Displaying publications 1 - 20 of 69 in total

  1. Ibrahim NUA, Abd Aziz S, Hashim N, Jamaludin D, Khaled AY
    J Food Sci, 2019 Apr;84(4):792-797.
    PMID: 30861127 DOI: 10.1111/1750-3841.14436
    Total polar compounds (TPC) and free fatty acids (FFA) are important indicators in evaluating the quality of frying oil. Conventional methods to determine TPC and FFA are often time consuming, involved laboratory analyses which required skilled personnel and used substantial amount of harmful solvent. In this study, dielectric spectroscopy technique was used to investigate the relation between dielectric property of refined, bleached and deodorized palm olein (RBDPO) during deep frying with TPC and FFA. In total, 150 batches of French fries were intermittently fried at 185 ± 5 °C for 7 hr a day over 5 consecutive days. A total of 30 frying oil samples were collected. The dielectric property of frying oil samples were measured using impedance analyzer with frequencies ranging from 100 Hz to 10 MHz. The TPC of frying oil samples were measured with a Testo 270, while the FFA analysis was done using Malaysian Palm Oil Board (MPOB) test method. Results showed that dielectric constant, TPC and FFA of RBDPO increased as the frying time increased. Dielectric constant increased from 3.09 to 3.17, while TPC and FFA increased from 9.96 to 19.52 and from 0.08% to 0.36%, respectively. Partial least square (PLS) analysis produced good prediction of TPC and FFA with the application of genetic algorithm (GA). Model developed for prediction of TPC and FFA yielded highly significant correlation with R2 of 0.91 and 0.95, respectively and both had root mean square error in cross-validation (RMSECV) of 1.06%. This study demonstrates the potential of dielectric spectroscopy in monitoring palm olein degradation during frying. PRACTICAL APPLICATION: The application of dielectric spectroscopy to detect degradation of palm olein during frying was studied. The dielectric property of palm olein during frying has successfully correlated with TPC and FFA. The model developed in this study could be used for the development of a sensing system for palm olein degradation monitoring.
    Matched MeSH terms: Fatty Acids, Nonesterified/analysis; Fatty Acids, Nonesterified/chemistry
  2. Nor Shafizah I, Irmawati R, Omar H, Yahaya M, Alia Aina A
    Food Chem, 2022 Mar 30;373(Pt B):131668.
    PMID: 34848088 DOI: 10.1016/j.foodchem.2021.131668
    In this study, potassium oxide supported on dolomite adsorbent was used as an adsorbent for free fatty acids (FFAs) treatment in crude palm oil (CPO). The characteristics of the adsorbent were determined by TGA, XRD, SEM, BET and TPD-CO2. Taguchi method was utilized for experimental design and optimum condition determination. There were four parameters and three levels involved in this study: time (30, 60, 90 min), stirring rate (300, 500, 700 rpm), adsorbent dosage (1, 3, 5 wt%) and K2O concentration (5, 10, 15 wt%). The adsorbent had a larger pore size, higher basic strength, and more basic sites in greater efficiency (63%) in FFAs removal from CPO. The optimum conditions were at 30 min time, 700 rpm stirring rate, 5 wt% adsorbent dosage and 15 wt% K2O concentration. Taguchi method simplified determination of experimental parameters and minimized the operating costs.
    Matched MeSH terms: Fatty Acids, Nonesterified*
  3. Sambanthamurthi R, Rajanaidu N, Hasnah Parman S
    Biochem Soc Trans, 2000 Dec;28(6):769-70.
    PMID: 11171201
    The oil palm mesocarp contains an endogenous lipase which is strongly activated at low temperature. Lipase activity is thus very conveniently assayed by prior exposure of the fruits to low temperature. More than 100 oil palm samples from the germplasm collection of the Palm Oil Research Institute of Malaysia (now known as the Malaysian Palm Oil Board) were screened for non-esterified fatty acid activity using both the low-temperature activation assay and a radioactivity assay. The results showed good correlation between assay procedures. The different samples had a very wide range of lipase activity. Elaeis oleifera samples had significantly lower lipase activity compared with E. guineensis (var. tenera) samples. Even within E. guineensis (var. tenera), there was a wide range of activity. The results confirmed that lipase activity is genotype-dependent. Selection for lipase genotypes is thus possible and this will have obvious commercial value.
