Displaying publications 1 - 20 of 81 in total

  1. Zhan SZ, Li JH, Zhang GH, Liu XW, Li M, Zheng J, et al.
    Chem Commun (Camb), 2019 Oct 03;55(80):11992-11995.
    PMID: 31498358 DOI: 10.1039/c9cc05236d
    A luminescent edge-interlocked heteroleptic metallocage based on Cu3(pyrazolate)3 was prepared through a ligand replacement reaction from a homoleptic metallocage and a new ligand. Its structure was confirmed by XRD and MALDI-TOF mass spectrometry. Theoretical calculations revealed the new ligand was evidently responsible for the bathochromic shift of the optimal excitation. This work provides a heteroleptic strategy to regulate the interlocking fashion and photophysical mechanism of metallocages based on Cu3(pyrazolate)3.
    Matched MeSH terms: Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
  2. Lee PY, Yeoh Y, Omar N, Pung YF, Lim LC, Low TY
    Crit Rev Clin Lab Sci, 2021 11;58(7):513-529.
    PMID: 34615421 DOI: 10.1080/10408363.2021.1942781
    Matrix-assisted laser desorption/ionization (MALDI) imaging is an emergent technology that has been increasingly adopted in cancer research. MALDI imaging is capable of providing global molecular mapping of the abundance and spatial information of biomolecules directly in the tissues without labeling. It enables the characterization of a wide spectrum of analytes, including proteins, peptides, glycans, lipids, drugs, and metabolites and is well suited for both discovery and targeted analysis. An advantage of MALDI imaging is that it maintains tissue integrity, which allows correlation with histological features. It has proven to be a valuable tool for probing tumor heterogeneity and has been increasingly applied to interrogate molecular events associated with cancer. It provides unique insights into both the molecular content and spatial details that are not accessible by other techniques, and it has allowed considerable progress in the field of cancer research. In this review, we first provide an overview of the MALDI imaging workflow and approach. We then highlight some useful applications in various niches of cancer research, followed by a discussion of the challenges, recent developments and future prospect of this technique in the field.
    Matched MeSH terms: Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
  3. Mu AK, Lim BK, Aminudin N, Hashim OH, Shuib AS
    Arch Physiol Biochem, 2016 Jul;122(3):111-6.
    PMID: 26849673 DOI: 10.3109/13813455.2016.1151441
    Endometrial (ECa), ovarian (OCa) and cervical (CCa) cancers are among 10 of the most common cancers affecting women worldwide. Cancers are known to cause some proteins to be differentially glycosylated or aberrantly excreted in the urine, which can be used as biomarkers. Since ECa, OCa and CCa are difficult to diagnose at the early stage, the aim of the present study was to identify a panel of new biomarkers for early detection of the cancers using surface-enhanced laser desorption/ionization-time-of-flight (SELDI-TOF) technology. Identification of early biomarkers that are specific and efficient can increase the survival rate of the patients.
    Matched MeSH terms: Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
  4. Ahmad-Tajudin A, Adler B, Ekström S, Marko-Varga G, Malm J, Lilja H, et al.
    Anal Chim Acta, 2014 Jan 7;807:1-8.
    PMID: 24356215 DOI: 10.1016/j.aca.2013.08.051
    To address immunocapture of proteins in large cohorts of clinical samples high throughput sample processing is required. Here a method using the proteomic sample platform, ISET (integrated selective enrichment target) that integrates highly specific immunoaffinity capture of protein biomarker, digestion and sample cleanup with a direct interface to mass spectrometry is presented. The robustness of the on-ISET protein digestion protocol was validated by MALDI MS analysis of model proteins, ranging from 40 fmol to 1 pmol per nanovial. On-ISET digestion and MALDI MS/MS analysis of immunoaffinity captured disease-associated biomarker PSA (prostate specific antigen) from human seminal plasma are presented.
    Matched MeSH terms: Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization*
  5. Ashrafzadeh A, Nathan S, Karsani SA
    Int J Mol Sci, 2013;14(8):15860-77.
