Displaying publications 1 - 20 of 65 in total

Abstract:
Sort:
  1. Quah RV, Tan YH, Mubarak NM, Kansedo J, Khalid M, Abdullah EC, et al.
    Waste Manag, 2020 Dec;118:626-636.
    PMID: 33011540 DOI: 10.1016/j.wasman.2020.09.016
    Due to its environment-friendly and replenishable characteristics, biodiesel has the potential to substitute fossil fuels as an alternative source of energy. Although biodiesel has many benefits to offer, manufacturing biodiesel on an industrial scale is uneconomical as a high cost of feedstock is required. A novel sulfonated and magnetic catalyst synthesised from a palm kernel shell (PMB-SO3H) was first introduced in this study for methyl ester or biodiesel production to reduce capital costs. The wasted palm kernel shell (PKS) biochar impregnated with ferrite Fe3O4 was synthesised with concentrated sulphuric acid through the sulfonation process. The SEM, EDX, FTIR, VSM and TGA characterization of the catalysts were presented. Then, the optimisation of biodiesel synthesis was catalysed by PMB-SO3H via the Response Surface Methodology (RSM). It was found that the maximum biodiesel yield of 90.2% was achieved under these optimum operating conditions: 65 °C, 102 min, methanol to oil ratio of 13:1 and the catalyst loading of 3.66 wt%. Overall, PMB-SO3H demonstrated acceptable catalysing capability on its first cycle, which subsequently showed a reduction of the reusability performance after 4 cycles. An important practical implication is that PMB-SO3H can be established as a promising heterogeneous catalyst by incorporating an iron layer which can substantially improve the catalyst separation performance in biodiesel production.
    Matched MeSH terms: Magnetic Phenomena
  2. Kayode JS, Yusup Y
    Data Brief, 2018 Aug;19:798-803.
    PMID: 29900375 DOI: 10.1016/j.dib.2018.05.090
    A secondary dataset was generated from the Euldph-λ semi-automatic Algorithm, (ESA) developed to automatically computes various depths to the magnetic anomalies using a primary data set from gridded aeromagnetic data obtained in the study area. Euler Deconvolution techniques, (EDT), was adopted in the identification and definition of the magnetic anomaly source rocks in the study area. The aim is to use the straightforward technique to pinpoint magnetic anomalies at a depth which substantiate mineralization potential of the area. The ESA was integrated with the imaging function of Oasis Montaj 2014 source parameter from Geosoft® Inc. From the data, it could be summarized that similar tectonic processes during the deformation and metamorphic activities, the subsurface structures of the study area produce corresponding trending form.
    Matched MeSH terms: Magnetic Phenomena
  3. Tan YW, Leong SS, Lim J, Yeoh WM, Toh PY
    Electrophoresis, 2022 Nov;43(21-22):2234-2249.
    PMID: 35921231 DOI: 10.1002/elps.202200078
    Low-gradient magnetic separation (LGMS) of magnetic nanoparticles (MNPs) has been proven as one of the techniques with great potential for biomedical and environmental applications. Recently, the underlying principle of particle capture by LGMS, through a process known as magnetophoresis, under the influence of hydrodynamic effect has been widely studied and illustrated. Even though the hydrodynamic effect is very substantial for batch processes, its impact on LGMS operated at continuous flow (CF) condition remained largely unknown. Hence, in this study, the dynamical behaviour of LGMS process operated under CF was being studied. First, the LGMS experiments using poly(sodium 4-styrenesulfonate)-functionalized-MNP as modelled particle system were performed through batchwise (BW) and CF modes at different operating conditions. Here BW operation was used as a comparative study to elucidate the transport mechanism of MNP under the similar environment of CF-LGMS process, and it was found out that the convection induced by magnetophoresis (timescale effective is ∼1200 s) is only significant at far-from-magnet region. Hence, it can be deduced that forced convection is more dominant on influencing the transport behaviour of CF-LGMS (with resident time ≤240 s). Moreover, we found that the separation efficiency of CF-LGMS process can be boosted by the higher number of magnets, the higher MNP concentration and the lower flowrate of MNP solution. To better illustrate the underlying dynamical behaviour of LGMS process, a mathematical model was developed to predict its kinetic profile and separation efficiency (with average error of ∼2.6% compared to the experimental results).
