Displaying publications 1 - 20 of 96 in total

Abstract:
Sort:
  1. Rahim F, Javed MT, Ullah H, Wadood A, Taha M, Ashraf M, et al.
    Bioorg Chem, 2015 Oct;62:106-16.
    PMID: 26318401 DOI: 10.1016/j.bioorg.2015.08.002
    A series of thirty (30) thiazole analogs were prepared, characterized by (1)H NMR, (13)C NMR and EI-MS and evaluated for Acetylcholinesterase and butyrylcholinesterase inhibitory potential. All analogs exhibited varied butyrylcholinesterase inhibitory activity with IC50 value ranging between 1.59±0.01 and 389.25±1.75μM when compared with the standard eserine (IC50, 0.85±0.0001μM). Analogs 15, 7, 12, 9, 14, 1, 30 with IC50 values 1.59±0.01, 1.77±0.01, 6.21±0.01, 7.56±0.01, 8.46±0.01, 14.81±0.32 and 16.54±0.21μM respectively showed excellent inhibitory potential. Seven analogs 15, 20, 19, 24, 28, 30 and 25 exhibited good acetylcholinesterase inhibitory potential with IC50 values 21.3±0.50, 35.3±0.64, 36.6±0.70, 44.81±0.81, 46.36±0.84, 48.2±0.06 and 48.72±0.91μM respectively. All other analogs also exhibited well to moderate enzyme inhibition. The binding mode of these compounds was confirmed through molecular docking.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology*
  2. Liu S, Dang M, Lei Y, Ahmad SS, Khalid M, Kamal MA, et al.
    Curr Pharm Des, 2020;26(37):4808-4814.
    PMID: 32264807 DOI: 10.2174/1381612826666200407161842
    BACKGROUND: Alzheimer's disease (AD) is the most well-known reason for disability in persons aged greater than 65 years worldwide. AD influences the part of the brain that controls cognitive and non-cognitive functions.

    OBJECTIVE: The study focuses on the screening of natural compounds for the inhibition of AChE and BuChE using a computational methodology.

    METHODS: We performed a docking-based virtual screening utilizing the 3D structure of AChE and BuChE to search for potential inhibitors for AD. In this work, a screened inhibitor Ajmalicine similarity search was carried out against a natural products database (Super Natural II). Lipinski rule of five was carried out and docking studies were performed between ligands and enzyme using 'Autodock4.2'.

    RESULTS: Two phytochemical compounds SN00288228 and SN00226692 were predicted for the inhibition of AChE and BuChE, respectively. The docking results revealed Ajmalicine, a prominent natural alkaloid, showing promising inhibitory potential against AChE and BuChE with the binding energy of -9.02 and -8.89 kcal/mole, respectively. However, SN00288228- AChE, and SN00226692-BuChE were found to have binding energy -9.88 and -9.54 kcal/mole, respectively. These selected phytochemical compounds showed better interactions in comparison to Ajmalicine with the target molecule.

    CONCLUSION: The current study verifies that SN00288228 and SN00226692 are more capable inhibitors of human AChE and BuChE as compared to Ajmalicine with reference to ΔG values.

    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology
  3. Shirbhate E, Patel VK, Tiwari P, Kore R, Veerasamy R, Mishra A, et al.
    Curr Top Med Chem, 2022;22(22):1849-1867.
    PMID: 36082857 DOI: 10.2174/1568026622666220907114443
    BACKGROUND: The management of Alzheimer's disease is challenging due to its complexity. However, the currently approved and marketed treatments for this neurodegenerative disorder revolves around cholinesterase inhibitors, glutamate regulators, or the combination of these agents. Despite the prompt assurance of many new drugs, several agents were unsuccessful, especially in phase II or III trials, not meeting efficacy endpoints.

    OBJECTIVE: The execution of effective treatment approaches through further trials investigating a rational combination of agents is necessitude for Alzheimer's disease.

    METHODS: For this review, more than 248 relevant scientific papers were considered from a variety of databases (Scopus, Web of Science, Google Scholar, ScienceDirect, and PubMed) using the keywords Alzheimer's disease, amyloid-β, combination therapies, cholinesterase inhibitors, dementia, glutamate regulators, AD hypothesis.