    PMID: 23903046 DOI: 10.3390/ijms140815860
    The fertility of zebu cattle (Bos indicus) is higher than that of the European purebred (Bos taurus) and crossbred (Bos taurus × Bos indicus) cattle in tropical areas. To identify proteins related to the higher thermo-tolerance and fertility of Zebu cattle, this study was undertaken to identify differences in sperm proteome between the high fertile Malaysian indigenous zebu cattle (Kedah Kelantan) and the sub-fertile crossbred cattle (Mafriwal). Frozen semen from three high performance bulls from each breed were processed to obtain live and pure sperm. Sperm proteins were then extracted, and two-dimensional gel electrophoresis performed to compare proteome profiles. Gel image analysis identified protein spots of interest which were then identified by liquid chromatography mass spectrometry quadrupole time-of-flight (LC MS/MS Q-TOF). STRING network analysis predicted interactions between at least 20 of the identified proteins. Among the identified proteins, a number of motility and energy related proteins were present in greater abundance in Kedah Kelantan. Sperm motility evaluation by Computer Assisted Semen Analysis (CASA) confirmed significantly higher motility in Kedah Kelantan. While results from this study do identify proteins that may be responsible for the higher fertility of Kedah Kelantan, functional characterization of these proteins is warranted to reinforce our understanding of their roles in sperm fertility.
    Matched MeSH terms: Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization*
  6. Ilina EN, Borovskaya AD, Serebryakova MV, Chelysheva VV, Momynaliev KT, Maier T, et al.
    Rapid Commun. Mass Spectrom., 2010 Feb;24(3):328-34.
    PMID: 20049887 DOI: 10.1002/rcm.4394
    The characteristics of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry based investigation of extremely variable bacteria such as Helicobacter pylori were studied. H. pylori possesses a very high natural variability. Accurate tools for species identification and epidemiological characterization could help the scientific community to better understand the transmission pathways and virulence mechanisms of these bacteria. Seventeen clinical as well as two laboratory strains of H. pylori were analyzed by the MALDI Biotyper method for rapid species identification. Mass spectra collected were found containing 7-13 significant peaks per sample, and only six protein signals were identical for more than half of the strains. Four of them could be assigned to ribosomal proteins RL32, RL33, RL34, and RL36. The reproducible peak with m/z 6948 was identified as a histidine-rich metal-binding polypeptide by tandem mass spectrometry (MS/MS). In spite of the evident protein heterogeneity of H. pylori the mass spectra collected for a particular strain under several cultivations were highly reproducible. Moreover, all clinical strains were perfectly identified as H. pylori species through comparative analysis using the MALDI Biotyper software (Bruker Daltonics, Germany) by pattern matching against a database containing mass spectra from different microbial strains (n = 3287) including H. pylori 26695 and J99. The results of this study allow the conclusion that the MALDI-TOF direct bacterial profiling is suited for H. pylori identification and could be supported by mass spectra fragmentation of the observed polypeptide if necessary.
    Matched MeSH terms: Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods*
  7. Maarof M, Lokanathan Y, Ruszymah HI, Saim A, Chowdhury SR
    Protein J, 2018 12;37(6):589-607.