    Matched MeSH terms: Fatty Acids, Nonesterified/metabolism*
  4. Tan CH, Ariffin AA, Ghazali HM, Tan CP, Kuntom A, Choo AC
    J Food Sci Technol, 2017 Jun;54(7):1757-1764.
    PMID: 28720930 DOI: 10.1007/s13197-017-2569-9
    This article reports on the changes of oxidation indices and minor components of low free fatty acid (FFA) and freshly extracted crude palm oils after storage at ambient (28 ± 1 C) and 60 C for 77 days. The changes in peroxide value (PV), FFA, extinction coefficient at 233 and 269 nm (K233 and K269), bleachability index (DOBI), carotene and vitamin E contents were monitored. PV, FFA, K233 and K269 of both oil samples increased as storage progressed while the values of carotene and vitamin E contents decreased. At the end of storage period at 60 °C, the carotene content of low FFA crude palm oil was 4.24 ppm. The storage conditions used led to the loss of entire vitamin E fractions of both oil samples as well as a reduction in DOBI values except for freshly extracted crude palm oil stored at ambient temperature.
    Matched MeSH terms: Fatty Acids, Nonesterified
  5. Loo JL, Khoramnia A, Lai OM, Long K, Ghazali HM
    Molecules, 2014 Jun 23;19(6):8556-70.
    PMID: 24959682 DOI: 10.3390/molecules19068556
    Mycelium-bound lipase (MBL), from a locally isolated Geotrichum candidum strain, was produced and characterized as a natural immobilized lipase. A time course study of its lipolytic activity in 1 L liquid broth revealed the maximum MBL activity at 4 h for mycelium cells harvested after 54 h. The yield and specific activity of MBL were 3.87 g/L dry weight and 508.33 U/g protein, respectively, while less than 0.2 U/mL lipase activity was detected in the culture supernatant. Prolonged incubation caused release of the bound lipase into the growth medium. The growth pattern of G. candidum, and production and properties of MBL were not affected by the scale. The stability of mycelia harboring lipase (MBL), harvested and lyophilized after 54 h, studied at 4 °C depicted a loss of 4.3% and 30% in MBL activity after 1 and 8 months, while the activity of free lipase was totally lost after 14 days of storage. The MBL from G. candidum displayed high substrate selectivity for unsaturated fatty acids containing a cis-9 double bond, even in crude form. This unique specificity of MBL could be a direct, simple and inexpensive way in the fats and oil industry for the selective hydrolysis or transesterification of cis-9 fatty acid residues in natural triacylglycerols.
    Matched MeSH terms: Fatty Acids, Nonesterified/metabolism*; Fatty Acids, Nonesterified/chemistry
  6. Ferrario V, Veny H, De Angelis E, Navarini L, Ebert C, Gardossi L
    Biomolecules, 2013 Aug 13;3(3):514-34.
    PMID: 24970178 DOI: 10.3390/biom3030514
    Immobilized lipases were applied to the enzymatic conversion of oils from spent coffee ground into biodiesel. Two lipases were selected for the study because of their conformational behavior analysed by Molecular Dynamics (MD) simulations taking into account that immobilization conditions affect conformational behavior of the lipases and ultimately, their efficiency upon immobilization. The enzymatic synthesis of biodiesel was initially carried out on a model substrate (triolein) in order to select the most promising immobilized biocatalysts. The results indicate that oils can be converted quantitatively within hours. The role of the nature of the immobilization support emerged as a key factor affecting reaction rate, most probably because of partition and mass transfer barriers occurring with hydrophilic solid supports. Finally, oil from spent coffee ground was transformed into biodiesel with yields ranging from 55% to 72%. The synthesis is of particular interest in the perspective of developing sustainable processes for the production of bio-fuels from food wastes and renewable materials. The enzymatic synthesis of biodiesel is carried out under mild conditions, with stoichiometric amounts of substrates (oil and methanol) and the removal of free fatty acids is not required.
    Matched MeSH terms: Fatty Acids, Nonesterified
  7. Lieu T, Yusup S, Moniruzzaman M
    Bioresour Technol, 2016 Jul;211:248-56.