    RESULT AND DISCUSSION: The researcher's intent is to either develop a disease-modifying therapeutic means for aiming in the early phases of dementia and/or optimize the available symptomatic treatments principally committed to the more advanced stages of Alzheimer's. Since Alzheimer's possesses multifactorial pathogenesis, designing a multimodal therapeutic intervention for targeting different pathological processes of dementia may appear to be the most practical method to alter the course of disease progression.

    CONCLUSION: The combination approach may even allow for providing individual agents in lower doses, with reducible costs and side effects. Numerous studies on combination therapy predicted better clinical efficacy than monotherapy. The literature review highlights the major clinical studies (both symptomatic and disease-modifying) conducted in the past decade on combination therapy to combat cognitive disorder.

    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology
  4. Salleh WMNHW, Salihu AS, Ab Ghani N
    Nat Prod Res, 2024;38(4):629-633.
    PMID: 36794425 DOI: 10.1080/14786419.2023.2180507
    This study was designed to examine the essential oils compositions of Litsea glauca Siebold and Litsea fulva Fern.-Vill. growing in Malaysia. The essential oils were achieved by hydrodistillation and fully characterized by gas chromatography (GC-FID) and gas chromatography-mass spectrometry (GC-MS). The study identified 17 and 19 components from the leaf oils from L. glauca (80.7%) and L. fulva (81.5%), respectively. The major components of L. glauca oil were β-selinene (30.8%), β-calacorene (11.3%), tridecanal (7.6%), isophytol (4.8%) and β-eudesmol (4.5%); whereas in L. fulva oil gave β-caryophyllene (27.8%), caryophyllene oxide (12.8%), α-cadinol (6.3%), (E)-nerolidol (5.7%), β-selinene (5.5%) and tridecanal (5.0%). Anticholinesterase activity was evaluated using Ellman method. The essential oils showed moderate inhibitory activity on acetylcholinesterase and butyrylcholinesterase assays. Our findings demonstrate that the essential oil could be very useful for the characterization, pharmaceutical, and therapeutic applications of the essential oil from the genus Litsea.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology
  5. Khaw KY, Choi SB, Tan SC, Wahab HA, Chan KL, Murugaiyah V
    Phytomedicine, 2014 Sep 25;21(11):1303-9.
    PMID: 25172794 DOI: 10.1016/j.phymed.2014.06.017
    Garcinia mangostana is a well-known tropical plant found mostly in South East Asia. The present study investigated acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities of G. mangostana extract and its chemical constituents using Ellman's colorimetric method. Cholinesterase inhibitory-guided approach led to identification of six bioactive prenylated xanthones showing moderate to potent cholinesterases inhibition with IC50 values of lower than 20.5 μM. The most potent inhibitor of AChE was garcinone C while γ-mangostin was the most potent inhibitor of BChE with IC50 values of 1.24 and 1.78 μM, respectively. Among the xanthones, mangostanol, 3-isomangostin, garcinone C and α-mangostin are AChE selective inhibitors, 8-deoxygartanin is a BChE selective inhibitor while γ-mangostin is a dual inhibitor. Preliminary structure-activity relationship suggests the importance of the C-8 prenyl and C-7 hydroxy groups for good AChE and BChE inhibitory activities. The enzyme kinetic studies indicate that both α-mangostin and garcinone C are mixed-mode inhibitors, while γ-mangostin is a non-competitive inhibitor of AChE. In contrast, both γ-mangostin and garcinone C are uncompetitive inhibitors, while α-mangostin is a mixed-mode inhibitor of BChE. Molecular docking studies revealed that α-mangostin, γ-mangostin and garcinone C interacts differently with the five important regions of AChE and BChE. The nature of protein-ligand interactions is mainly hydrophobic and hydrogen bonding. These bioactive prenylated xanthones are worthy for further investigations.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology*
  6. Brahmachari G, Choo C, Ambure P, Roy K
    Bioorg Med Chem, 2015 Aug 01;23(15):4567-4575.
    PMID: 26105711 DOI: 10.1016/j.bmc.2015.06.005
    A series of densely functionalized piperidine (FP) scaffolds was synthesized following a diastereoselective one-pot multicomponent protocol under eco-friendly conditions. The FPs were evaluated in vitro for their acetylcholinesterase (AChE) inhibitory activity, and in silico studies for all the target compounds were carried out using pharmacophore mapping, molecular docking and quantitative structure-activity relationship (QSAR) analysis in order to understand the structural features required for interaction with the AChE enzyme and the key active site residues involved in the intermolecular interactions. Halogenation, nitration or 3,4-methylenedixoxy-substitution at the phenyl ring attached to the 2- and 6-positions of 1,2,5,6-tetrahydropyridine nucleus in compounds 14-17, 19, 20, 24 and 26 greatly enhanced the AChE inhibitory activity. The docking analysis demonstrated that the inhibitors are well-fitted in the active sites. The in silico studies enlighten the future course of studies in modifying the scaffolds for better therapeutic efficacy against the deadly Alzheimer's disease.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology*
  7. Ha ZY, Ong HC, Oo CW, Yeong KY
    Curr Alzheimer Res, 2020;17(13):1177-1185.
    PMID: 33602088 DOI: 10.2174/1567205018666210218151228
    BACKGROUND: Benzimidazole is an interesting pharmacophore which has been extensively studied in medicinal chemistry due to its high affinity towards various enzymes and receptors. Its derivatives have been previously shown to possess a wide range of biological activities including anthelmintic, antihypertensive, antiulcer, as well as anticholinesterase activity.