    PMID: 30343346 DOI: 10.1007/s10930-018-9800-z
    Growth factors and extracellular matrix (ECM) proteins are involved in wound healing. Human dermal fibroblasts secrete wound-healing mediators in culture medium known as dermal fibroblast conditioned medium (DFCM). However, the composition and concentration of the secreted proteins differ with culture conditions and environmental factors. We cultured human skin fibroblasts in vitro using serum-free keratinocyte-specific media (EpiLife™ Medium [KM1] and defined keratinocyte serum-free medium [KM2]) and serum-free fibroblast-specific medium (FM) to obtain DFCM-KM1, DFCM-KM2 and DFCM-FM, respectively. We identified and compared their proteomic profiles using bicinchoninic acid assay (BCA), 1-dimensional sodium dodecyl sulphate-polyacrylamide gel electrophoresis (1D SDS-PAGE), enzyme-linked immunosorbent assay (ELISA), matrix-assisted laser desorption ionisation-time-of-flight mass spectrometry (MALDI-TOF/TOF MS/MS) and liquid chromatography MS (LC-MS/MS). DFCM-KM1 and DFCM-KM2 had higher protein concentrations than DFCM-FM but not statistically significant. MALDI-TOF/TOF MS identified the presence of fibronectin, serotransferrin, serpin and serum albumin. LC-MS/MS and bioinformatics analysis identified 59, 46 and 58 secreted proteins in DFCM-KM1, DFCM-KM2 and DFCM-FM, respectively. The most significant biological processes identified in gene ontology were cellular process, metabolic process, growth and biological regulation. STRING® analysis showed that most secretory proteins in the DFCMs were associated with biological processes (e.g. wound healing and ECM organisation), molecular function (e.g. ECM binding) and cellular component (e.g. extracellular space). ELISA confirmed the presence of fibronectin and collagen in the DFCMs. In conclusion, DFCM secretory proteins are involved in cell adhesion, attachment, proliferation and migration, which were demonstrated to have potential wound-healing effects by in vitro and in vivo studies.
    Matched MeSH terms: Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
  8. Everest-Dass AV, Briggs MT, Kaur G, Oehler MK, Hoffmann P, Packer NH
    Mol Cell Proteomics, 2016 09;15(9):3003-16.
    PMID: 27412689 DOI: 10.1074/mcp.M116.059816
    Ovarian cancer is a fatal gynaecological malignancy in adult women with a five-year overall survival rate of only 30%. Glycomic and glycoproteomic profiling studies have reported extensive protein glycosylation pattern alterations in ovarian cancer. Therefore, spatio-temporal investigation of these glycosylation changes may unearth tissue-specific changes that occur in the development and progression of ovarian cancer. A novel method for investigating tissue-specific N-linked glycans is using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) on formalin-fixed paraffin-embedded (FFPE) tissue sections that can spatially profile N-glycan compositions released from proteins in tissue-specific regions. In this study, tissue regions of interest (e.g. tumor, stroma, adipose tissue and necrotic areas) were isolated from FFPE tissue sections of advanced serous ovarian cancers (n = 3). PGC-LC-ESI-MS/MS and MALDI-MSI were used as complementary techniques to firstly generate structural information on the tissue-specific glycans in order to then obtain high resolution images of the glycan structure distribution in ovarian cancer tissue. The N-linked glycan repertoires carried by the proteins in these tissue regions were structurally characterized for the first time in FFPE ovarian cancer tissue regions, using enzymatic peptide-N-glycosidase F (PNGase F) release of N-glycans. The released glycans were analyzed by porous graphitized carbon liquid chromatography (PGC-LC) and collision induced electrospray negative mode MS fragmentation analysis. The N-glycan profiles identified by this analysis were then used to determine the location and distribution of each N-glycan on FFPE ovarian cancer sections that were treated with PNGase F using high resolution MALDI-MSI. A tissue-specific distribution of N-glycan structures identified particular regions of the ovarian cancer sections. For example, high mannose glycans were predominantly expressed in the tumor tissue region whereas complex/hybrid N-glycans were significantly abundant in the intervening stroma. Therefore, tumor and non-tumor tissue regions were clearly demarcated solely on their N-glycan structure distributions.
    Matched MeSH terms: Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods*
  9. Mittal P, Briggs M, Klingler-Hoffmann M, Kaur G, Packer NH, Oehler MK, et al.
    Anal Bioanal Chem, 2021 Apr;413(10):2721-2733.