    PMID: 27019128 DOI: 10.1016/j.biortech.2016.03.105
    Recently, a great attention has been paid to advanced microwave technology that can be used to markedly enhance the biodiesel production process. Ceiba pentandra Seed Oil containing high free fatty acids (FFA) was utilized as a non-edible feedstock for biodiesel production. Microwave-assisted esterification pretreatment was conducted to reduce the FFA content for promoting a high-quality product in the next step. At optimum condition, the conversion was achieved 94.43% using 2wt% of sulfuric acid as catalyst where as 20.83% conversion was attained without catalyst. The kinetics of this esterification reaction was also studied to determine the influence of factors on the rate of reaction and reaction mechanisms. The results indicated that microwave-assisted esterification was of endothermic second-order reaction with the activation energy of 53.717kJ/mol.
    Matched MeSH terms: Fatty Acids, Nonesterified
  8. Suseno, S.H., Tajul, A.Y
    This study was aimed at improving the quality of fish oil. A synthetic filter aid (Magnesol XL) was used at various concentration (1, 3 and 5%) and time levels (5, 10, 15 and 20 minutes) to adsorb the polar compound products of the oil. Some physical and chemical properties (viscosity, colour, density, acid value, peroxide value and free fatty acid) of the treated oil were determined. Results indicate that Magnesol XL at 1 and 3% levels significantly reduced the acid value, peroxide value and free fatty acid contents of the treated oil.
    Treatment of the fish oil with Magnesol XL at 1 and 3% levels was also better than treatment with 5% Magnesol XL on improving the fish oil quality. The fatty acid profile for Σ n3 at untreated and treatment adsorbent showed significant at 0.05 level but not significant at Magnesol XL adsorbent concentration 1-5%.
    Matched MeSH terms: Fatty Acids, Nonesterified
  9. Fan, H.Y., Sharifudin, M.S., Hasmadi, M., Chew, H.M.
    A study to measure frying quality and stability of rice bran oil (RBO) compared to palm olein (PO) was conducted. The oils were used to fry French fries continuously for six hours a day up to five days at a temperature of 185 ± 5°C. Oil samples were collected and analyzed for free fatty acid (FFA), peroxide value (PV), smoke point, p-anisidine value (p-AV), iodine value (IV) and colour. At the end of the frying period for both oil samples, FFA, PV, colour and p-AV were increased whereas the IV and smoke point decreased. The rate of FFA formation of RBO was slightly lower which increased from 0.142% to 0.66% compared to PO which was from 0.079% to 0.93%. The PV of RBO showed consistent increased from 3.9 meq/kg to 13.4 meq/kg whereas PO with initial value at 3.4 meq/kg increased to 34.6 meq/kg on the fifth day. Smoke point of RBO and PO progressively dropped from 235°C to 188°C and 220°C to 178°C, respectively. The level of p-AV for RBO increased from 12.19 to 32.65 from the initial to the end of frying day whereas PO had higher rate of changes in p-AV which was from 10.45 to 60.75. The IV decreased over frying time where IV of RBO decreased from 94.5 to 66.5 while IV of PO decreased from 50.9 to 44.6. The colour of RBO showed increased in redness and yellowness but PO was darker at the end of the frying trial. In general, RBO showed better stability than the PO in deep frying of French fries.
    Matched MeSH terms: Fatty Acids, Nonesterified
  10. Junaidah, M.J., Norizzah, A.R., Zaliha, O., Mohamad, S.
    The optimisation of fresh fruit bunch (FFB) sterilisation process was studied using different degree of FFB ripeness (i.e. under-ripe, ripe, overripe) and loose fruits. This study was carried out with the application of Response Surface Methodology (RSM), based on the interrelation between process temperature (X1; 100 to 120oC) and time (X2; 20 to 80 min) used for FFB sterilisation process on Free Fatty Acid, FFA (Y1,underripe FFB; Y2,ripe FFB; Y3,Overripe FFB; and Y4,loose fruits). Thirteen experimental runs were conducted per degree of ripeness using laboratory scale steriliser with varying sterilisation temperature and time, as generated by Central Composite Rotatable Design (CCRD). Raw experimental data trend showed substantial FFA increment with the increment of FFB maturity. Four polynomial models were found appropriate to predict the responses within experimental regions. Analysis regarding factor influences on each response was performed using Analysis of Variance (ANOVA) and graphical analysis. For under-ripe and ripe FFB, the temperature exerted higher and significant (p