    OBJECTIVE: The objective of this study is to search for more potent benzimidazole-based cholinesterase inhibitors, through the modification of the 1- and 2-positions of the benzimidazole core.

    METHODS: Synthesis of compounds were carried out via a 4-step reaction scheme following a previously reported protocol. Structure-activity relationship of the compounds are established through in vitro cholinesterase assays and in silico docking studies. Furthermore, cytotoxicity and blood brain barrier (BBB) permeability of the compounds were also investigated.

    RESULTS: Among the synthesised compounds, three of them (5IIa, 5IIb, and 5IIc) exhibited potent selective butyrylcholinesterase inhibition at low micromolar level. The compounds did not show any significant cytotoxicity when tested against a panel of human cell lines. Moreover, the most active compound, 5IIc, was highly permeable across the blood brain barrier.

    CONCLUSION: In total 10 benzimidazole derivatives were synthesized and screened for their AChE and BuChE inhibitory activities. Lead compound 5Iic, represents a valuable compound for further development as potential AD therapeutics.

    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology*
  8. Das S, Laskar MA, Sarker SD, Choudhury MD, Choudhury PR, Mitra A, et al.
    Phytochem Anal, 2017 Jul;28(4):324-331.
    PMID: 28168765 DOI: 10.1002/pca.2679
    INTRODUCTION: Prenylated and pyrano-flavonoids of the genus Artocarpus J. R. Forster & G. Forster are well known for their acetylcholinesterase (AChE) inhibitory, anti-cholinergic, anti-inflammatory, anti-microbial, anti-oxidant, anti-proliferative and tyrosinase inhibitory activities. Some of these compounds have also been shown to be effective against Alzheimer's disease.

    OBJECTIVE: The aim of the in silico study was to establish protocols to predict the most effective flavonoid from prenylated and pyrano-flavonoid classes for AChE inhibition linking to the potential treatment of Alzheimer's disease.

    METHODOLOGY: Three flavonoids isolated from Artocarpus anisophyllus Miq. were selected for the study. With these compounds, Lipinski filter, ADME/Tox screening, molecular docking and quantitative structure-activity relationship (QSAR) were performed in silico. In vitro activity was evaluated by bioactivity staining based on the Ellman's method.

    RESULTS: In the Lipinski filter and ADME/Tox screening, all test compounds produced positive results, but in the target fishing, only one flavonoid could successfully target AChE. Molecular docking was performed on this flavonoid, and this compound gained the score as -13.5762. From the QSAR analysis the IC50 was found to be 1659.59 nM. Again, 100 derivatives were generated from the parent compound and docking was performed. The derivative compound 20 was the best scorer, i.e. -31.6392 and IC50 was predicted as 6.025 nM.

