M-CSF, MMP-2, MMP-9 and MMP-12 were upregulated in the aorta of aneurysm-induced mice. Extensive plaques, aneurysm and diffusion of inflammatory cells into the tunica intima were also noticed. The size of aorta was significantly (P = 0.0002) increased (2.24±0.20 mm) in the aneurysm-induced animals as compared to control mice (1.17±0.06 mm). Interestingly, β-carotene dramatically controlled the diffusion of macrophages into the aortic tunica intima, and circulation. It also dissolved the formation of atheromatous plaque. Further, β-carotene significantly decreased the aortic diameter (1.33±0.12 mm) in the aneurysm-induced mice (β-carotene, P = 0.0002). It also downregulated ICAM-1, VCAM-1, MCP-1, M-CSF, MMP-2, MMP-9, MMP-12, PPAR-α and PPAR-γ following treatment. Hence, dietary supplementation of β-carotene may have a protective function against Ang II-induced AAA by ameliorating macrophage recruitment in Apoe(-/-) mice.
    Matched MeSH terms: Apolipoproteins E/deficiency*; Apolipoproteins E/genetics
  16. Gopal K, Gowtham M, Sachin S, Ravishankar Ram M, Shankar EM, Kamarul T
    Sci Rep, 2015 Dec 16;5:18300.
    PMID: 26670291 DOI: 10.1038/srep18300
    Angiotensin II is one of the key regulatory peptides implicated in the pathogenesis of liver disease. The mechanisms underlying the salubrious role of α-tocopherol and β-carotene on liver pathology have not been comprehensively assessed. Here, we investigated the mechanisms underlying the role of Angiotensin II on hepatic damage and if α-tocopherol and β-carotene supplementation attenuates hepatic damage. Hepatic damage was induced in Apoe(-/-)mice by infusion of Angiotensin II followed by oral administration with α-tocopherol and β-carotene-enriched diet for 60 days. Investigations showed fibrosis, kupffer cell hyperplasia, hepatocyte degeneration and hepatic cell apoptosis; sinusoidal dilatation along with haemorrhages; evidence of fluid accumulation; increased ROS level and increased AST and ALT activities. In addition, tPA and uPA were down-regulated due to 42-fold up-regulation of PAI-1. MMP-2, MMP-9, MMP-12, and M-CSF were down-regulated in Angiotensin II-treated animals. Notably, α-tocopherol and β-carotene treatment controlled ROS, fibrosis, hepatocyte degeneration, kupffer cell hyperplasia, hepatocyte apoptosis, sinusoidal dilatation and fluid accumulation in the liver sinusoids, and liver enzyme levels. In addition, PAI-1, tPA and uPA expressions were markedly controlled by β-carotene treatment. Thus, Angiotensin II markedly influenced hepatic damage possibly by restraining fibrinolytic system. We concluded that α-tocopherol and β-carotene treatment has salubrious role in repairing hepatic pathology.
    Matched MeSH terms: Apolipoproteins E/deficiency*
  17. Wei LK, Au A, Menon S, Gan SH, Griffiths LR
    J Stroke Cerebrovasc Dis, 2015 Sep;24(9):2017-25.
    PMID: 26187788 DOI: 10.1016/j.jstrokecerebrovasdis.2015.04.011
    The purpose of this study was threefold. First, it was to determine the relationship between serum vitamin profiles and ischemic stroke. The second purpose was to investigate the association of methylenetetrahydrofolate reductase (MTHFR), endothelial nitric oxide synthase (eNOS), angiotensin converting enzyme (ACE), and apolipoprotein-E (ApoE) gene polymorphisms with ischemic stroke and further correlate with serum vitamin profiles among ischemic stroke patients. The third purpose of the study was to highlight the interaction of MTHFR and eNOS haplotypes with serum vitamin profiles and ischemic stroke risks.
    Matched MeSH terms: Apolipoproteins E/genetics*
  18. Meyer K, Feldman HM, Lu T, Drake D, Lim ET, Ling KH, et al.
    Cell Rep, 2019 01 29;26(5):1112-1127.e9.
    PMID: 30699343 DOI: 10.1016/j.celrep.2019.01.023
    The molecular basis of the earliest neuronal changes that lead to Alzheimer's disease (AD) is unclear. Here, we analyze neural cells derived from sporadic AD (SAD), APOE4 gene-edited and control induced pluripotent stem cells (iPSCs). We observe major differences in iPSC-derived neural progenitor (NP) cells and neurons in gene networks related to neuronal differentiation, neurogenesis, and synaptic transmission. The iPSC-derived neural cells from SAD patients exhibit accelerated neural differentiation and reduced progenitor cell renewal. Moreover, a similar phenotype appears in NP cells and cerebral organoids derived from APOE4 iPSCs. Impaired function of the transcriptional repressor REST is strongly implicated in the altered transcriptome and differentiation state. SAD and APOE4 expression result in reduced REST nuclear translocation and chromatin binding, and disruption of the nuclear lamina. Thus, dysregulation of neural gene networks may set in motion the pathologic cascade that leads to AD.
    Matched MeSH terms: Apolipoproteins E/metabolism
  19. Gopal K, Nagarajan P, Shankar EM, Kamarul T, Kumar JM
    Eur J Clin Invest, 2014 Dec;44(12):1169-76.
    PMID: 25315426 DOI: 10.1111/eci.12351
    Angiotensin II (Ang II) and high-fat diet are implicated in causing pathological changes in the vascular endothelium, brain, kidney and liver. The association of aneurysm leading to histopathological changes in the splenic compartment remains elusive. Further, the salubrious credentials of antioxidants, especially α-tocopherol and β-carotene in the resolution of splenic pathology have not been investigated.
    Matched MeSH terms: Apolipoproteins E/deficiency
  20. Chow YL, Teh LK, Chyi LH, Lim LF, Yee CC, Wei LK
    Curr Pharm Des, 2020;26(34):4261-4271.
    PMID: 32534558 DOI: 10.2174/1381612826666200614180958
    Stroke is the second leading cause of death and a major cause of disability worldwide. Both modifiable and non-modifiable risk factors can affect the occurrence of ischemic stroke at varying degrees. Among them, atherosclerosis has been well-recognized as one of the main culprits for the rising incidence of stroke-related mortality. Hence, the current review aimed to summarize the prominent role of lipid metabolism genes such as PCSK9, ApoB, ApoA5, ApoC3, ApoE, and ABCA1 in mediating ischemic stroke occurrence.
    Matched MeSH terms: Apolipoproteins E
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links