Displaying publications 1 - 20 of 31 in total

Abstract:
Sort:
  1. Khamaiseh EI, Abdul Hamid A, Abdeshahian P, Wan Yusoff WM, Kalil MS
    ScientificWorldJournal, 2014;2014:395754.
    PMID: 24672315 DOI: 10.1155/2014/395754
    The production of biobutanol was studied by the cultivation of Clostridium acetobutylicum NCIMB 13557 in P2 medium including date fruit as the sole substrate. The effect of P2 medium and the effect of different concentrations of date fruit ranging from 10 to 100 g/L on biobutanol production were investigated. Anaerobic batch culture was carried out at 35 °C incubation temperature and pH 7.0 ± 0.2 for 72 h. Experimental results showed that the lowest yield of biobutanol and acetone-butanol-ethanol (ABE) was 0.32 and 0.35 gram per gram of carbohydrate consumed (g/g), respectively, when an initial date fruit concentration of 10 g/L was utilized. At this fruit date concentration a biobutanol production value of 1.56 g/L was obtained. On the other hand, the maximum yield of biobutanol (0.48 g/g) and ABE (0.63 g/g) was produced at 50 g/L date fruit concentration with a biobutanol production value as high as 11 g/L. However, when a higher initial date fruit concentration was used, biobutanol and ABE production decreased to reach the yield of 0.22 g/g and 0.35 g/g, respectively, where 100 g/L date fruit was used. Similar results also revealed that 10.03 g/L biobutanol was produced using 100 g/L date fruit.
    Matched MeSH terms: Butanols/metabolism*
  2. Al-Shorgani NK, Kalil MS, Yusoff WM
    Bioprocess Biosyst Eng, 2012 Jun;35(5):817-26.
    PMID: 22147105 DOI: 10.1007/s00449-011-0664-2
    Rice bran (RB) and de-oiled rice bran (DRB) have been treated and used as the carbon source in acetone-butanol-ethanol (ABE) production using Clostridium saccharoperbutylacetonicum N1-4. The results showed that pretreated DRB produced more ABE than pretreated RB. Dilute sulfuric acid was the most suitable treatment method among the various pretreatment methods that were applied. The highest ABE obtained was 12.13 g/L, including 7.72 g/L of biobutanol, from sulfuric acid. The enzymatic hydrolysate of DRB (ESADRB), when treated with XAD-4 resin, resulted in an ABE productivity and yield of 0.1 g/L h and 0.44 g/g, respectively. The results also showed that the choice of pretreatment method for RB and DRB is an important factor in butanol production.
    Matched MeSH terms: Butanols/metabolism*
  3. Sajjad Z, Gilani MA, Nizami AS, Bilad MR, Khan AL
    J Environ Manage, 2019 Dec 01;251:109618.
    PMID: 31563603 DOI: 10.1016/j.jenvman.2019.109618
    This paper aims to develop novel hydrophilic ionic liquid membranes using pervaporation for the recovery of biobutanol. Multiple polyvinyl alcohol (PVA) membranes based on three commercial ionic liquids with different loading were prepared for various experimental trials. The ionic liquids selected for the study include tributyl (tetradecyl) phosphonium chloride ([TBTDP][Cl]), tetrabutyl phosphonium bromide ([TBP][Br]) and tributyl methyl phosphonium methylsulphate ([TBMP][MS]). The synthesized membranes were characterized and tested in a custom-built pervaporation set-up. All ionic liquid membranes showed better results with total flux of 1.58 kg/m2h, 1.43 kg/m2h, 1.38 kg/m2h at 30% loading of [TBP][Br], [TBMP][MS] and [TBTDP][Cl] respectively. The comparison of ionic liquid membranes revealed that by incorporating [TBMP]MS to PVA matrix resulted in a maximum separation factor of 147 at 30 wt% loading combined with a relatively higher total flux of 1.43 kg/m2h. Density functional theory (DFT) calculations were also carried out to evaluate the experimental observations along with theoretical studies. The improved permeation properties make these phosphonium based ionic liquid a promising additive in PVA matrix for butanol-water separation under varying temperature conditions.