    Matched MeSH terms: Magnetic Phenomena
  4. Mehmood A, Khan FSA, Mubarak NM, Mazari SA, Jatoi AS, Khalid M, et al.
    Environ Sci Pollut Res Int, 2021 Oct;28(39):54477-54496.
    PMID: 34424475 DOI: 10.1007/s11356-021-16045-0
    Oil spills are a major contributor to water contamination, which sets off a significant impact on the environment, biodiversity, and economy. Efficient removal of oil spills is needed for the protection of marine species as well as the environment. Conventional approaches are not efficient enough for oil-water separation; therefore, effective strategies and efficient removal techniques (and materials) must be developed to restore the contaminated marine to its normal ecology. Several research studies have shown that nanotechnology provides efficient features to clean up these oil spills from the water using magnetic nanomaterials, particularly carbon/polymer-based magnetic nanocomposites. Surface modification of these nanomaterials via different techniques render them with salient innovative features. The present review discusses the advantages and limitations of conventional and advanced techniques for the oil spills removal from wastewater. Furthermore, the synthesis of magnetic nanocomposites, their utilization in oil-water separation, and adsorption mechanisms are discussed. Finally, the advancement and future perspectives of magnetic nanocomposites (particularly of carbon and polymer-based magnetic nanocomposites) in environmental remediation are presented.
    Matched MeSH terms: Magnetic Phenomena
  5. Lim CC, Shuit SH, Ng QH, Rahim SKEA, Hoo PY, Yeoh WM, et al.
    Environ Sci Pollut Res Int, 2023 Mar;30(14):40242-40259.
    PMID: 36604398 DOI: 10.1007/s11356-022-25064-4
    In view of the simple and rapid conveniency of magnetic separation, magnetic nanocomposites had notably gained attention from researchers for environmental field applications. In this work, carboxylated magnetic multi-walled carbon nanotubes (c-MMWCNTs) and novel sulfonated MMWCNTs (s-MMWCNTs) were synthesized by a facile solvent-free direct doping method. Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscope, energy dispersive X-ray, vibrating sample magnetometer, and point of zero charge analyses confirmed the successful doping of the Fe3O4 nanoparticles into the functionalized MWCNTs to form MMWCNTs. Besides, the bonding stabilities of both c-MMWCNTs and s-MMWCNTs were compared, and results showed that s-MMWCNTs possessed more substantial bonding stability than that of c-MMWCNTs with significantly less leaching amount of Fe3O4. The adsorption capacity of s-MMWCNTs was higher than that of c-MMWCNTs owing to the stronger electronegativity sulfonic group in s-MMWCNTs. Moreover, the reusability experiments proved that the adsorbent remained consistently excellent MB removal efficiency (R > 94%) even reused for twelve cycles of batch adsorption. The finding of the present work highlights the simple fabrication of novel s-MMWCNTs and its potential to be served as a promising and sustainable adsorbent for water remediation owing to its enhanced bonding stability, high adsorption performance, magnetic separability, and supreme recyclability.
    Matched MeSH terms: Magnetic Phenomena
  6. Uddin MJ, Khan WA, Ismail AI
    PLoS One, 2015;10(5):e0122663.
    PMID: 25933066 DOI: 10.1371/journal.pone.0122663
    Taking into account the effect of constant convective thermal and mass boundary conditions, we present numerical solution of the 2-D laminar g-jitter mixed convective boundary layer flow of water-based nanofluids. The governing transport equations are converted into non-similar equations using suitable transformations, before being solved numerically by an implicit finite difference method with quasi-linearization technique. The skin friction decreases with time, buoyancy ratio, and thermophoresis parameters while it increases with frequency, mixed convection and Brownian motion parameters. Heat transfer rate decreases with time, Brownian motion, thermophoresis and diffusion-convection parameters while it increases with the Reynolds number, frequency, mixed convection, buoyancy ratio and conduction-convection parameters. Mass transfer rate decreases with time, frequency, thermophoresis, conduction-convection parameters while it increases with mixed convection, buoyancy ratio, diffusion-convection and Brownian motion parameters. To the best of our knowledge, this is the first paper on this topic and hence the results are new. We believe that the results will be useful in designing and operating thermal fluids systems for space materials processing. Special cases of the results have been compared with published results and an excellent agreement is found.