    CONCLUSION: Results indicated that flavonoids could be efficient inhibitors of AChE and thus, could be useful in the management of Alzheimer's disease. Copyright © 2017 John Wiley & Sons, Ltd.

    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology*
  9. Hasan AH, Shakya S, Hussain FHS, Murugesan S, Chander S, Pratama MRF, et al.
    J Biomol Struct Dyn, 2023;41(21):11450-11462.
    PMID: 36591704 DOI: 10.1080/07391102.2022.2162583
    The major enzyme responsible for the hydrolytic breakdown of the neurotransmitter acetylcholine (ACh) is acetylcholinesterase (AChE). Acetylcholinesterase inhibitors (AChEIs) are the most prescribed class of medications for the treatment of Alzheimer's disease (AD) and dementia. The limitations of available therapy, like side effects, drug tolerance, and inefficacy in halting disease progression, drive the need for better, more efficacious, and safer drugs. In this study, a series of fourteen novel chalcone-coumarin derivatives (8a-n) were designed, synthesized and characterized by spectral techniques like FT-IR, NMR, and HR-MS. Subsequently, the synthesized compounds were tested for their ability to inhibit acetylcholinesterase (AChE) activity by Ellman's method. All tested compounds showed AChE inhibition with IC50 value ranging from 0.201 ± 0.008 to 1.047 ± 0.043 μM. Hybrid 8d having chloro substitution on ring-B of the chalcone scaffold showed relatively better potency, with IC50 value of 0.201 ± 0.008 μM compared to other members of the series. The reference drug, galantamine, exhibited an IC50 at 1.142 ± 0.027 μM. Computational studies revealed that designed compounds bind to the peripheral anionic site (PAS), the catalytic active site (CAS), and the mid-gorge site of AChE. Putative binding modes, ligand-enzyme interactions, and stability of the best active compound are studied using molecular docking, followed by molecular dynamics (MD) simulations. The cytotoxicity of the synthesised derivatives was determined using the MTT test at three concentrations (100 g/mL, 500 g/mL, and 1 mg/mL). None of the chemicals had a significant effect on the body at the highest dose of 1 mg/mL.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology
  10. Liew SY, Khaw KY, Murugaiyah V, Looi CY, Wong YL, Mustafa MR, et al.
    Phytomedicine, 2015 Jan 15;22(1):45-8.
    PMID: 25636869 DOI: 10.1016/j.phymed.2014.11.003
    Nine monoterpenoid indole alkaloids; naucletine (1), angustidine (2), nauclefine (3), angustine (4), naucline (5), angustoline (6), harmane (7), 3,14-dihydroangustoline (8), strictosamide (9) and one quinoline alkaloid glycoside; pumiloside (10) from Nauclea officinalis were tested for cholinesterase inhibitory activity. All the alkaloids except for pumiloside (10) showed strong to weak BChE inhibitory effect with IC50 values ranging between 1.02-168.55 μM. Angustidine (2), nauclefine (3), angustine (4), angustoline (6) and harmane (7) showed higher BChE inhibiting potency compared to galanthamine. Angustidine (2) was the most potent inhibitor towards both AChE and BChE. Molecular docking (MD) studies showed that angustidine (2) docked deep into the bottom gorge of hBChE and formed hydrogen bonding with Ser 198 and His 438. Kinetic study of angustidine (2) on BChE suggested a mixed inhibition mode with an inhibition constant (Ki) of 6.12 μM.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology*
  11. Ramli RA, Lie W, Pyne SG
    J Nat Prod, 2014 Apr 25;77(4):894-901.
    PMID: 24606395 DOI: 10.1021/np400978x
    Four new stichoneurine-type alkaloids, stichoneurines F and G (1-2) and sessilistemonamines E and F (3-4), have been isolated from the root extracts of Stichoneuron caudatum. The structures and relative configurations of these alkaloids have been determined by spectroscopic methods and molecular modeling experiments. Compounds 1-4 were tested for their acetylcholinesterase (AChE) inhibitory activities against human AChE. Compound 3 showed significant inhibitory activity with an IC50 value of 9.1±0.15 μM.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology*