    Matched MeSH terms: Butanols
  4. Pang WK, Wan Mohtar Wan Yusoff, Mohd Sahaid Kalil, Osman Hassan
    Palm oil mill effluent (POME) can be utilised directly as the sole substrate in the anaerobic fermentation of acetone-butanol-ethanol (ABE) and hydrogen by Clostridium acetobutylicum NClMB13357 in a submerged batch system. Effects of sedimented POME concentration and the initial culture pH on the production of ABE/H were studied. Sedimented POME with 90% v/v (POME90) at pH 5.8 is capable of producing 4.01 g/L ABE with acetone concentration at 1.97 g/L; butanol 1.74 g/L and ethanol 0.3 g/L. The highest concentration of butanol (1.86 g/L) was produced from a culture with initial pH 6.0. The production of hydrogen gas was proportioned to the concentration of POME. The highest hydrogen gas production was at pH 5.5 (31 mL). More than 50% (v/v) of hydrogen gas was produced at different pH except pH 4.5, when only 16% (v/v) or 5 mL of hydrogen was produced.
    Matched MeSH terms: Butanols
  5. Lee H, Jae J, Lee HW, Park S, Jeong J, Lam SS, et al.
    J Hazard Mater, 2020 02 15;384:121231.
    PMID: 31577973 DOI: 10.1016/j.jhazmat.2019.121231
    The fast pyrolysis of waste lignin derived from biobutanol production process was performed to determine the optimal pyrolysis conditions and pyrolysis product properties. Four types of pyrolysis reactors, e.g.: micro-scale pyrolyzer-gas chromatography/mass spectrometry, lab and bench scale fixed bed (FB) reactors, and bench scale rotary kiln (RK) reactor, were employed to compare the pyrolysis reaction conditions and product properties obtained from different reactors. The yields of char, oil, and gas obtained from lab scale and bench scale reactor were almost similar compared to FB reactor. RK reactor produced desirable bio-oil with much reduced yield of poly aromatic hydrocarbons (cancer precursor) due to its higher cracking reaction efficiency. In addition, char agglomeration and foaming of lignin pyrolysis were greatly restricted by using RK reactor compared to the FB reactor.
    Matched MeSH terms: Butanols/chemistry
  6. Khamaiseh EI, Hamid AA, Yusoff WM, Kalil MS
    Pak J Biol Sci, 2013 Oct 15;16(20):1145-51.
    PMID: 24506014
    Date fruit juice contains high concentration of simple sugars ranging from 65 to 75% (w/w) in dry form. In this study, the potential of date fruit juice as biobutanol fermentation medium by C. acetobutylicum was investigated. The fermentation process was carried out at initial pH of 5, 6 and 7, incubation temperature of 30, 35 and 40 degrees C for 72 hours. The date fruit concentrations tested were 10, 20, 30 and 40 g L(-1). Medium containing 30 g L(-1) of date fruit at 35 degrees C incubation temperature with initial medium pH 7.0 gave the highest concentration of solvents of 3.1, 0.1 and 1.1 g L(-1) butanol, ethanol and acetone respectively. The yield and productivity of biobutanol were 0.32 g g(-1) and 0.044 g L(-1)/h respectively, while for total ABE were 0.45 g g(-1) and 0.06 g L(-1) h, respectively.
    Matched MeSH terms: Butanols/metabolism*
  7. Shukor H, Abdeshahian P, Al-Shorgani NK, Hamid AA, Rahman NA, Kalil MS
    Bioresour Technol, 2016 Feb;202:206-13.
    PMID: 26710346 DOI: 10.1016/j.biortech.2015.11.078
    In this work, hydrolysis of cellulose and hemicellulose content of palm kernel cake (PKC) by different types of hydrolytic enzymes was studied to evaluate monomeric sugars released for production of biobutanol by Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564) in acetone-butanol-ethanol (ABE) fermentation. Experimental results revealed that when PKC was hydrolyzed by mixed β-glucosidase, cellulase and mannanase, a total simple sugars of 87.81±4.78 g/L were produced, which resulted in 3.75±0.18 g/L butanol and 6.44±0.43 g/L ABE at 168 h fermentation. In order to increase saccharolytic efficiency of enzymatic treatment, PKC was pretreated by liquid hot water before performing enzymatic hydrolysis. Test results showed that total reducing sugars were enhanced to 97.81±1.29 g/L with elevated production of butanol and ABE up to 4.15±1.18 and 7.12±2.06 g/L, respectively which represented an A:B:E ratio of 7:11:1.
