Displaying publications 1 - 20 of 41 in total

Abstract:
Sort:
  1. Shukor MY, Baharom NA, Masdor NA, Abdullah MP, Shamaan NA, Jamal JA, et al.
    J Environ Biol, 2009 Jan;30(1):17-22.
    PMID: 20112858
    A new inhibitive heavy metals determination method using trypsin has been developed. The enzyme was assayed using the casein-Coomassie-dye-binding method. In the absence of inhibitors, casein was hydrolysed to completion and the Coomassie-dye was unable to stain the protein and the solution became brown. In the presence of metals, the hydrolysis of casein was inhibited and the solution remained blue. The bioassay was able to detect zinc and mercury with IC50 (concentration causing 50% inhibition) values of 5.78 and 16.38 mg l(-1) respectively. The limits of detection (LOD), for zinc and mercury were 0.06 mg l(-1) (0.05-0.07, 95% confidence interval) and 1.06 mg l(-1) (1.017-1.102, 95% confidence interval), respectively. The limits of quantitation (LOQ) for zinc and mercury were 0.61 mg l(-1) (0.51-0.74 at a 95% confidence interval) and 1.35 mg l(-1) (1.29-1.40 at a 95% confidence interval), respectively. The IC50 value for zinc was much higher than the IC50 values for papain and Rainbow trout, but was within the range of Daphnia magna and Microtox. The IC50 value for zinc was only lower than those for immobilized urease. Other toxic heavy metals, such as lead, silver arsenic, copper and cadmium, did not inhibit the enzyme at 20 mg l(-1). Using this assay we managed to detect elevated zinc concentrations in several environmental samples. Pesticides, such as carbaryl, flucythrinate, metolachlor glyphosate, diuron, diazinon, endosulfan sulphate, atrazine, coumaphos, imidacloprid, dicamba and paraquat, showed no effect on the activity of trypsin relative to control (One-way ANOVA, F(12,26)= 0.3527, p> 0.05). Of the 17 xenobiotics tested, only (sodium dodecyl sulphate) SDS gave positive interference with 150% activity higher than that of the control at 0.25% (v/v).
    Matched MeSH terms: Trypsin/chemistry*; Trypsin Inhibitors/analysis; Trypsin Inhibitors/chemistry
  2. Litvinova MM, Khafizov KF, Speranskaya AS, Matsvay AD, Asanov AY, Nikolskaya KA, et al.
    Sovrem Tekhnologii Med, 2023;15(2):60-70.
    PMID: 37389024 DOI: 10.17691/stm2023.15.2.06
    The aim of the study was to define the spectrum of genetic risk factors of chronic pancreatitis (CP) development in patients living in the European part of the Russian Federation.

    MATERIALS AND METHODS: The study group included 105 patients with CP, with the age of the disease onset under 40 years old (the average age of onset was 26.9 years). The control group consisted of 76 persons without clinical signs of pancreatitis. The diagnosis of chronic pancreatitis in patients was made on the basis of clinical manifestations and the results of laboratory and instrumental investigations. Genetic examination of patients was conducted using the next-generation sequencing (NGS) technology and included targeted sequencing of all exons and exon-intron boundaries of the PRSS1, SPINK1, CTRC, CFTR, and CPA1 genes. The genotyping of the rs61734659 locus of the PRSS2 gene was also conducted.