    Matched MeSH terms: Magnetic Phenomena*
  7. Misron N, Shin NW, Shafie S, Marhaban MH, Mailah NF
    Sensors (Basel), 2011;11(11):10474-89.
    PMID: 22346653 DOI: 10.3390/s111110474
    This paper presents a mobile Hall sensor array system for the shape detection of ferromagnetic materials that are embedded in walls or floors. The operation of the mobile Hall sensor array system is based on the principle of magnetic flux leakage to describe the shape of the ferromagnetic material. Two permanent magnets are used to generate the magnetic flux flow. The distribution of magnetic flux is perturbed as the ferromagnetic material is brought near the permanent magnets and the changes in magnetic flux distribution are detected by the 1-D array of the Hall sensor array setup. The process for magnetic imaging of the magnetic flux distribution is done by a signal processing unit before it displays the real time images using a netbook. A signal processing application software is developed for the 1-D Hall sensor array signal acquisition and processing to construct a 2-D array matrix. The processed 1-D Hall sensor array signals are later used to construct the magnetic image of ferromagnetic material based on the voltage signal and the magnetic flux distribution. The experimental results illustrate how the shape of specimens such as square, round and triangle shapes is determined through magnetic images based on the voltage signal and magnetic flux distribution of the specimen. In addition, the magnetic images of actual ferromagnetic objects are also illustrated to prove the functionality of mobile Hall sensor array system for actual shape detection. The results prove that the mobile Hall sensor array system is able to perform magnetic imaging in identifying various ferromagnetic materials.
    Matched MeSH terms: Magnetic Phenomena
  8. Jamari SKM, Nordin NA, Ubaidillah, Aziz SAA, Nazmi N, Mazlan SA
    Materials (Basel), 2020 Nov 24;13(23).
    PMID: 33255343 DOI: 10.3390/ma13235317
    Magnetorheological (MR) material is a type of magneto-sensitive smart materials which consists of magnetizable particles dispersed in a carrier medium. Throughout the years, coating on the surface of the magnetic particles has been developed by researchers to enhance the performance of MR materials, which include the improvement of sedimentation stability, enhancement of the interaction between the particles and matrix mediums, and improving rheological properties as well as providing extra protection against oxidative environments. There are a few coating methods that have been employed to graft the coating layer on the surface of the magnetic particles, such as atomic transfer radical polymerization (ATRP), chemical oxidative polymerization, and dispersion polymerization. This paper investigates the role of particle coating in MR materials with the effects gained from grafting the magnetic particles. This paper also discusses the coating methods employed in some of the works that have been established by researchers in the particle coating of MR materials.
    Matched MeSH terms: Magnetic Phenomena
  9. Zeng H, Wu M, Wang HQ, Zheng JC, Kang J
    Materials (Basel), 2020 Dec 12;13(24).
    PMID: 33322841 DOI: 10.3390/ma13245686
    The magnetic and electronic properties of boron-doped SrTiO3 have been studied by first-principles calculations. We found that the magnetic ground states of B-doped SrTiO3 strongly depended on the dopant-dopant separation distance. As the dopant-dopant distance varied, the magnetic ground states of B-doped SrTiO3 can have nonmagnetic, ferromagnetic or antiferromagnetic alignment. The structure with the smallest dopant-dopant separation exhibited the lowest total energy among all configurations considered and was characterized by dimer pairs due to strong attraction. Ferromagnetic coupling was observed to be stronger when the two adjacent B atoms aligned linearly along the B-Ti-B axis, which could be associated with their local bonding structures. Therefore, the symmetry of the local structure made an important contribution to the generation of a magnetic moment. Our study also demonstrated that the O-Ti-O unit was easier than the Ti-B-Ti unit to deform. The electronic properties of boron-doped SrTiO3 tended to show semiconducting or insulating features when the dopant-dopant distance was less than 5 Å, which changed to metallic properties when the dopant-dopant distance was beyond 5 Å. Our calculated results indicated that it is possible to manipulate the magnetism and band gap via different dopant-dopant separations.
    Matched MeSH terms: Magnetic Phenomena
  10. Mengting Z, Kurniawan TA, Yanping Y, Dzarfan Othman MH, Avtar R, Fu D, et al.
    J Environ Manage, 2020 Sep 15;270:110839.