    PMID: 33222001 DOI: 10.1007/s00216-020-03039-z
    It is well established that cell surface glycans play a vital role in biological processes and their altered form can lead to carcinogenesis. Mass spectrometry-based techniques have become prominent for analysing N-linked glycans, for example using matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). Additionally, MALDI MS can be used to spatially map N-linked glycans directly from cancer tissue using a technique termed MALDI MS imaging (MALDI MSI). This powerful technique combines mass spectrometry and histology to visualise the spatial distribution of N-linked glycans on a single tissue section. Here, we performed N-glycan MALDI MSI on six endometrial cancer (EC) formalin-fixed paraffin-embedded (FFPE) tissue sections and tissue microarrays (TMA) consisting of eight EC patients with lymph node metastasis (LNM) and twenty without LNM. By doing so, several putative N-linked glycan compositions were detected that could significantly distinguish normal from cancerous endometrium. Furthermore, a complex core-fucosylated N-linked glycan was detected that could discriminate a primary tumour with and without LNM. Structural identification of these putative N-linked glycans was performed using porous graphitized carbon liquid chromatography tandem mass spectrometry (PGC-LC-MS/MS). Overall, we observed higher abundance of oligomannose glycans in tumour compared to normal regions with AUC ranging from 0.85-0.99, and lower abundance of complex N-linked glycans with AUC ranges from 0.03-0.28. A comparison of N-linked glycans between primary tumours with and without LNM indicated a reduced abundance of a complex core-fucosylated N-glycan (Hex)2(HexNAc)2(Deoxyhexose)1+(Man)3(GlcNAc)2, in primary tumour with associated lymph node metastasis. In summary, N-linked glycan MALDI MSI can be used to differentiate cancerous endometrium from normal, and endometrial cancer with LNM from endometrial cancer without.
    Matched MeSH terms: Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods*
  10. Looi ML, Sivalingam M, Husin ND, Radin FZ, Isa RM, Zakaria SZ, et al.
    Clin Chim Acta, 2011 May 12;412(11-12):999-1002.
    PMID: 21315703 DOI: 10.1016/j.cca.2011.02.006
    BACKGROUND: Beta thalassemia represents a great heterogeneity as over 300 mutations have been identified and each population at-risk has its own spectrum of mutations. Molecular characterization with high accuracy, sensitivity and economics is required for population screening and genetic counseling.
    METHODS: We used the MALDI-TOF mass spectrometry (MS) platform to develop novel multiplex assays for comprehensive detection of 27 mutations in beta-thalassemia patients. Six multiplex assays were designed to detect 13 common known ß-mutations, namely CD41/42, CD71/72, IVS1-5, IVS1-1, CD26, IVS2-654, CAP+1, CD19, -28, -29, IVS1-2, InCD (T-G) and CD17; and 14 rare ß-mutations, i.e. InCD (A-C), CD8/9, CD43, -86, CD15, Poly A, Poly T/C, IVS2-1, CD1, CD35/36, CD27/28, CD16, CD37, and 619bpDEL in 165 samples. We compared the efficiencies of genotyping by MS and Amplification Refractory Mutation System (ARMS). Discrepant results were confirmed by sequencing analysis.
    RESULTS: A total of 88.7% (260/293 allele) of MS and ARMS results was in agreement. More than fifty percent of the discrepant result was due to the false interpretation of ARMS results. Failed CD19 assay by MS method might be due to the assay design. The MS method detected 5 rare ß-mutations (CD15, CD35/36, CD8/9, Poly A and Poly T/C) presented in 13 alleles, which were not included in the ARMS screening panel.
    CONCLUSION: We revealed that the MS method is a sensitive, high-throughput, highly automated, flexible, and cost-effective alternative to conventional ß-thalassemia genotyping methods.
    Matched MeSH terms: Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods*
  11. Om AD, Jasmani S, Ismail N, Yeong SY, Abol-Munafi AB
    Fish Physiol Biochem, 2013 Oct;39(5):1277-86.