    RESULTS: Genetic risk factors of the CP development were found in 61% of patients. Pathogenic and likely-pathogenic variants associated with the risk of CP development were identified in the following genes: CTRC (37.1% of patients), CFTR (18.1%), SPINK1 (8.6%), PRSS1 (8.6%), and CPA1 (6.7%). The frequent gene variants in Russian patients with CP were as follows: CTRC gene - c.180C>T (rs497078), c.760C>T (rs121909293), c.738_761del24 (rs746224507); cumulative odds ratio (OR) for all risk alleles was 1.848 (95% CI: 1.054-3.243); CFTR gene - c.3485G>T (rs1800120), c.1521_1523delCTT (p.Phe508del, rs113993960), and c.650A>G (rs121909046); OR=2.432 (95% CI: 1.066-5.553). In the SPINK1, PRSS1, and CPA1 genes, pathogenic variants were found only in the group of patients with CP. The frequent variants of the SPINK1 gene include c.101A>G (p.Asn34Ser, rs17107315) and c.194+2T>C (rs148954387); of the PRSS1 gene - c.86A>T (p.Asn29Ile, rs111033566); of the CPA1 gene - c.586-30C>T (rs782335525) and c.696+23_696+24delGG. The OR for the CP development for the c.180TT genotype (rs497078) CTRC according to the recessive model (TT vs. CT+CC) was 7.05 (95% CI: 0.86-263, p=0.011). In the CTRC gene, the variant c.493+49G>C (rs6679763) appeared to be benign, the c.493+51C>A (rs10803384) variant was frequently detected among both the diseased and healthy persons and did not demonstrate a protective effect. The protective factor c.571G>A (p.Gly191Arg, rs61734659) of the PRSS2 gene was detected only in the group of healthy individuals and confirmed its protective role. 12.4% of the patients with CP had risk factors in 2 or 3 genes.

    CONCLUSION: Sequencing of the coding regions of the PRSS1, SPINK1, CTRC, CFTR, and CPA1 genes allowed to identify genetic risk factors of the CP development in 61% of cases. Determining the genetic cause of CP helps to predict the disease course, perform preventive measures in the proband's relatives, and facilitate a personalized treatment of the patient in future.

    Matched MeSH terms: Trypsin/genetics; Trypsinogen
  3. Ampon K
    J Chem Technol Biotechnol, 1992;55(2):185-90.
    PMID: 1384564
    Trypsin has been immobilized by adsorption onto Amberlite XAD-7 beads. The Michaelis constant (Km) of the enzyme was increased about sevenfold following the immobilization. Its rate of penetration into the porous beads was determined by staining the beads, which had been split, with naphthol blue black. The extent of diffusional rate limitation of immobilized trypsin was related to the penetration depth of the enzyme into the beads. This can be controlled by manipulating the conditions during the preparation of the immobilized enzyme.
    Matched MeSH terms: Trypsin/metabolism*
  4. Filippova TA, Masamrekh RA, Shumyantseva VV, Latsis IA, Farafonova TE, Ilina IY, et al.
    Talanta, 2023 May 15;257:124341.
    PMID: 36821964 DOI: 10.1016/j.talanta.2023.124341
    In this work, we proposed a biosensor for trypsin proteolytic activity assay using immobilization of model peptides on screen-printed electrodes (SPE) modified with gold nanoparticles (AuNPs) prepared by electrosynthetic method. Sensing of proteolytic activity was based on electrochemical oxidation of tyrosine residues of peptides. We designed peptides containing N-terminal cysteine residue for immobilization on an SPE, modified with gold nanoparticles, trypsin-specific cleavage site and tyrosine residue as a redox label. The peptides were immobilized on SPE by formation of chemical bonds between mercapto groups of the N-terminal cysteine residues and AuNPs. After the incubation with trypsin, time-dependent cleavage of the immobilized peptides was observed by decline in tyrosine electrochemical oxidation signal. The kinetic parameters of trypsin, such as the catalytic constant (kcat), the Michaelis constant (KM) and the catalytic efficiency (kcat/KM), toward the CGGGRYR peptide were determined as 0.33 ± 0.01 min-1, 198 ± 24 nM and 0.0016 min-1 nM-1, respectively. Using the developed biosensor, we demonstrated the possibility of analysis of trypsin specificity toward the peptides with amino acid residues disrupting proteolysis. Further, we designed the peptides with proline or glutamic acid residues after the cleavage site (CGGRPYR and CGGREYR), and trypsin had reduced activity toward both of them according to the existing knowledge of the enzyme specificity. The developed biosensor system allows one to perform a comparative analysis of the protease steady-state kinetic parameters and specificity toward model peptides with different amino acid sequences.
    Matched MeSH terms: Trypsin/metabolism
  5. Liu G, Tiang MF, Ma S, Wei Z, Liang X, Sajab MS, et al.
    PeerJ, 2024;12:e16995.