    Matched MeSH terms: Fatty Acids, Nonesterified
  11. Zarinah, Z., Maaruf, A.G., Nazaruddin, R., Wong, W.W.W., Xuebing, X.
    Canarium ovatum oil Engl. (pili nut oil) was extracted by using cold press method and then the
    physico-chemical properties of the oil samples, roasted pili nut oil (RPNO) and unroasted pili
    nut oil (UPNO) such as iodine value (IV), peroxide value (PV), acid value (% FFA), solid fat
    content (SFC), fatty acid composition and triacylglycerol (TAG) composition were determined.
    The percentage of oil yield and iodine value for RPNO and UPNO were showed no significant
    different, wheareas there were significantly different for the peroxide value and percentage of
    free fatty acid. The solid fat content for RPNO and UPNO were similar to the palm olein oil
    and both completely melt at 25°C. Both samples, RPNO and UPNO were contained 50.70%
    and 52.59% of oleic acid and were found not contain the trisaturated TAGs.
    Matched MeSH terms: Fatty Acids, Nonesterified
  12. Ahmad SNS, Tarmizi AHA, Razak RAA, Jinap S, Norliza S, Sulaiman R, et al.
    Foods, 2021 Jan 27;10(2).
    PMID: 33513727 DOI: 10.3390/foods10020257
    This study aims to investigate the effect of different vegetable oils and frying cycles on acrylamide formation during the intermittent frying of beef nuggets. Different vegetable oils, palm olein (PO), red palm olein (RPO), sunflower oil (SFO), and soybean oil (SBO), were used for a total of 80 frying cycles. Oil was collected at every 16th frying cycle and analyzed for peroxide value (PV), p-anisidine value (p-AV), free fatty acid (FFA), total polar compound (TPC), polar compound fractions, and fatty acid composition (FAC). Total oxidation (TOTOX) value was calculated, and acrylamide content was quantified in the nuggets. Regardless of the oil type, PV, p-AV, and TOTOX initially increased but gradually decreased. However, FFA and TPC continued to develop across the 80 frying cycles. The C18:2/C16:0 remained almost unchanged in PO and RPO but dropped progressively in SFO and SBO. The lowest acrylamide content in fried products was observed in the PO, while the highest content was observed in RPO. Bivariate correlation analysis showed no significant (p ≤ 0.05) correlation between oil quality attributes and acrylamide concentration. The oil type but not the frying cycle significantly affected the acrylamide concentration in beef nuggets.
    Matched MeSH terms: Fatty Acids, Nonesterified
  13. Jahurul MHA, Shian OK, Sharifudin MS, Hasmadi M, Lee JS, Mansoor AH, et al.
    J Food Sci Technol, 2021 Mar;58(3):902-910.
    PMID: 33678873 DOI: 10.1007/s13197-020-04604-1
    The objective of this study was to optimize the extraction of oil from pre-dried roselle seeds using response surface methodology (RSM). We also determined the oxidative stability of oil extracted from oven and freeze-dried roselle seed in terms of iodine value (IV), free fatty acid (FFA) value, peroxide value (PV), P-anisidine and total oxidation values (TOTOX value). The RSM was designated based on the central composite design with the usage of three optimum parameters ranged from 8 to 16 g of sample weight, 250-350 mL of solvent volume, and 6-8 h of extraction time. The highest oil yielded from roselle seed using the optimization process was 22.11% with the parameters at sample weight of 14.4 g, solvent volume of 329.70 mL, and extraction time of 7.6 h. Besides, the oil extracted from the oven dried roselle seed had the values of 89.04, 2.11, 4.13, 3.76 and 12.03 for IV, FFA, PV, P-anisidine, and TOTOX values, respectively. While for the oil extracted from freeze-dried roselle seed showed IV of 90.31, FFA of 1.64, PV of 2.47, P-anisidine value of 3.48, and TOTOX value of 8.42. PV and TOTOX values showed significant differences whereas; IV, FFA, and P-anisidine values showed no significant differences between the oven and freeze-dried roselle seed oils.