    PMID: 32721303 DOI: 10.1016/j.jenvman.2020.110839
    We aim at fabricating a ternary magnetic recyclable Bi2WO6/BiOI@Fe3O4 composite that could be applied for photodegradation of tetracycline (TC) from synthetic wastewater. To identify any changes with respect to the composite's morphology and crystal structure properties, ΧRD, FTIR, FESEM-EDS, PL and VSM analyses are carried out. The effects of Fe3O4 loading ratio on the Bi2WO6/BiOI for TC photodegradation are evaluated, while operational parameters such as pH, reaction time, TC concentration, and photocatalyst's dose are optimized. Removal mechanisms of the TC by the composite and its photodegradation pathways are elaborated. With respect to its performance, under the same optimized conditions (1 g/L of dose; 5 mg/L of TC; pH 7; 3 h of reaction time), the Bi2WO6/BiOI@5%Fe3O4 composite has the highest TC removal (97%), as compared to the Bi2WO6 (63%). After being saturated, the spent photocatalyst could be magnetically separated from solution for subsequent use. In spite of three consecutive cycles with 71% of efficiency, the spent composite still has reasonable photocatalytic activities for reuse. Overall, this suggests that the composite is a promising photocatalyst for TC removal from aqueous solutions.
    Matched MeSH terms: Magnetic Phenomena
  11. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2017 Mar 24;118(12):122301.
    PMID: 28388204 DOI: 10.1103/PhysRevLett.118.122301
    Charge-dependent azimuthal particle correlations with respect to the second-order event plane in p-Pb and PbPb collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV have been studied with the CMS experiment at the LHC. The measurement is performed with a three-particle correlation technique, using two particles with the same or opposite charge within the pseudorapidity range |η|<2.4, and a third particle measured in the hadron forward calorimeters (4.4
    Matched MeSH terms: Magnetic Phenomena
  12. Mehmood A, Khan FSA, Mubarak NM, Tan YH, Karri RR, Khalid M, et al.
    Environ Sci Pollut Res Int, 2021 Apr;28(16):19563-19588.
    PMID: 33651297 DOI: 10.1007/s11356-021-12589-3
    Numerous contaminants in huge amounts are discharged to the environment from various anthropogenic activities. Waterbodies are one of the major receivers of these contaminants. The contaminated water can pose serious threats to humans and animals, by distrubing the ecosystem. In treating the contaminated water, adsorption processes have attained significant maturity due to lower cost, easy operation and environmental friendliness. The adsorption process uses various adsorbent materials and some of emerging adsorbent materials include carbon- and polymer-based magnetic nanocomposites. These hybrid magnetic nanocomposites have attained extensive applications in water treatment technologies due to their magnetic properties as well as combination of unique characteristics of organic and inorganic elements. Carbon- and polymer-related magnetic nanocomposites are more adapted materials for the removal of various kinds of contaminants from waterbodies. These nanocomposites can be produced via different approaches such as filling, pulse-laser irradiation, ball milling, and electro-spinning. This comprehensive review is compiled by reviewing published work of last the latest recent 3 years. The review article extensively focuses on different approaches for producing various carbon- and polymer-based magnetic nanocomposites, their merits and demerits and applications for sustainable water purification. More specifically, use of carbon- and polymer-based magnetic nanocomposites for removal of heavy metal ions and dyes is discussed in detail, critically analyzed and compared with other technologies. In addition, commercial viability in terms of regeneration of adsorbents is also reviewed. Furthermore, the future challenges and prospects in employing magnetic nanocomposites for contaminant removal from various water sources are presented.
    Matched MeSH terms: Magnetic Phenomena
  13. Ganapathy SR, Salleh H, Azhar MKA
    Sci Rep, 2021 Feb 24;11(1):4458.
    PMID: 33627722 DOI: 10.1038/s41598-021-83776-y
    The demand for energy harvesting technologies has been increasing over the years that can be attributed to its significance to low power applications. One of the key problems associated with the available vibration-based harvester is the maximum peak power can only be achieved when the device frequency matches the source frequency to generate low usable power. Therefore, in this study, a magnetically-tunable hybrid piezoelectric-triboelectric energy harvester (MT-HPTEH) was designed and optimised. Four key design factors: mass placement, triboelectric surface area, extension length and magnetic stiffness were investigated and optimised. The voltage generation from piezoelectric and triboelectric mechanisms was determined individually to understand the effect of each design factor on the mechanisms. An output power of 659 µW at 180 kΩ at 44 Hz was obtained from the optimised MT-HPTEH with a theoretical-experimental discrepancy of less than 10%. The added magnetically-tunable feature enabled the harvester to work at the desired frequency range with an open circuit voltage between 7.800 and 20.314 V and a frequency range from 38 to 54 Hz. This MT-HPTEH can power at least six wireless sensor networks and can be used for low power applications such as RFID tags. Future work may include designing of energy-saving and sustainable harvester.