    PMID: 38426145 DOI: 10.7717/peerj.16995
    BACKGROUND: Hermetia illucens (HI), commonly known as the black soldier fly, has been recognized for its prowess in resource utilization and environmental protection because of its ability to transform organic waste into animal feed for livestock, poultry, and aquaculture. However, the potential of the black soldier fly's high protein content for more than cheap feedstock is still largely unexplored.

    METHODS: This study innovatively explores the potential of H. illucens larvae (HIL) protein as a peptone substitute for microbial culture media. Four commercial proteases (alkaline protease, trypsin, trypsase, and papain) were explored to hydrolyze the defatted HIL, and the experimental conditions were optimized via response surface methodology experimental design. The hydrolysate of the defatted HIL was subsequently vacuum freeze-dried and deployed as a growth medium for three bacterial strains (Staphylococcus aureus, Bacillus subtilis, and Escherichia coli) to determine the growth kinetics between the HIL peptone and commercial peptone.

    RESULTS: The optimal conditions were 1.70% w/w complex enzyme (alkaline protease: trypsin at 1:1 ratio) at pH 7.0 and 54 °C for a duration of 4 h. Under these conditions, the hydrolysis of defatted HIL yielded 19.25% ±0.49%. A growth kinetic analysis showed no significant difference in growth parameters (μmax, Xmax, and λ) between the HIL peptone and commercial peptone, demonstrating that the HIL hydrolysate could serve as an effective, low-cost alternative to commercial peptone. This study introduces an innovative approach to HIL protein resource utilization, broadening its application beyond its current use in animal feed.

    Matched MeSH terms: Trypsin
  6. Ng, K.L., Mohd Khan, A.
    MyJurnal
    Utilization of palm kernel expeller (PKE), a palm oil milling by-product, may be diversified through the exploitation of its protein component. The PKE protein could be effectively extracted using an alkaline
    solution and followed by enzymatic hydrolysis to produce PKE protein hydrolysates or crude PKE peptide. The extraction of PKE protein was successfully carried out using an alkaline solution at pH11, at ratio of 1:10 (g/ml), PKE powder to alkaline solution with continuous shaking, 150 rpm, in a water bath operating at 50°C for 30 min. The extracted protein powder (PKEP) had 68.50±3.08% crude protein, 0.54±0.03% fat and 0.73±0.02% ash. The freeze-dried PKEP was re-suspend in particular buffer and hydrolyzed with proteolytic enzymes (Alcalase® 2.4L, Flavourzyme® 500MG, pepsin or trypsin) to obtain PKEP hydrolysate (PKEPH). The effect of enzyme concentration (0, 2, 4, 6, 8 & 10%) and time of hydrolysis (0, 6, 12, 24, 48 h) was studied to determine the most efficient hydrolytic conditions. Results showed that all enzymes tested were capable of hydrolyzing the PKEP and producing hydrolysates with different degree of hydrolysis (DH%). At 8.0% concentration, Alcalase®2.4L hydrolyzed PKEP into the highest DH (75.96%) hydrolysate (PKEPH) after 1h hydrolysis. Although only with 2.0% Alcalase 2.4 L concentration, it was sufficient to produce PKEP hydrolysate of 81.35% DH %, but it required 12 h to hydrolyze the protein. Pepsin was relatively the least efficient protease to hydrolyze the PKEP.
    Matched MeSH terms: Trypsin
  7. Chua LS, Abdullah FI, Lim TK, Lin Q
    Food Chem, 2024 Jan 30;432:137261.
    PMID: 37651783 DOI: 10.1016/j.foodchem.2023.137261
    This study was aimed to extract bioactive peptides from the white and purple flower varieties of Orthosiphon aristatus leaves. The herb is well known for its pharmacological importance, possibly attributed to its plant proteins. Phenol based extraction was used to extract plant proteins, and then hydrolysed by proteolytic enzymes such as trypsin (serine protease) and pepsin (aspartic protease). MS/MS analysis revealed that 145 and 125 proteins were detected from the white and purple flower varieties, respectively. Trypsin hydrolysates were showed to have a higher degree of hydrolysis (24-33%), resulting in higher antioxidant and antibacterial activities. The white flower of trypsin hydrolysates showed a higher radical scavenging activity which could be attributed to its higher content of stress proteins (19%). However, trypsin hydrolysates from the purple flower showed higher ferric reducing power and bacterial growth inhibition. The performance of hydrolysates was better than ampicillin in inhibiting Acinetobacter baumanni and Staphylococcus aureus.