  12. Khan D, Khan HU, Khan F, Khan S, Badshah S, Khan AS, et al.
    PLoS One, 2014;9(4):e94952.
    PMID: 24733024 DOI: 10.1371/journal.pone.0094952
    A phytochemical investigation on the ethyl acetate soluble fraction of Lonicera quinquelocularis (whole plant) led to the first time isolation of one new phthalate; bis(7-acetoxy-2-ethyl-5-methylheptyl) phthalate (3) and two new benzoates; neopentyl-4-ethoxy-3, 5-bis (3-methyl-2-butenyl benzoate (4) and neopentyl-4-hydroxy-3, 5-bis (3-methyl-2-butenyl benzoate (5) along with two known compounds bis (2-ethylhexyl phthalate (1) and dioctyl phthalate (2). Their structures were established on the basis of spectroscopic analysis and by comparison with available data in the literature. All the compounds (1-5) were tested for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities in dose dependent manner. The IC50 (50% inhibitory effect) values of compounds 3 and 5 against AChE were 1.65 and 3.43 µM while the values obtained against BChE were 5.98 and 9.84 µM respectively. Compounds 2 and 4 showed weak inhibition profile.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology*
  13. Yoon YK, Ali MA, Wei AC, Choon TS, Khaw KY, Murugaiyah V, et al.
    Bioorg Chem, 2013 Aug;49:33-9.
    PMID: 23886696 DOI: 10.1016/j.bioorg.2013.06.008
    Two series of novel acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors containing benzimidazole core structure were synthesized by a four-step reaction pathway starting from 4-fluoro-3-nitrobenzoic acid as the basic compound. The structure of the novel benzimidazoles was characterized and confirmed by the elemental and mass spectral analyses as well as (1)H NMR spectroscopic data. Of the 34 novel synthesized compounds, three benzimidazoles revealed AChE inhibition with IC50<10 μM. The highest inhibitory activity (IC50=5.12 μM for AChE and IC50=8.63 μM for BChE) corresponds to the compound 5IIc (ethyl 1-(3-(1H-imidazol-1-yl)propyl)-2-(4-nitrophenyl)-1H-benzo[d]imidazole-5-carboxylate). The relationship between lipophilicity and the chemical structures as well as their limited structure-activity relationship was discussed.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology*
  14. Basiri A, Murugaiyah V, Osman H, Kumar RS, Kia Y, Awang KB, et al.
    Eur J Med Chem, 2013 Sep;67:221-9.
    PMID: 23871902 DOI: 10.1016/j.ejmech.2013.06.054
    Series of hitherto unreported piperidone grafted pyridopyrimidines synthesized through ionic liquid mediated multi-component reaction. These compounds were evaluated for their inhibitory activities against AChE and BChE enzymes. All the compounds displayed considerable potency against AChE with IC50 values ranging from 0.92 to 9.11 μM, therein compounds 6a, 6h and 6i displayed superior enzyme inhibitory activities compared to standard drug with IC50 values of 0.92, 1.29 and 2.07 μM. Remarkably, all the compounds displayed higher BChE inhibitory activity compared to galantamine with IC50 values of 1.89-8.13 μM. Molecular modeling, performed for the most active compounds using three dimensional crystal structures of TcAChE and hBChE, disclosed binding template of these inhibitors into the active site of their respective enzymes.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology*
  15. Fadaeinasab M, Hadi AH, Kia Y, Basiri A, Murugaiyah V
    Molecules, 2013 Mar 25;18(4):3779-88.
    PMID: 23529036 DOI: 10.3390/molecules18043779