    Matched MeSH terms: Magnetic Phenomena
  14. Wang J, Guo M, Luo Y, Shao D, Ge S, Cai L, et al.
    J Environ Manage, 2021 Jul 01;289:112506.
    PMID: 33831760 DOI: 10.1016/j.jenvman.2021.112506
    Polyelectrolyte composite nanospheres are relatively new adsorbents which have attracted much attention for their efficient pollutant removal and reuse performance. A novel polyelectrolyte nanosphere with magnetic function (SA@AM) was synthesized via the electrostatic reaction between the polyanionic sodium alginate (SA) and the surface of a prepared terminal amino-based magnetic nanoparticles (AMs). SA@AM showed a size of 15-22 nm with 6.85 emu·g-1 of magnetization value, exhibiting a high adsorption capacity on Pb(II) ions representing a common heavy metal pollutant, with a maximum adsorption capacity of 105.8 mg g-1. The Langmuir isotherm adsorption fits the adsorption curve, indicating uniform adsorption of Pb(II) on the SA@AM surfaces. Repeated adsorption desorption experiments showed that the removal ratio of Pb(II) by SA@AM was more than 76%, illustrating improved regeneration performance. These results provide useful information for the production of bio-based green magnetic nano scale adsorption materials for environmental remediation applications.
    Matched MeSH terms: Magnetic Phenomena
  15. Burhannuddin NL, Nordin NA, Mazlan SA, Aziz SAA, Kuwano N, Jamari SKM, et al.
    Sci Rep, 2021 Jan 13;11(1):868.
    PMID: 33441824 DOI: 10.1038/s41598-020-80539-z
    Carbonyl iron particles (CIPs) is one of the key components in magnetic rubber, known as magnetorheological elastomer (MRE). Apart from the influence of their sizes and concentrations, the role of the particle' shape is pronounced worthy of the attention for the MRE performance. However, the usage of CIPs in MRE during long-term applications may lead to corrosion effects on the embedded CIPs, which significantly affects the performance of devices or systems utilizing MRE. Hence, the distinctions between the two types of MRE embedded in different shapes of spherical and plate-like CIPs, at both conditions of non-corroded and corroded CIPs were investigated in terms of the field-dependent rheological properties of MRE. The plate-like shape was produced from spherical CIPs through a milling process using a rotary ball mill. Then, both shapes of CIPs individually subjected to an accelerated corrosion test in diluted hydrochloric (HCl) at different concentrations, particularly at 0.5, 1.0, and 1.5 vol.% for 30 min of immersion time. Eight samples of CIPs, including non-corroded for both CIPs shapes, were characterized in terms of a morphological study by field emission scanning electron microscope (FESEM) and magnetic properties via vibrating sample magnetometer (VSM). The field-dependent rheological properties of MREs were analyzed the change in the dynamic modulus behavior of MREs via rheometer. From the application perspective, this finding may be useful for the system to be considered that provide an idea to prolong the performance MRE by utilizing the different shapes of CIPs even when the material is fading.
    Matched MeSH terms: Magnetic Phenomena
  16. Vrshni Menaka R Siva Nathan, Mahedzan Mat Rabi
    MyJurnal
    Fat density lesions or masses arising from the mesentery are best imaged in Computed Tomography or Magnetic Res- onance Imaging scans. This a case of a 75 year old man who presented with intestinal obstructive symptoms. Urgent computed tomography scan was carried out which revealed a large mesenteric lipoma compressing the small bowel at the level of the jejunal loops. Small bowel obstruction can be due to intrinsic, extrinsic and intraluminal causes. Mesenteric lipomas are uncommon, thus torsion or twisting of the mesenteric lipoma causing intestinal obstruction is exceptionally rare.
    Matched MeSH terms: Magnetic Phenomena
  17. Abbasi Pirouz A, Abedi Karjiban R, Abu Bakar F, Selamat J
    Toxins (Basel), 2018 09 06;10(9).