    PMID: 23494207 DOI: 10.1007/s10695-013-9782-x
    A new proteomics technology has been implemented to study the protein repertoires of developing oocytes of giant grouper (Epinephelus lanceolatus). Knowledge of the chemical composition and physiochemical properties of vitellogenin (Vtg) is necessary to interpret the functional and biological properties attributed during ovulation. Vtg, as a biomarker indicator in sex determination, has been analyzed to determine the sex and maturational status of fish in the absence of the gonad tissue. A male giant grouper was induced by 2 mg/kg of 17ß-estradiol (E2), and blood was sampled at days 0, 1, 3, 5, and 10. SDS-PAGE 1D electrophoresis was used to analyze Vtg protein, and Vtg identification was done with 4800 Plus MALDI TOF/TOF™ mass spectrophotometer (Applied Biosystems/MDS SCIEX, USA). Meanwhile, MS/MS de novo sequencing identified the proteins by matching sequences of tryptic peptides to the known sequences of other species. Vtg was confirmed by MASCOT at 95% significant level, and molecular mass was 187 kDa. Protein resolved on SDS-PAGE as a double band of approximately the same mass as determined with MALDI-TOF. The N-terminal sequences and identification of Vtg were also determined. The potential of using MS methods to understand the structure and function of Vtg is discussed.
    Matched MeSH terms: Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/veterinary*
  12. Thio CL, Yusof R, Abdul-Rahman PS, Karsani SA
    PLoS One, 2013;8(4):e61444.
    PMID: 23593481 DOI: 10.1371/journal.pone.0061444
    Chikungunya virus (CHIKV) is an emerging mosquito-borne alphavirus that has caused multiple unprecedented and re-emerging outbreaks in both tropical and temperate countries. Despite ongoing research efforts, the underlying factors involved in facilitating CHIKV replication during early infection remains ill-characterized. The present study serves to identify host proteins modulated in response to early CHIKV infection using a proteomics approach.
    Matched MeSH terms: Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
  13. Goh SY, Khan SA, Tee KK, Abu Kasim NH, Yin WF, Chan KG
    Sci Rep, 2016;6:20702.
    PMID: 26860259 DOI: 10.1038/srep20702
    Cell-cell communication is also known as quorum sensing (QS) that happens in the bacterial cells with the aim to regulate their genes expression in response to increased cell density. In this study, a bacterium (L8A) isolated from dental plaque biofilm was identified as Citrobacter amalonaticus by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). Its N-acylhomoserine-lactone (AHL) production was screened by using two types of AHL biosensors namely Chromobacterium violaceum CV026 and Escherichia coli [pSB401]. Citrobacter amalonaticus strain L8A was identified and confirmed producing numerous types of AHL namely N-butyryl-L-homoserine lactone (C4-HSL), N-hexanoyl-L-homoserine lactone (C6-HSL), N-octanoyl-L-homoserine lactone (C8-HSL) and N-hexadecanoyl-L-homoserine lactone (C16-HSL). We performed the whole genome sequence analysis of this oral isolate where its genome sequence reveals the presence of QS signal synthase gene and our work will pave the ways to study the function of the related QS genes in this bacterium.
    Matched MeSH terms: Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
  14. Noordin R, Othman N
    Malays J Med Sci, 2013 Mar;20(2):1-2.
    PMID: 23983570
    "Proteomics" refers to the systematic analysis of proteins. It complements other "omics" technologies such as genomics and transcriptomics in elucidating the identity of proteins of an organism, and understanding their functions. Proteomics is used in many areas of research such as discovery of markers for diagnosis and vaccine candidates, understanding pathogenic mechanisms, in the study of expression patterns at different time points and in response to different stimuli, and in elucidating functional protein networks. Proteomics analysis involves sample preparation, protein separation, and protein identification. The 'heart' of current proteomics is mass-spectrometry, with LC-MS/MS and MALDI-TOF/TOF being commonly used equipment. However, the high costs of the equipment, software, databases, and the need for skilled personnel limit the wide utilization of this technology in the less developed countries. Therefore, there need to be sharing of facilities, better networking and collaborations among our scientists and laboratories to take advantage of this powerful technology.
    Matched MeSH terms: Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
  15. Harika K, Shenoy VP, Narasimhaswamy N, Chawla K
    J Glob Infect Dis, 2020 08 29;12(3):129-134.