    Matched MeSH terms: Trypsin
  8. Tang KF, Abdullah MP, Yusoff K, Tan WS
    J Med Chem, 2007 Nov 15;50(23):5620-6.
    PMID: 17918821
    The core protein (HBcAg) of hepatitis B virus (HBV) has been shown to interact with the large surface antigen during HBV morphogenesis, and these interactions can be blocked by small peptides selected from either linear or constrained phage display peptide libraries. The association of HBcAg with peptide inhibitors was quantitatively evaluated by isothermal titration calorimetry. The thermodynamic data show that the interaction between HBcAg and peptide MHRSLLGRMKGA is enthalpy-driven and occurs at a 3:1 stoichiometry and dissociation constant (Kd) value of 79.4 muM. However, peptide WSFFSNI displays a higher binding affinity for HBcAg with a Kd value of 18.5 muM when compared to peptide MHRSLLGRMKGA. A combinatorial approach using chemical cross-linking and surface-enhanced laser desorption/ionization-time-of-flight-mass spectrometry shows that the Lys of peptide MHRSLLGRMKGA interacted either with D64, E77, or D78 of HBcAg.
    Matched MeSH terms: Trypsin/chemistry
  9. Pachaiappan R, Tamboli E, Acharya A, Su CH, Gopinath SCB, Chen Y, et al.
    PLoS One, 2018;13(3):e0193717.
    PMID: 29494663 DOI: 10.1371/journal.pone.0193717
    Enzyme hydrolysates (trypsin, papain, pepsin, α-chymotrypsin, and pepsin-pancreatin) of Tinospora cordifolia stem proteins were analyzed for antioxidant efficacy by measuring (1) 1,1-diphenyl-2-picrylhydrazyl (DPPH•) radical scavenging activity, (2) 2,20-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+) radical scavenging capacity, and (3) Fe2+ chelation. Trypsin hydrolysate showed the strongest DPPH• scavenging, while α-chymotrypsin hydrolysate exhibited the highest ABTS+ scavenging and Fe2+ chelation. Undigested protein strongly inhibited the gastrointestinal enzymes, trypsin (50% inhibition at enzyme/substrate ratio = 1:6.9) and α-chymotrypsin (50% inhibition at enzyme/substrate ratio = 1:1.82), indicating the prolonged antioxidant effect after ingestion. Furthermore, gel filtration purified peptide fractions of papain hydrolysates exhibited a significantly higher ABTS+ and superoxide radical scavenging as compared to non-purified digests. Active fraction 9 showing the highest radical scavenging ability was further purified and confirmed by MALDI-TOF MS followed by MS/MS with probable dominant peptide sequences identified are VLYSTPVKMWEPGR, VITVVATAGSETMR, and HIGININSR. The obtained results revealed that free radical scavenging capacity of papain hydrolysates might be related to its consistently low molecular weight hydrophobic peptides.
    Matched MeSH terms: Chymotrypsin/metabolism; Trypsin/metabolism
  10. Kiorpes TC, Wolf G, Arroyave G, Wai TN
    Am J Clin Nutr, 1979 Sep;32(9):1842-6.