    Matched MeSH terms: Fatty Acids, Nonesterified
  14. Koguleshun S, Pua FL, Shamala G, Nabihah S
    Sains Malaysiana, 2015;44:1573-1577.
    Oil palm empty fruit bunch (EFB) contributes to a large quantity of lignocellulosic waste. It is an abundantly available
    waste biomass in Malaysia. This project was aimed to utilize the waste materials for a better benefit. EFB were used as
    raw material to prepare a new solid catalyst for biodiesel production. Solid acid catalyst derived from EFB was used to
    catalyze the esterification process in biodiesel production from waste cooking oil. Solid acid catalyst was prepared by
    direct impregnation with transition metal sulfides, Fe2
    . This new catalyst was used to catalyze the esterification of
    high free fatty acid (FFA) value oil, e.g. waste cooking oils (WCOs) as pre-treatment step prior to biodiesel production.
    The highest catalytic activity with 90.95% esterification rate was achieved. The catalyst can be easily separated for
    reuse compared to homogenous catalyst which are used in biodiesel production. EFB has the potential to be converted
    into useful feedstock and the derived catalyst can replace the traditional liquid acid catalyst in biodiesel production
    especially for high acid value content feedstock.
    Matched MeSH terms: Fatty Acids, Nonesterified
  15. Idrus NFM, Zzaman W, Yang TA, Easa AM, Sharifudin MS, Noorakmar BW, et al.
    Food Sci Biotechnol, 2017;26(4):911-920.
    PMID: 30263619 DOI: 10.1007/s10068-017-0132-0
    Peanut (Arachis hypogaea) is an important source of protein and lipid globally. The effect of superheated-steam roasting on quality of peanut oil was evaluated based on physicochemical quality parameters. Three roasting temperatures (150, 200, and 250 °C) were used for different periods of roasting time and the obtained results were compared with those of conventional roasting. At 250 °C, superheated-steam roasted peanuts yielded more oil (26.84%) than conventionally roasted peanuts (24.85%). Compared with conventional roasting, superheated-steam roasting resulted in lower oil color, peroxide, p-anisidine, free fatty acid, conjugated diene and triene, and acid values and higher viscosity and iodine values in the roasted peanut oil. These values were significantly different from each other (p 
    Matched MeSH terms: Fatty Acids, Nonesterified
  16. Lokman IM, Rashid U, Zainal Z, Yunus R, Taufiq-Yap YH
    J Oleo Sci, 2014;63(9):849-55.
    PMID: 25099911
    In the current research work, effect of microwave irradiation energy on the esterification of palm fatty acid distillate (PFAD) to produce PFAD methyl ester / biodiesel was intensively appraised. The PFAD is a by-product from refinery of crude palm oil consisting >85% of free fatty acid (FFA). The esterification reaction process with acid catalyst is needed to convert the FFA into fatty acid methyl ester or known as biodiesel. In this work, fabricated microwave-pulse width modulation (MPWM) reactor with controlled temperature was designed to be capable to increase the PFAD biodiesel production rate. The classical optimization technique was used in order to study the relationship and the optimum condition of variables involved. Consequently, by using MPWM reactor, mixture of methanol-to-PFAD molar ratio of 9:1, 1 wt.% of sulfuric acid catalyst, at 55°C reaction temperature within 15 min reaction time gave 99.5% of FFA conversion. The quality assessment and properties of the product were analyzed according to the American Society for Testing and Materials (ASTM), European (EN) standard methods and all results were in agreement with the standard requirements. It revealed that the use of fabricated MPWM with controlled temperature was significantly affecting the rate of esterification reaction and also increased the production yield of PFAD methyl ester.
    Matched MeSH terms: Fatty Acids, Nonesterified/chemistry*
  17. Hindryawati N, Maniam GP
    Ultrason Sonochem, 2015 Jan;22:454-62.