    PMID: 33343163 DOI: 10.4103/jgid.jgid_150_19
    Background: Microorganisms are known to be involved in the formation of biofilm. These biofilms are often seen in chronic wound infections, surgical site infections, implants etc., These are capable of causing recalcitrant infections and most of them are also known to possess high antibiotic resistance.

    Objectives: This study was conducted to detect the biofilm formation in bacterial isolates from chronic wound infections.

    Materials and Methods: In the present study, ninety two isolates from chronic wound infections were identified by MALDI-TOF-MS (bioMerieux) and VITEK-2-MS (bioMerieux). These isolates were further screened for biofilm formation by three methods i. e., Tissue Culture Plate method (TCP), Tube Method (TM) and Congo Red Agar (CRA) method. Impact of biofilm production was correlated with the antibiotic resistant pattern.

    Statistical Analysis: Statistical analysis was done for all three methods considering TCP as Gold Standard and parameters like senitivity and specificity of TM i.e. 47.2 and 100% respectively.

    Results: Out of 92 isolates, biofilm formation was seen in 72 isolates (78.2%) by TCP method. 64 isolates were strong biofilm producers, 8 isolates were moderate biofilm producers and 20 isolates were nonbiofilm producing. High prevalence of biofilm formation was seen in nonhealing ulcers infected with Staphylococcus aureus followed by Klebsiella pneumoniae.

    Conclusion: Among three screening methods used for detection of biofilm production, TCP method is considered to be a standard and most reliable for screening of biofilm formation in comparison to TM and CRA.

    Matched MeSH terms: Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
  16. Rehiman SH, Lim SM, Lim FT, Chin AV, Tan MP, Kamaruzzaman SB, et al.
    Int J Neurosci, 2020 Dec 15.
    PMID: 33280461 DOI: 10.1080/00207454.2020.1860038
    Objective: Alzheimer's disease (AD), the commonest form of dementia which is characterized by progressive decline in cognitive function, can only be definitively diagnosed after death. Although biomarkers may aid diagnosis, currently available AD biomarkers, which are predominantly based on cerebrospinal fluid and neuroimaging facilities, are either invasive or costly. Blood-based biomarkers for AD diagnosis are highly sought after due to its practicality at the clinic. This study was undertaken to determine the differential protein expression in plasma amongst Malaysian AD, mild cognitive impairment (MCI) and non-AD individuals. Methods: A proteomic approach which utilized two-dimensional differential in gel electrophoresis (2 D DIGE) was performed for blood samples from 15 AD, 14 MCI and 15 non-AD individuals. Results: Mass spectrometry (MS)-based protein identification via MALDI ToF/ToF showed that fibrinogen-β-chain (spot 64) and fibrinogen-γ-chain (spot 91) with differential expression ratio >1.5 were significantly upregulated (p 
    Matched MeSH terms: Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
  17. Huq, N.L., DeAngelis, A., Rahim, Z.H.A., Ung, M., Lucas, J., Cross, K.J., et al.
    Ann Dent, 2004;11(1):-.
    The aim was to examine the protein profiles of whole and parotid saliva using Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE) and MALDI-TOF mass spectrometry. The banding patterns of proteins exhibited by the unstimulated whole saliva samples on the gel remained quite constant but the intensity of the protein bands were slightly different from one sample to another. Comparison of the protein profiles of unstimulated whole saliva and stimulated parotid saliva showed almost similar banding pattern. The exception is the presence of a pink protein band in the 65-67 kD region in the stimulated parotid saliva samples which was also observed in the unstimulated whole saliva sample contributed by a cerebral palsy patient. Analysis of the saliva samples using MALDI-TOF mass spectrometry also revealed that the stimulated parotid saliva samples exhibited some peaks that were in the same region as those for the unstimulated whole saliva sample of the cerebral palsy subject. This may imply that there is ineffective control of the parotid secretion in cerebral palsy subject under unstimulated condition. The SDS-PAGE and MALDI-TOF analyses may provide more information on the profiles of the salivary proteins which could be beneficial in the diagnosis of salivary gland dysfunction.