    PMID: 89810 DOI: 10.1093/ajcn/32.9.1842
    Serum samples were obtained from 43 children 14 years old or younger in Malaysia and Guatemala. The levels of the serum glycoprotein alpha 2-macroglobulin (alpha 2-M) were assayed by two methods: the trypsin-binding assay of Ganrot (Clin. Chim. Acta 14:493, 1960) and a radial immunodiffusion assay against alpha 2-M antiserum. The two methods gave the same results. When serum alpha 2-M levels were plotted against serum vitamin A concentrations, they were significantly correlated (r = 0.505, P less than 0.001); children with serum vitamin A levels greater than 40 micrograms/100 ml had alpha 2-M levels of 3.71 +/- 0.79 mg/ml (mean +/- SD, n = 13), while those with level less than 40 micrograms/100 ml had alpha 2-M levels of 2.78 +/- 0.51 mg/ml (n = 30); the difference was significant (P less than 0.001). Normal, apparently healthy children had alpha 2-M levels of 3.90 +/- 0.39 mg/ml. Most of the children sampled suffered from a variety of infections; of these, measles appeared to counteract the effect of vitamin A deficiency by elevating alpha 2-M levels. Vitamin A-deficient children with measles had alpha 2-M levels not significantly lower than those of normal children. The difference between deficient and normal values of alpha 2-M was still significant (P less than 0.05) when expressed per milligram of serum protein, showing that the effect was not caused by lowered serum protein concentrations associated with protein-calorie malnutrition, from which most of the deficiency children suffered.
    Matched MeSH terms: Trypsin Inhibitors/blood
  11. Vyas K, Prabaker S, Prabhu D, Sakthivelu M, Rajamanikandan S, Velusamy P, et al.
    Int J Biol Macromol, 2024 Feb;259(Pt 1):129222.
    PMID: 38185307 DOI: 10.1016/j.ijbiomac.2024.129222
    The substantial nutritional content and diversified biological activity of plant-based nutraceuticals are due to polyphenolic chemicals. These chemicals are important and well-studied plant secondary metabolites. Their protein interactions are extensively studied. This relationship is crucial for the logical development of functional food and for enhancing the availability and usefulness of polyphenols. This study highlights the influence of protein types and polyphenols on the interaction, where the chemical bindings predominantly consist of hydrophobic interactions and hydrogen bonds. The interaction between polyphenolic compounds (PCs) and digestive enzymes concerning their inhibitory activity has not been fully studied. Therefore, we have examined the interaction of four digestive enzymes (α-amylase, pepsin, trypsin, and α-chymotrypsin) with four PCs (curcumin, diosmin, morin, and 2',3',4'-trihydroxychalcone) through in silico and in vitro approaches. In vitro plate assays, enzyme kinetics, spectroscopic assays, molecular docking, and simulations were performed. We observed all these PCs have significant docking scores and preferable interaction with the active site of the digestive enzymes, resulting in the reduction of enzyme activity. The enzyme-substrate binding mechanism was determined using the Lineweaver Burk plot, indicating that the inhibition occurred competitively. Among four PCs diosmin and morin has the highest interaction energy over digestive enzymes with IC50 value of 1.13 ± 0.0047 and 1.086 ± 0.0131 μM. Kinetic studies show that selected PCs inhibited pepsin, trypsin, and chymotrypsin competitively and inhibited amylase in a non-competitive manner, especially by 2',3',4'-trihydroxychalcone. This study offers insights into the mechanisms by which the selected PCs inhibit the enzymes and has the potential to enhance the application of curcumin, diosmin, morin, and 2',3',4'-trihydroxychalcone as natural inhibitors of digestive enzymes.
    Matched MeSH terms: Trypsin/metabolism
  12. Choi WC, Parr T, Lim YS
    J Food Sci Technol, 2019 Jan;56(1):281-289.
    PMID: 30728570 DOI: 10.1007/s13197-018-3488-0
    The global trend in increasing plant-based protein diets due to health and ideological reasons, has created an increased demand for food legumes that exceeds current production. To meet this demand, it is timely to reduce relying solely on soybean, and explore the potential of the underutilised legumes that are cultivated regionally. Underutilised legumes are rich in protein, carbohydrates and other nutrients that are essential for consumer. However, relatively little is known about their anti-nutritional properties and processing methods. Anti-nutritional factors (ANFs) such as enzyme inhibitors are prevalent in legumes and may interfere with digestibility and nutrient absorption. Nevertheless, an optimised food processing method will overcome this challenge and warrant a safe inclusion of legume in plant-based protein diets. Hence current study aimed to optimise the food processing methods (soaking, wet heating, autoclaving and freezing) and evaluate their efficiency in eliminating the enzyme inhibitors [trypsin, chymotrypsin (CIA) and α-amylase (AIA) inhibitors] present in seven underutilised legumes. Current study showed that autoclaving at 121 °C for 15 min reduced the AIA in all underutilised legumes tested. The AIA and CIA of bambara groundnut were successfully inactivated by wet heating at 50 °C for 60 min, and by autoclaving at 121 °C for 15 min. While the CIA of chickpea was successfully inactivated by freezing at - 80 °C for 24 h.