    PMID: 24842471 DOI: 10.1016/j.ultsonch.2014.04.011
    This study demonstrates the potential of Na-silica waste sponge as a source of low cost catalyst in the transesterification of waste cooking oil aided by ultrasound. In this work an environmentally friendly and efficient transesterification process using Na-loaded SiO2 from waste sponge skeletons as a solid catalyst is presented. The results showed that the methyl esters content of 98.4±0.4wt.% was obtainable in less than an hour (h) of reaction time at 55°C. Optimization of reaction parameters revealed that MeOH:oil, 9:1; catalyst, 3wt.% and reaction duration of 30min as optimum reaction conditions. The catalyst is able to tolerant free fatty acid and moisture content up to 6% and 8%, respectively. In addition, the catalyst can be reused for seven cycles while maintaining the methyl esters content at 86.3%. Ultrasound undoubtedly assisted in achieving this remarkable result in less than 1h reaction time. For the kinetics study at 50-60°C, a pseudo first order model was proposed, and the activation energy of the reaction is determined as 33.45kJ/mol using Arrhenius equation.
    Matched MeSH terms: Fatty Acids, Nonesterified/chemistry
  18. Gan S, Ng HK, Ooi CW, Motala NO, Ismail MA
    Bioresour Technol, 2010 Oct;101(19):7338-43.
    PMID: 20435468 DOI: 10.1016/j.biortech.2010.04.028
    In this work, the esterification of free fatty acids (FFA) in waste cooking oil catalysed by ferric sulphate was studied as a pre-treatment step for biodiesel production. The effects of reaction time, methanol to oil ratio, catalyst concentration and temperature on the conversion of FFA were investigated on a laboratory scale. The results showed that the conversion of FFA reached equilibrium after an hour, and was positively dependent on the methanol to oil molar ratio and temperature. An optimum catalyst concentration of 2 wt.% gave maximum FFA conversion of 59.2%. For catalyst loadings of 2 wt.% and below, this catalysed esterification was proposed to follow a pseudo-homogeneous pathway akin to mineral acid-catalysed esterification, driven by the H(+) ions produced through the hydrolysis of metal complex [Fe(H(2)O)(6)](3+) (aq).
    Matched MeSH terms: Fatty Acids, Nonesterified/metabolism*
  19. Tarmizi AH, Lin SW
    J Oleo Sci, 2008;57(12):639-48.
    PMID: 19001776
    Extending the frying-life of oils is of commercial and economic importance. Due to this fact, assessment on the thermal stability of frying oils could provide considerable savings to the food processors. In this study, the physico-chemical properties of five palm products mainly palm oil, single-fractionated palm olein, double-fractionated palm olein, red palm olein and palm-based shortening during 80 hours of heating at 180 degrees C were investigated. Heating properties of these products were then compared with that of high oleic sunflower oil, which was used as reference oil. The indices applied in evaluating the quality changes of oils were free fatty acid, smoke point, p-anisidine value, tocols, polar and polymer compounds. Three palm products i.e. palm oil, single-fractionated palm olein and double-fractionated palm olein were identified to be the most stable in terms of lower formation of free fatty acid, polar and polymer compounds as well as preserving higher smoke point and tocols content compared to the other three oils. The low intensity of hydrolytic and oxidative changes due to prolonged heating, suggests that these palm products are inherently suitable for frying purposes.
    Matched MeSH terms: Fatty Acids, Nonesterified/analysis
  20. Lau HL, Puah CW, Choo YM, Ma AN, Chuah CH
    Lipids, 2005 May;40(5):523-8.
    PMID: 16094863
    This paper discusses a rapid GC-FID technique for the simultaneous quantitative analysis of FFA, MAG, DAG, TAG, sterols, and squalene in vegetable oils, with special reference to palm oil. The FFA content determined had a lower SE compared with a conventional titrimetric method. Squalene and individual sterols, consisting of beta-sitosterol, stigmasterol, campesterol, and cholesterol, were accurately quantified without any losses. This was achieved through elimination of tedious conventional sample pretreatments, such as saponification and preparative TLC. With this technique, the separation of individual MAG, consisting of 16:0, 18:0, and 18:1 FA, and the DAG species, consisting of the 1,2(2,3)- and 1,3-positions, was sufficient to enable their quantification. This technique enabled the TAG to be determined according to their carbon numbers in the range of C44 to C56. Comparisons were made with conventional methods, and the results were in good agreement with those reported in the literature.
    Matched MeSH terms: Fatty Acids, Nonesterified/analysis*
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links