    Matched MeSH terms: Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
  18. Ling HL, Rahmat Z, Murad AMA, Mahadi NM, Illias RM
    Data Brief, 2017 Oct;14:35-40.
    PMID: 28761915 DOI: 10.1016/j.dib.2017.07.026
    Bacillus lehensis G1 is a cyclodextrin glucanotransferase (CGTase) producer, which can degrade starch into cyclodextrin. Here, we present the proteomics data of B. lehensis cultured in starch-containing medium, which is related to the article "Proteome-based identification of signal peptides for improved secretion of recombinant cyclomaltodextrin glucanotransferase in Escherichia coli" (Ling et. al, in press). This dataset was generated to better understand the secretion of proteins involved in starch utilization for bacterial sustained growth. A 2-DE proteomic technique was used and the proteins were tryptically digested followed by detection using MALDI-TOF/TOF. Proteins were classified into functional groups using the information available in SubtiList webserver (http://genolist.pasteur.fr/SubtiList/).
    Matched MeSH terms: Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
  19. Nielsen HL, Tarpgaard IH, Fuglsang-Damgaard D, Thomsen PK, Brisse S, Dalager-Pedersen M
    JMM Case Rep, 2018 Aug;5(8):e005163.
    PMID: 30323938 DOI: 10.1099/jmmcr.0.005163
    Introduction: Elizabethkingia anophelis is a Gram-negative, aerobic, non-motile rod belonging to the family Flavobacteriaceae. Over the last 5 years, it has emerged as an opportunistic human pathogen involved in neonatal meningitis and sepsis, as well as nosocomial outbreaks. It has been isolated from the midgut of the Anopheles gambiae mosquito, but there is no evidence for a role of the mosquito in human infections, and very little is known regarding the routes of transmission to humans. Recent studies, primarily from South-East Asia, suggest that E. anophelis, and not Elizabethkingia meningoseptica, is the predominant human pathogen of this genus. However, identification to the species level has been difficult due to the limitations of the current MALDI-TOF MS (matrix-associated laser desorption ionization-time of flight MS) systems for correct species identification.

    Case presentation: Here, we present a rare case of E. anophelis meningitis in a Danish male, who had a travel exposure to Malaysia 7 weeks before hospitalization. A multidrug-resistant Elizabethkingia species was isolated from blood and cerebrospinal fluid, and genomic sequencing was used to characterize the phylogenetic position of the isolate, which was determined as associated with previously described sublineage 11. The patient was successfully treated with intravenous moxifloxacin and rifampicin for 2 weeks with no major sequelae, but we did not find the source of transmission.

    Conclusion: All clinical microbiologists should be aware of the present limitations of the MALDI-TOF MS systems for correct species identification, and therefore we recommend the use of genome sequencing for the correct identification at the species and sublineage level.

    Matched MeSH terms: Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
  20. Sarah, S.A., Amin, I., Mokhtar, N.F.K., Sazili, A.Q., Karsani S.A.
    Different heat treatments, (1) chilled, 4°C (2) boiled at 100°C for 30 min and (3) autoclaved at 121°C at 15 psi for 20 min were employed on goat meat to mimic domestic and industrial cooking. The effects on intensity of actin proteins was observed using two-dimensional gel electrophoresis where significant differences (p>0.05) were observed in the spot intensity between chilled and boiled samples, similarly in chilled and autoclaved samples. However, no significant difference was observed between boiled and autoclaved samples. The slight changes observed in the cooking of meat confirmed that actin protein is susceptible to denaturation cause by heat. MALDI-TOF/TOF analysis revealed the peptide-mass fingerprint between positions 21 – 374 that not affected by heat treatment. Peptides from this position merit the candidature of actin as putative thermostable marker for detecting goat meat (chevon) in food product.
    Matched MeSH terms: Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links