    Plants of the Apocynaceae family have been traditionally used in the treatment of age-related brain disorders. Rauvolfia reflexa, a member of the family, has been used as an antidote for poisons and to treat malaria. The dichloromethane, ethanol and methanol extracts from the leaves of Rauvolfia reflexa showed potential acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities, with IC50 values in the 8.49 to 52.23 g/mL range. Further cholinesterase inhibitory-guided isolation of these extracts afforded four bioactive compounds, namely: (E)-3-(3,4,5-trimethoxyphenyl)acrylic acid (1), (E)-methyl 3-(4-hydroxy-3,5-dimethoxyphenyl) acrylate (2), 17-methoxycarbonyl-14-heptadecaenyl-4-hydroxy-3-methoxycinnamate (3) and 1,2,3,4-tetrahydro-1-oxo-β-carboline (4). The isolated compounds showed moderate cholinesterase inhibitory activity compared to the reference standard, physostigmine. Compounds 1 and 2 showed the highest inhibitory activity against AChE (IC50 = 60.17 µM) and BChE (IC50 = 61.72 µM), respectively. Despite having similar molecular weight, compounds 1 and 2 were structurally different according to their chemical substitution patterns, leading to their different enzyme inhibition selectivity. Compound 2 was more selective against BChE, whereas compound 1 was a selective inhibitor of AChE. Molecular docking revealed that both compounds 1 and 2 were inserted, but not deeply into the active site of the cholinesterase enzymes.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology
  16. Al-Mekhlafi NA, Shaaria K, Abas F, Jeyaraj EJ, Stanslas J, Khalivulla SI, et al.
    Nat Prod Commun, 2013 Apr;8(4):447-51.
    PMID: 23738449
    In the present study phytochemical investigation of the methanol extract of the stem bark of Horsfieldia superba led to the isolation of twenty compounds (1-20), of which three (1-3) were new. However, compounds 2 and 3 were previously reported as synthetic alpha,beta-lactones. The compounds were characterized as (-)-3,4',7-trihydroxy-3'-methoxyflavan (1), (-)-5,6-dihydro-6-undecyl-2H-pyran-2-one (2), and (-)-5,6-dihydro-6-tridecyl-2H-pyran-2-one (3). Seventeen other known compounds were also isolated and identified as (-)-viridiflorol (4), hexacosanoic acid (5), beta-sitosterol (6), methyl 2,4-dihydroxy-6-methylbenzoate (methylorsellinate) (7), methyl 2,4-dihydroxy-3,6-dimethylbenzoate (8), (-)-4'-hydroxy-7-methoxyflavan (9), (-)-4',7-dihydroxyflavan (10), (-)-4',7-dihydroxy-3'-methoxyflavan (11), (+)-3,4',7-trihydroxyflavan (12), (-)-catechin (13), (-)-epicatechin (14), (-)-7-hydroxy-3',4'-methylenedioxyflavan (15), 2',3,4-trihydroxy-4'-methoxydihydrochalcone (16), 3',4',7-trihydroxyflavone (17), (+)-4'-hydroxy-7-methoxyflavanone (18), hexadecanoic acid (palmitic acid) (19) and 3,4-dihydroxybenzoic acid (20). The structures of the compounds were fully characterized by various physical methods (melting point, optical rotation), spectral (UV, IR, ID and 2D NMR) and mass spectrometric techniques. In vitro assay of compounds 2 and 3 demonstrated moderate cytotoxic activities against human prostate (PC-3), colon (HCT-116) and breast (MCF-7) cancer cells, while the chloroform and ethyl acetate fractions of H. superba were found to exhibit moderate AChE inhibitory activity (IC50 72 and 60 microg/mL).
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology
  17. Awang K, Chan G, Litaudon M, Ismail NH, Martin MT, Gueritte F
    Bioorg Med Chem, 2010 Nov 15;18(22):7873-7.
    PMID: 20943395 DOI: 10.1016/j.bmc.2010.09.044
    A significant acetylcholinesterase (AChE) inhibitory activity was observed for the hexane extract from the bark of Mesua elegans (Clusiaceae). Thus, the hexane extract was subjected to chemical investigation, which led to the isolation of nine 4-phenylcoumarins, in which three are new; mesuagenin A (1), mesuagenin C (3), mesuagenin D (4) and one new natural product; mesuagenin B (2). The structures of the isolated compounds were characterized by spectroscopic data interpretation, especially 1D and 2D NMR. Four compounds showed significant AChE inhibitory activity, with mesuagenin B (2) being the most potent (IC(50)=0.7μM).