    Matched MeSH terms: Butanols
  8. Hessami MJ, Cheng SF, Ambati RR, Yin YH, Phang SM
    3 Biotech, 2019 Jan;9(1):25.
    PMID: 30622863 DOI: 10.1007/s13205-018-1549-8
    In this study, Gelidium elegans is investigated for ethanol production. A combination of factors including different temperatures, acid concentration and incubation time was evaluated to determine the suitable saccharification conditions. The combination of 2.5% (w/v) H2SO4 at 120 °C for 40 min was selected for hydrolysis of the seaweed biomass, followed by purification, and fermentation to yield ethanol. The galactose and glucose were dominant reducing sugars in the G. elegans hydrolysate and under optimum condition of dilute acid hydrolysis, 39.42% of reducing sugars was produced and fermentation resulted in ethanol concentration of 13.27 ± 0.47 g/L. A modified method was evaluated for sample preparation for gas chromatography (GC) analysis of the ethanol content. A solvent mixture of acetonitrile and iso-butanol precipitated dissolved organic residues and reduced water content in GC samples at least by 90%. Results showed that this method could be successfully used for bioethanol production from seaweed.
    Matched MeSH terms: Butanols
  9. Al-Araji, L., Rahman, R.N.Z.A., Basri, M., Salleh, A.B.
    ASM Science Journal, 2008;2(1):45-56.
    MyJurnal
    The growth and production of biosurfactant by P. seudomonas aeruginosa (181) was dependant on nutritional factors. Among the eleven carbon sources tested, glucose supported the maximum growth (0.25 g/L) with the highest biosurfactant yield and this was followed by glycerol. Glucose reduced the surface tension to 35.3 dyne/cm and gave an E24 reading of 62.7%. Butanol gave the lowest growth and had no biosurfactant production. For the nitrogen sources tested, casamino acid supported a growth of 0.21 g/L which reduced the surface tension to 41.1 dyne/cm and gave an E24 reading of 56%. Soytone was assimilated similarly, with good growth and high biosurfactant production. Corn steep liquor gave the lowest growth and did not show any biosurfactant activity.
    Matched MeSH terms: Butanols
  10. Kamarulzaman NH, Le-Minh N, Stuetz RM
    Talanta, 2019 Jan 01;191:535-544.
    PMID: 30262095 DOI: 10.1016/j.talanta.2018.09.019
    Different extraction procedures were evaluated to assess their potential for measuring volatile organic compounds (VOCs) from raw rubber materials. Four headspace sampling techniques (SHS, DHS, HS-SPME and µ-CTE) were studied. Each method was firstly optimised to ensure their reliability in performance. Passive sampling was also compared as a rapid identification of background VOCs. 352 VOCs were identified, 71 from passive sampling and 281 from active headspace sampling, with 62 not previously reported (hexanenitrile, octanone, decanal, indole, aniline, anisole, alpha-pinene as well as pentanol and butanol). The volatiles belonged to a broad range of chemical classes (ketones, aldehydes, aromatics, acids, alkanes, alcohol and cyclic) with their thermal effects (lower boiling points) greatly affecting their abundance at a higher temperature. Micro-chamber (µ-CTE) was found to be the most suitability for routine assessments due to its operational efficiency (rapidity, simplicity and repeatability), identifying 115 compounds from both temperatures (30 °C and 60 °C). Whereas, HS-SPME a widely applied headspace technique, only identified 75 compounds and DHS identified 74 VOCs and SHS only 17 VOCs. Regardless of the extraction technique, the highest extraction efficiency corresponded to aromatics and acids, and the lowest compound extraction were aldehyde and hydrocarbon. The interaction between techniques and temperature for all chemical groups were evaluated using two-way ANOVA (p-value is 0.000197) explaining the highly significant interactions between factors.
    Matched MeSH terms: Butanols
  11. Md Razali NAA, Ibrahim MF, Kamal Bahrin E, Abd-Aziz S
    Molecules, 2018 Aug 03;23(8).
