MATERIALS AND METHODS: A UV-visible spectrophotometer and SEM were used to characterize the green synthesized SeNPs. The anti-inflammatory and anti-diabetic activities of green synthesized SeNPs were measured using the alphaamylase inhibitory & beta-glucosidase enzyme inhibition assay and the egg albumin, bovine serum albumin, and membrane stabilization assays. A test for the mortality of brine shrimp was used to determine the cytotoxic impact of SeNPs.
RESULTS: A. linearis powder was used for the green synthesis of selenium nanoparticles, which exhibited the highest peak at 440 nm when analyzed using a UV-visible spectrophotometer. The In vitro anti-inflammatory effect of synthesized SeNPs was maximally inhibited by 44-83% in the bovine serum albumin assay 54-79% in the egg albumin assay, and 54-86% in the membrane stabilization assay compared with standard. The inhibition percentage of antidiabetic activity was found to be 50-86% in the alphaamylase assay and 49-85% in the beta-glucosidase assay when compared to standards at various concentrations. Furthermore, the cytotoxicity impact shows that 70% of brine shrimp were alive at the maximum fixation of 80 µg/mL.
CONCLUSION: The SeNPs showed concentration-dependent anti-inflammatory and anti-diabetic action, and the green synthesized SeNPs demonstrated an excellent antiinflammatory and anti-diabetic agent. The brine shrimp lethality assay confirmed the SeNPs' biocompatible nature even at high concentrations with less toxicity. Hence the study may enhance SeNPs in developing inflammation drugs and can also be utilized in diabetes management.
MATERIALS AND METHODS: A literature search was performed to analyze studies that focused on plant-based extracts used for larvicidal purposes using databases such as Science Direct. Springer, PubMed, and Scopus. The inclusion criteria for publications were larvicidal effects, published in English from the year 2017 and availability of full-text articles. The available literature was further characterized by the value of larvicidal activities of LC50 and LC90 (< 50 ppm), of 22 different parts of plant species from 7 plant families namely Apiaceae, Asteraceae, Lauraceae, Magnoliaceae, Myrtaceae, Piperaceae and Rubiaceae.
RESULTS: When comparing the values of LC50, 12 plants species (Artemisia vulgaris, Crassocephalum crepidioides, Echinops grijsii, Melaleuca leucadendra, Neolitsea ellipsoidea, Pavetta tomentosa, Piper betle, Piper caninum, Piper Montium, Piper muntabile, Piper ovatum, Tarenna asiatica) showed promising larvicidal efficacies with LC50 < 10 ppm.
CONCLUSION: This review emphasizes the effective alternatives of plant extracts for the potential production of larvicides. Piper betle extract and chloroform extract of Tarenna asiatica reported the most significant larvicidal activity (LC50 < 1 ppm) against mosquito vectors. Further reviews focusing on the mode of actions of its phytochemically constituents are essential for the future development of potentially significant plant-based larvicides.
OBJECTIVE: Evaluate the metabolite variations and antioxidant activity among M. calabura leaves subjected to different drying methods and extracted with different ethanol ratios using proton nuclear magnetic resonance (1 H-NMR)-based metabolomics. Methodology The antioxidant activity of M. calabura leaves dried with three different drying methods and extracted with three different ethanol ratios was determined by using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (NO) scavenging assays. The metabolites variation among the extracts and correlation with antioxidant activity were analysed by 1 H-NMR-based metabolomics.
RESULTS: Muntingia calabura leaves extracted with 50% and 100% ethanol from air-drying and freeze-drying methods had the highest total phenolic content and the lowest IC50 value for the DPPH scavenging activity. Meanwhile, oven-dried leaves extracted with 100% ethanol had the lowest IC50 value for the NO scavenging activity. A total of 43 metabolites, including sugars, organic acids, amino acids, phytosterols, phenolics and terpene glycoside were tentatively identified. A noticeable discrimination was observed in the different ethanol ratios by the principal component analysis. The partial least-squares analysis suggested that 32 compounds out of 43 compounds identified were the contributors to the bioactivities.
CONCLUSION: The results established set the preliminary steps towards developing this plant into a high value product for phytomedicinal preparations.
AIMS: The objective of this research was to evaluate the antioxidant, antibacterial and potential wound-healing properties in aqueous extraction of E cottonii in order to meet the increasing demand for halal and natural cosmeceutical products.
METHODS AND RESULTS: Aqueous extract of E cottonii was investigated for active compounds by phytochemical screening and IR spectroscopy. Antioxidant activity was carried out using DPPH method, and the IC50 value was 1.99 mg/mL. Antibacterial activity was examined against Staphylococcus Aureus using Kirby-Bauer disk diffusion method and showed 10.03 ± 0.06 mm zone of inhibition, achieved by 200 mg/mL of extracts. A wound was made by skin excision of area around 100 mm2 on each mouse. Test group was treated with aqueous extract gel (10% w/w); meanwhile, the mice that were treated with honey acted as the positive control group and the untreated mice as negative control group. Results showed that the wound contraction rate inclined to aqueous extracts as compared to untreated group (P
METHODS: The reported data/information was retrieved mainly from the online databases of PubMed (MEDLINE), EMBASE and Botanical Survey of India.
RESULTS: The present review elaborated the phytochemical, pharmacological and biological properties of the selected five Tragia species obtained from recent literature.
CONCLUSION: This review provides a basis for future investigation of Tragia species and, especially for those species that have not been explored for biological and pharmacological activities.
METHODS: Two mangrove species (Bruguiera gymnorhiza and Sonneratia alba) with four extract concentrations (control, 0.05%, 0.15%, 0.25%, and 0.35%) were used to enrich edible films. The elongation, water vapour transmission, thickness, tensile strength, moisture content, antioxidant and antibacterial properties of the resulting packaging were analysed.
RESULTS: The results showed that the mangrove species and extract concentration significantly affected (p