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology
  18. Jamila N, Khan N, Khan I, Khan AA, Khan SN
    Nat Prod Res, 2016 Jun;30(12):1388-97.
    PMID: 26158779 DOI: 10.1080/14786419.2015.1060594
    The dichloromethane bark extract of Garcinia hombroniana yielded one new cycloartane triterpene; (22Z,24E)-3β-hydroxycycloart-14,22,24-trien-26-oic acid (1) together with five known compounds: garcihombronane G (2), garcihombronane J (3), 3β acetoxy-9α-hydroxy-17,14-friedolanostan-14,24-dien-26-oic acid (4), (22Z, 24E)-3β, 9α-dihydroxy-17,14-friedolanostan-14,22,24-trien-26-oic acid (5) and 3β, 23α-dihydroxy-17,14-friedolanostan-8,14,24-trien-26-oic acid (6). Their structures were established by the spectral techniques of NMR and ESI-MS. These compounds together with some previously isolated compounds; garcihombronane B (7), garcihombronane D (8) 2,3',4,5'-tetrahydroxy-6-methoxybenzophenone (9), volkensiflavone (10), 4''-O-methyll-volkensiflavone (11), volkensiflavone-7-O-glucopyranoside (12), volkensiflavone-7-O-rhamnopyranoside (13), Morelloflavone (14), 3''-O-methyl-morelloflavone (15) and morelloflavone-7-O-glucopyranoside (16) were evaluated for cholinesterase enzymes inhibitory activities using acetylcholinesterase and butyrylcholinesterase. In these activities, compounds 1-9 showed good dual inhibition on both the enzymes while compounds 10-16 did not reasonably contribute to both the cholinesterases inhibitory effects.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology*
  19. Wu J, Pistolozzi M, Liu S, Tan W
    Bioorg Med Chem, 2020 03 01;28(5):115324.
    PMID: 32008882 DOI: 10.1016/j.bmc.2020.115324
    Rivastigmine, a dual inhibitor of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), has been approved by U.S. Food and Drug Administration to treat Alzheimer's disease (AD) and Parkinson's disease (PD) dementia. In the current work, a bambuterol derivative lacking one of the carbamoyloxy groups on the benzene ring (BMC-1) and its analogues were synthesized using 1-(3-hydroxyphenyl) ethan-1-one and 1-(4-hydroxyphenyl) ethan-1-one as starting materials. In-vitro cholinesterase assay established that nine compounds were more potent to inhibit both electric eel AChE and equine serum BChE than rivastigmine under the same experimental conditions. Further study confirmed that among the nine carbamates, BMC-3 (IC50(AChE) = 792 nM, IC50(BChE) = 2.2 nM) and BMC-16 (IC50(AChE) = 266 nM, IC50(BChE) = 10.6 nM) were excellent cholinesterase inhibitors with potential of permeating through the blood-brain barrier. These carbamates could be used as potential dual inhibitors of AChE and BChE and to discover novel drugs for the treatment of AD and PD dementia.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology*
  20. Boudriga S, Haddad S, Murugaiyah V, Askri M, Knorr M, Strohmann C, et al.
    Molecules, 2020 Apr 23;25(8).
    PMID: 32340203 DOI: 10.3390/molecules25081963
    A novel one-pot [3+2]-cycloaddition reaction of (E)-3-arylidene-1-phenyl-succinimides, cyclic 1,2-diketones (isatin, 5-chloro-isatin and acenaphtenequinone), and diverse α-aminoacids such as 2-phenylglycine or sarcosine is reported. The reaction provides succinimide-substituted dispiropyrrolidine derivatives with high regio- and diastereoselectivities under mild reaction conditions. The stereochemistry of these N-heterocycles has been confirmed by four X-ray diffraction studies. Several synthetized compounds show higher inhibition on acetylcholinesterase (AChE) than butyrylcholinesterase (BChE). Of the 17 synthesized compounds tested, five exhibit good AChE inhibition with IC50 of 11.42 to 22.21 µM. A molecular docking study has also been undertaken for compound 4n possessing the most potent AChE inhibitory activity, disclosing its binding to the peripheral anionic site of AChE enzymes.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links