    PMID: 30081514 DOI: 10.3390/molecules23081944
    This study was conducted in order to optimise simultaneous saccharification and fermentation (SSF) for biobutanol production from a pretreated oil palm empty fruit bunch (OPEFB) by Clostridium acetobutylicum ATCC 824. Temperature, initial pH, cellulase loading and substrate concentration were screened using one factor at a time (OFAT) and further statistically optimised by central composite design (CCD) using the response surface methodology (RSM) approach. Approximately 2.47 g/L of biobutanol concentration and 0.10 g/g of biobutanol yield were obtained after being screened through OFAT with 29.55% increment (1.42 fold). The optimised conditions for SSF after CCD were: temperature of 35 °C, initial pH of 5.5, cellulase loading of 15 FPU/g-substrate and substrate concentration of 5% (w/v). This optimisation study resulted in 55.95% increment (2.14 fold) of biobutanol concentration equivalent to 3.97 g/L and biobutanol yield of 0.16 g/g. The model and optimisation design obtained from this study are important for further improvement of biobutanol production, especially in consolidated bioprocessing technology.
    Matched MeSH terms: Butanols
  12. Takriff M, Masngut N, Kadhum A, Kalil M, Mohammad A
    Acetone-butanol-ethanol (ABE) fermentation from Palm Oil Mill Effluent (POME) by C. acetobutylicum NCIMB 13357 in an oscillatory flow bioreactor was investigated. Experimental works were conducted in a U-shaped stainless steel oscillatory flow bioreactor at oscillation frequency between 0.45-0.78 Hz and a constant amplitude of 12.5 mm. Fermentations were carried out for 72 hr at 35oC using palm oil mill effluent and reinforced clostridia medium as a growth medium in batch culture. Result of this investigation showed that POME is a viable media for ABE fermentation and oscillatory flow bioreactor has an excellent potential as an alternative fermentation device.
    Matched MeSH terms: Butanols
  13. Al-Shorgani NKN, Kalil MS, Yusoff WMW, Hamid AA
    Saudi J Biol Sci, 2018 Feb;25(2):339-348.
    PMID: 29472788 DOI: 10.1016/j.sjbs.2017.03.020
    The effect of pH and butyric acid supplementation on the production of butanol by a new local isolate of Clostridium acetobutylicum YM1 during batch culture fermentation was investigated. The results showed that pH had a significant effect on bacterial growth and butanol yield and productivity. The optimal initial pH that maximized butanol production was pH 6.0 ± 0.2. Controlled pH was found to be unsuitable for butanol production in strain YM1, while the uncontrolled pH condition with an initial pH of 6.0 ± 0.2 was suitable for bacterial growth, butanol yield and productivity. The maximum butanol concentration of 13.5 ± 1.42 g/L was obtained from cultures grown under the uncontrolled pH condition, resulting in a butanol yield (YP/
    S
    ) and productivity of 0.27 g/g and 0.188 g/L h, respectively. Supplementation of the pH-controlled cultures with 4.0 g/L butyric acid did not improve butanol production; however, supplementation of the uncontrolled pH cultures resulted in high butanol concentrations, yield and productivity (16.50 ± 0.8 g/L, 0.345 g/g and 0.163 g/L h, respectively). pH influenced the activity of NADH-dependent butanol dehydrogenase, with the highest activity obtained under the uncontrolled pH condition. This study revealed that pH is a very important factor in butanol fermentation by C. acetobutylicum YM1.
    Matched MeSH terms: Butanols
  14. Shukor H, Al-Shorgani NK, Abdeshahian P, Hamid AA, Anuar N, Rahman NA, et al.
    Bioresour Technol, 2014 Oct;170:565-73.