    Matched MeSH terms: Chymotrypsin; Trypsin
  13. Tan CH, Liew JL, Chong HP, Tan NH
    Biologicals, 2021 Jan;69:22-29.
    PMID: 33431232 DOI: 10.1016/j.biologicals.2020.12.004
    The quality of antivenom is governed by its safety and efficacy profiles. These quality characteristics are much influenced by the purity of antivenom content. Rigorous assessment and meticulous monitoring of antivenom purity at the preclinical setting is hence crucial. This study aimed to explore an integrative proteomic method to assess the physicochemical purity of four commercially available antivenoms in the region. The antivenoms were subjected to Superdex 200 HR 10/30 size-exclusion fast-protein liquid chromatography (SE-FPLC). The proteins in each fraction were trypsin-digested and analyzed by nano-ESI-liquid chromatography-tandem mass spectrometry (LC-MS/MS). SE-FPLC resolved the antivenom proteins into three major protein components of very high (>200 kDa), high (100-120 kDa) and medium (<60 kDa) molecular weights. The major components (80-95% of total proteins) in the antivenoms were proteins of 100-120 kDa consisting of mainly the light and partially digested heavy immunoglobulin chains, consistent with F(ab')2 as the active principle of the antivenoms. However, LC-MS/MS also detected substantial quantity of large proteins (e.g. alpha-2-macroglobulins), immunoglobulin aggregates and impurities e.g. albumins in some products. The method is practical and able to unveil the quantitative and qualitative aspects of antivenom protein compositions. It is therefore a potentially useful preclinical assessment tool of antivenom purity.
    Matched MeSH terms: Trypsin
  14. Perera E, Rodriguez-Viera L, Montero-Alejo V, Perdomo-Morales R
    Trop Life Sci Res, 2020 Jul;31(2):187-209.
    PMID: 32922675 DOI: 10.21315/tlsr2020.31.2.10
    Digestive proteases from marine organisms have been poorly applied to biomedicine. Exceptions are trypsin and other digestive proteases from a few cold-adapted or temperate fish and crustacean species. These enzymes are more efficient than enzymes from microorganism and higher vertebrates that have been used traditionally. However, the biomedical potential of digestive proteases from warm environment species has received less research attention. This review aims to provide an overview of this unrealised biomedical potential, using the debridement application as a paradigm. Debridement is intended to remove nonviable, necrotic and contaminated tissue, as well as fibrin clots, and is a key step in wound treatment. We discuss the physiological role of enzymes in wound healing, the use of exogenous enzymes in debridement, and the limitations of cold-adapted enzymes such as their poor thermal stability. We show that digestive proteases from tropical crustaceans may have advantages over their cold-adapted counterparts for this and similar uses. Differences in thermal stability, auto-proteolytic stability, and susceptibility to proteinase inhibitors are discussed. Furthermore, it is proposed that the feeding behaviour of the source organism may direct the evaluation of enzymes for particular applications, as digestive proteases have evolved to fill a wide variety of feeding habitats, natural substrates, and environmental conditions. We encourage more research on the biomedical application of digestive enzymes from tropical marine crustaceans.
    Matched MeSH terms: Trypsin
  15. Borojerdi, Mohadese Hashem, Maqbool, Maryam, Zuraidah Yusoff, Vidyadaran, Sharmili, Hwa, Ling King, George, Elizabeth, et al.
