Materials and Methods: Twenty healthy rats of the same breed and gender were randomly assigned to two groups of sham, and Doxycycline group therapy. The rats underwent a surgical intervention in which a 2mm incision was performed on the lateral sides of the right Achilles tendons. The treatment group received oral gavage administrations of 50mg/kg/day of doxycycline for 30 days. After this duration, tissue samples were taken from the site of the injuries, which were then histologically evaluated for alignment of the collagen fibres, inflammation reaction, cellular density, and fibroblastic activity.
Results: The histological assessment of the tissue samples, revealed significant changes in the repaired tissues of the treatment group in comparison to the sham group; namely more irregularity in the alignment of the collagen fibres, increased cellular density, and increased fibroblastic activity. However, only the alignment of the collagen fibres reached the statistical significance.
Conclusion: The results of this study indicate that exposure to doxycycline may result in the improvement of repair of the Achilles tendon injuries, especially collagen filament integrity.
Methodology: Serum samples from six BAVM patients and three control subjects were analyzed using enzyme-linked immunoabsorbent assay (ELISA) for OPN. A total of 10 BAVM patients and five control subjects were analyzed using Multiplex ELISA for MMPs. A total of 16 BAVM tissue samples and two normal brain tissue samples were analyzed using immunohistochemistry.
Result: MMP-2 and -9 were significantly higher in the serum of BAVM patients before and after treatment than in control patients. There were no significant differences of OPN and MMP-9 serum level in BAVM patients before and after treatment. MMP-2 showed a significant elevation after the treatment. Expression of OPN, MMP-2 and -9 proteins were seen in endothelial cells, perivascular cells and brain parenchyma of BAVM tissues.
Conclusion: Findings revealed that the level of MMP-2 and -9 in the serum correlated well with the expression in BAVM tissues in several cases. Knockdown studies will be required to determine the relationships and mechanisms of action of these markers in the near future. In addition, studies will be required to investigate the expression of these markers' potential applications as primary medical therapy targets for BAVM patients.
OBJECTIVE: In the present study, the standardized extract of P. amarus was investigated for its suppressive effects on type II collagen-induced rheumatoid arthritis (TCIA) in Sprague Dawley rats.
METHOD: The major components of the extracts, lignans and phenolic compounds were analysed by using a validated reversed phase HPLC and LC-MS/MS. A rheumatoid arthritis rat model was induced by administering a bovine type II collagen emulsion subcutaneously at the base of tail, on day 0 and 7 of the experiment. Effects of the extract on severity assessment, changes in the hind paw volume, bone mineral density, body weight and body temperature were measured. Concentrations of cytokines (TNF-α, IL-1β, IL-1α, IL-6) released, matrix metalloproteinases (MMP-1, MMP-3 MMP-9) and their inhibitor (TIMP-1), haematological and biochemical changes were also measured. ELISA was used to measure the cytokines and proteinases in the rat serum and synovial fluid according to manufacturer's instructions.
RESULTS: The extract dose-dependently modulated the progression in physical parameters (i.e. decrease in body weight, increase in body temperature, reduced hind paw volume, reduced the severity of arthritis), bone mineral density, haematological and biochemical perturbations, serum cytokines production and levels of matrix metalloproteinases and their inhibitor in the synovial fluid. Histopathological examination of the knee joint also revealed that the extract effectively reduced synovitis, pannus formation, bone resorption and cartilage destruction.
CONCLUSION: The results suggest that the oral administration of a standardized extract of P. amarus was able to suppress the humoral and cellular immune responses to type II collagen, resulting in the reduction of the development of TCIA in the rats.
AIM OF THE STUDY: However, there are no scientific reports documented on the wound healing activities of this plant against Staphylococcus aureus infections in the Sprague Dawley male rat model. Thus, the present study was conducted to evaluate the wound healing potential of E. guineensis extract leaves.
MATERIALS AND METHODS: The crude extract was prepared in 10% (w/w) ointment and evaluated for wound healing activity using excision and infected wound models in Sprague Dawley rats. The wound healing activity was evaluated from wound closure rate, CFU reduction, histological analysis of granulation tissue and matrix metalloprotease expression.
RESULTS: The results show that the E. guineensis extract has potent wound healing ability, as manifest from improved wound closure and tissue regeneration supported by histopathological parameters. Assessment of granulation tissue every fourth day showed a significant reduction in the microbial count. The expression of matrix metalloproteinases was well correlated with the other results, hence confirming E. guineensis wound healing activity's effectiveness.
CONCLUSIONS: E. guineensis enhanced infected wound healing in rats, thus supporting its traditional use.