    PMID: 30200553 DOI: 10.3390/toxins10090361
    A novel magnetic graphene oxide modified with chitosan (MGO-CTS) was synthesised as an adsorbent aimed to examine the simultaneous removal of mycotoxins. The composite was characterised by various procedures, namely Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and a scanning electron microscope (SEM). The adsorption evaluation was considered via pH effects, initial mycotoxin concentration, adsorption time and temperature. Adsorption isotherm data and kinetics experiments were acquired at the optimum pH 5 fit Freundlich isotherm as well as pseudo-second-order kinetic models. The thermodynamic results indicated that the adsorption of the mycotoxins was spontaneous, endothermic and favourable.
    Matched MeSH terms: Magnetic Phenomena
  18. Yahya N, Nyuk CM, Ismail AF, Hussain N, Rostami A, Ismail A, et al.
    Sensors (Basel), 2020 Feb 13;20(4).
    PMID: 32069956 DOI: 10.3390/s20041014
    In the current study, we developed an adaptive algorithm that can predict oil mobilization in a porous medium on the basis of optical data. Associated mechanisms based on tuning the electromagnetic response of magnetic and dielectric nanoparticles are also discussed. This technique is a promising method in rational magnetophoresis toward fluid mobility via fiber Bragg grating (FBG). The obtained wavelength shift due to Fe3O4 injection was 75% higher than that of dielectric materials. This use of FBG magneto-optic sensors could be a remarkable breakthrough for fluid-flow tracking in oil reservoirs. Our computational algorithm, based on piecewise linear polynomials, was evaluated with an analytical technique for homogeneous cases and achieved 99.45% accuracy. Theoretical values obtained via coupled-mode theory agreed with our FBG experiment data of at a level of 95.23% accuracy.
    Matched MeSH terms: Electromagnetic Phenomena; Magnetic Phenomena
  19. Sheikholeslami M, Shah Z, Shafee A, Khan I, Tlili I
    Sci Rep, 2019 02 04;9(1):1196.
    PMID: 30718893 DOI: 10.1038/s41598-018-37964-y
    In the present research, aluminum oxide- water (Al2O3-H2O) nanofluid free convection due to magnetic forces through a permeable cubic domain with ellipse shaped obstacle has been reported. Lattice Boltzmann approach is involved to depict the impacts of magnetic, buoyancy forces and permeability on nanoparticles migration. To predict properties of Al2O3- water nanofluid, Brownian motion impact has been involved. Outcomes revels that considering higher magnetic forces results in greater conduction mechanism. Permeability can enhance the temperature gradient.
    Matched MeSH terms: Magnetic Phenomena
  20. Omar AH, Muda K, Majid ZA, Affam AC, Ezechi EH
    Water Environ Res, 2020 Jan;92(1):73-83.
    PMID: 31276251 DOI: 10.1002/wer.1177
    Biogranulation is an effective biological technology suitable for the treatment of various wastewaters. However, the major drawback of this technique is the long start-up period for biogranule development. Hence, the primary focus of this study was on cell surface hydrophobicity which is the main parameter that indicates cell agglomeration during the initial self-immobilization process of aerobic granulation. The effects of sludge concentration and magnetic activated carbon on cell surface hydrophobicity were investigated in this study. Response surface methodology (RSM) was applied to design, analyze, and optimize the outcome of the study. Experiments were performed at sludge concentration of 1,000-3,000 mg/L and magnetic activated carbon mass of 1-5 g/L with 24 hr of aeration time. The results show that both variables yielded a positive significant effect on the initial development of aerobic granulation with 56% surface hydrophobicity. Interaction effects between variables on the responses were significant with positive estimated interaction effect at all different measured aeration time. The magnetic activated carbon acted as nuclei to induce bacterial attachment and further enhanced the initial process of biogranule development under optimal condition of 1:1.1 (sludge concentration: magnetic activated carbon). PRACTITIONER POINTS: Cell surface hydrophobicity was evaluated Magnetic activated carbon enhanced cell surface hydrophobicity Response surface methodology was employed for analyses Magnetic activate carbon mass and biomass concentration was significant Magnetic activated carbon acted as nuclei to improve biogranulation.
    Matched MeSH terms: Magnetic Phenomena
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links