    MyJurnal
    Introduction: During the last three decades hematopoietic stem cell transplantation (HSCT) has become a well-established treatment for many hematologic malignancies. The most important limitation for HSC transplantation is the low number of hematopoietic stem cells (HSC) that can lead to delayed engraftment or graft failures. Numerous attempts have been made to improve in vitro HSC expansion via optimization of various methods such as isolation techniques, supplementing with growth factors, utilizing stromal cells as feeder layer and other culture conditions. Objective: This project is aimed to decipher the efficiency of an isolation technique and retrieval of culture expanded HSC from feeder layer using two different harvesting methods. Materials and Methods: Hematopoietic stem cells from human umbilical cord blood were isolated via MACS mediated CD34+ double sorting. Then, the cells were cultured onto MSC feeder layer for 3 and 5 days. Culture expanded cells were harvested using two different harvesting method namely cell aspiration and trypsinization methods. Hematopoietic stem cell expansion index were calculated based on harvesting methods for each time point. Results: The numbers of HSC isolated from human umbilical cord blood were 1.64 x 106 and 1.20 x106 cells at single and double sortings respectively. Although the number of sorted cells diminished at the second sorting yet the yield of CD34+ purity has increased from 43.73% at single sorting to 81.40% at double sorting. Employing the trypsinization method, the HSC harvested from feeder layer showed a significant increase in expansion index (EI) as compared to the cell aspiration harvesting method (p≤ 0.05). However, the purity of CD34+ HSC was found higher when the cells were harvested using aspiration method (82.43%) as compared to the trypsinization method (74.13%). Conclusion: A pure population of CD34+ HSC can be retrieved when the cells were double sorted using MACS and expanded in culture after being harvested using cell aspiration method.
    Matched MeSH terms: Trypsin
  16. Ling HL, Rahmat Z, Murad AMA, Mahadi NM, Illias RM
    Data Brief, 2017 Oct;14:35-40.
    PMID: 28761915 DOI: 10.1016/j.dib.2017.07.026
    Bacillus lehensis G1 is a cyclodextrin glucanotransferase (CGTase) producer, which can degrade starch into cyclodextrin. Here, we present the proteomics data of B. lehensis cultured in starch-containing medium, which is related to the article "Proteome-based identification of signal peptides for improved secretion of recombinant cyclomaltodextrin glucanotransferase in Escherichia coli" (Ling et. al, in press). This dataset was generated to better understand the secretion of proteins involved in starch utilization for bacterial sustained growth. A 2-DE proteomic technique was used and the proteins were tryptically digested followed by detection using MALDI-TOF/TOF. Proteins were classified into functional groups using the information available in SubtiList webserver (http://genolist.pasteur.fr/SubtiList/).
    Matched MeSH terms: Trypsin
  17. Choo, K.K., Chin, V.K., Chong, P.P., Ho, S.H., Yong, V.C.
    JUMMEC, 2019;22(2):24-30.
    MyJurnal
    Cryptococcus neoformans is an encapsulated fungal pathogen that causes severe disease primarily in
    immunocompromised patients. Adherence and internalisation of microbial pathogens into host cells often
    begin with engagement of microbes to the surface receptors of host. However, the mechanisms involved
    remain poorly understood. In this study, we investigated the association of cell surface determinants of C.
    neoformans with mammalian cells. Our results showed that treatment with trypsin, but not paraformaldehyde
    or heat killing, could reduce host-cryptococci interaction, suggesting the involvement of cell surface proteins
    (CSPs) of C. neoformans in the interaction. We extended our investigations to determine the roles of CSPs
    during cryptococci-host cells interaction by extracting and conjugating CSPs of C. neoformans to latex beads.
    Conjugation of CSPs with both encapsulated and acapsular C. neoformans increased the association of latex
    beads with mammalian alveolar epithelial cells, alveolar macrophages and monocyte-derived macrophages.
    Further examination on the actin organisation of the host cells implied the involvement of actin-dependent
    phagocytosis in the internalisation of C. neoformans in CSP-conjugated latex beads. We hypothesised that
    CSPs present on the cell wall of C. neoformans mediate the adherence and actin-dependent phagocytosis
    of cryptococci by mammalian cells. Our results warrant further studies on the exact role of CSPs in the
    pathogenesis of cryptococcosis.
    Matched MeSH terms: Trypsin
  18. Obayashi Y, Wei Bong C, Suzuki S
    Front Microbiol, 2017;8:1952.
    PMID: 29067013 DOI: 10.3389/fmicb.2017.01952
    Microbial extracellular hydrolytic enzymes that degrade organic matter in aquatic ecosystems play key roles in the biogeochemical carbon cycle. To provide linkages between hydrolytic enzyme activities and genomic or metabolomic studies in aquatic environments, reliable measurements are required for many samples at one time. Extracellular proteases are one of the most important classes of enzymes in aquatic microbial ecosystems, and protease activities in seawater are commonly measured using fluorogenic model substrates. Here, we examined several concerns for measurements of extracellular protease activities (aminopeptidases, and trypsin-type, and chymotrypsin-type activities) in seawater. Using a fluorometric microplate reader with low protein binding, 96-well microplates produced reliable enzymatic activity readings, while use of regular polystyrene microplates produced readings that showed significant underestimation, especially for trypsin-type proteases. From the results of kinetic experiments, this underestimation was thought to be attributable to the adsorption of both enzymes and substrates onto the microplate. We also examined solvent type and concentration in the working solution of oligopeptide-analog fluorogenic substrates using dimethyl sulfoxide (DMSO) and 2-methoxyethanol (MTXE). The results showed that both 2% (final concentration of solvent in the mixture of seawater sample and substrate working solution) DMSO and 2% MTXE provide similarly reliable data for most of the tested substrates, except for some substrates which did not dissolve completely in these assay conditions. Sample containers are also important to maintain the level of enzyme activity in natural seawater samples. In a small polypropylene containers (e.g., standard 50-mL centrifugal tube), protease activities in seawater sample rapidly decreased, and it caused underestimation of natural activities, especially for trypsin-type and chymotrypsin-type proteases. In conclusion, the materials and method for measurements should be carefully selected in order to accurately determine the activities of microbial extracellular hydrolytic enzymes in aquatic ecosystems; especially, low protein binding materials should be chosen to use at overall processes of the measurement.
    Matched MeSH terms: Chymotrypsin; Trypsin
  19. Fan H, Dumont MJ, Simpson BK
    J Food Sci Technol, 2017 Nov;54(12):4000-4008.
    PMID: 29085142 DOI: 10.1007/s13197-017-2864-5
    Gelatin from salmon (Salmo salar) skin with high molecular weight protein chains (α-chains) was extracted using trypsin-aided process. Response surface methodology was used to optimise the extraction parameters. Yield, hydroxyproline content and protein electrophoretic profile via sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of gelatin were used as responses in the optimization study. The optimum conditions were determined as: trypsin concentration at 1.49 U/g; extraction temperature at 45 °C; and extraction time at 6 h 16 min. This response surface optimized model was significant and produced an experimental value (202.04 ± 8.64%) in good agreement with the predicted value (204.19%). Twofold higher yields of gelatin with high molecular weight protein chains were achieved in the optimized process with trypsin treatment when compared to the process without trypsin.
    Matched MeSH terms: Trypsin
  20. Abedin, M.Z., Karim, A.A., Gan, C.Y., Ghazali, F.C., Barzideh, Z., Zzaman, W., et al.
    MyJurnal
    The sea cucumber (Stichopus vastus) is an underutilized species, as most of its parts, including the integument (high collagen content) are thrown away during processing. The aim of this study was to investigate the effects of different hydrolysis conditions (substrate to enzyme ratio (S/E), reaction temperature, and hydrolysis time) on the angiotensin I converting enzyme (ACE) inhibitory and radical scavenging (RSc) activities of the hydrolysates produced from trypsin hydrolysis of S. vastus collagen. Optimal conditions predicted by Box-Behnken Design modelling for producing ACE inhibitory and RSc hydrolysates were found to be S/E ratio (15), reaction temperature (55°C), and hydrolysis time (1 h). Under optimal conditions, ACE inhibitory and RSc activities were estimated to be as high as 67.8% and 77.9%, respectively. Besides, some novel bioactive peptides were identified through mass spectrometry analysis. These results indicate that S. vastus hydrolysates might be used as a functional ingredient in food and nutraceutical products.
    Matched MeSH terms: Trypsin
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links