    PMID: 25171212 DOI: 10.1016/j.biortech.2014.07.055
    Palm kernel cake (PKC) was used for biobutanol production by Clostridium saccharoperbutylacetonicum N1-4 in acetone-butanol-ethanol (ABE) fermentation. PKC was subjected to acid hydrolysis pretreatment and hydrolysates released were detoxified by XAD-4 resin. The effect of pH, temperature and inoculum size on butanol production was evaluated using an empirical model. Twenty ABE fermentations were run according to an experimental design. Experimental results revealed that XAD-4 resin removed 50% furfural and 77.42% hydroxymethyl furfural. The analysis of the empirical model showed that linear effect of inoculums size with quadratic effect of pH and inoculum size influenced butanol production at 99% probability level (P<0.01). The optimum conditions for butanol production were pH 6.28, temperature of 28°C and inoculum size of 15.9%. ABE fermentation was carried out under optimum conditions which 0.1g/L butanol was obtained. Butanol production was enhanced by diluting PKC hydrolysate up to 70% in which 3.59g/L butanol was produced.
    Matched MeSH terms: Butanols/metabolism*
  15. Ibrahim MF, Abd-Aziz S, Razak MN, Phang LY, Hassan MA
    Appl Biochem Biotechnol, 2012 Apr;166(7):1615-25.
    PMID: 22391689 DOI: 10.1007/s12010-012-9538-6
    Acetone-butanol-ethanol (ABE) production from renewable resources has been widely reported. In this study, Clostridium butyricum EB6 was employed for ABE fermentation using fermentable sugar derived from treated oil palm empty fruit bunch (OPEFB). A higher amount of ABE (2.61 g/l) was produced in a fermentation using treated OPEFB as the substrate when compared to a glucose based medium that produced 0.24 g/l at pH 5.5. ABE production was increased to 3.47 g/l with a yield of 0.24 g/g at pH 6.0. The fermentation using limited nitrogen concentration of 3 g/l improved the ABE yield by 64%. The study showed that OPEFB has the potential to be applied for renewable ABE production by C. butyricum EB6.
    Matched MeSH terms: Butanols/metabolism*
  16. Shukor H, Abdeshahian P, Al-Shorgani NK, Hamid AA, Rahman NA, Kalil MS
    Bioresour Technol, 2016 Oct;218:257-64.
    PMID: 27372004 DOI: 10.1016/j.biortech.2016.06.084
    Catalytic depolymerization of mannan composition of palm kernel cake (PKC) by mannanase was optimized to enhance the release of mannan-derived monomeric sugars for further application in acetone-butanol-ethanol (ABE) fermentation. Efficiency of enzymatic hydrolysis of PKC was studied by evaluating effects of PKC concentration, mannanase loading, hydrolysis pH value, reaction temperature and hydrolysis time on production of fermentable sugars using one-way analysis of variance (ANOVA). The ANOVA results revealed that all factors studied had highly significant effects on total sugar liberated (P<0.01). The optimum conditions for PKC hydrolysis were 20% (w/v) PKC concentration, 5% (w/w) mannanase loading, hydrolysis pH 4.5, 45°C temperature and 72h hydrolysis time. Enzymatic experiments in optimum conditions revealed total fermentable sugars of 71.54±2.54g/L were produced including 67.47±2.51g/L mannose and 2.94±0.03g/L glucose. ABE fermentation of sugar hydrolysate by Clostridium saccharoperbutylacetonicum N1-4 resulted in 3.27±1.003g/L biobutanol.
    Matched MeSH terms: Butanols/chemistry*
  17. Al-Shorgani NKN, Al-Tabib AI, Kadier A, Zanil MF, Lee KM, Kalil MS
    Sci Rep, 2019 03 15;9(1):4622.
    PMID: 30874578 DOI: 10.1038/s41598-019-40840-y
    Continuous fermentation of dilute acid-pretreated de-oiled rice bran (DRB) to butanol by the Clostridium acetobutylicum YM1 strain was investigated. Pretreatment of DRB with dilute sulfuric acid (1%) resulted in the production of 42.12 g/L total sugars, including 25.57 g/L glucose, 15.1 g/L xylose and 1.46 g/L cellobiose. Pretreated-DRB (SADRB) was used as a fermentation medium at various dilution rates, and a dilution rate of 0.02 h-1 was optimal for solvent production, in which 11.18 g/L of total solvent was produced (acetone 4.37 g/L, butanol 5.89 g/L and ethanol 0.92 g/L). Detoxification of SADRB with activated charcoal resulted in the high removal of fermentation inhibitory compounds. Fermentation of detoxified-SADRB in continuous fermentation with a dilution rate of 0.02 h-1 achieved higher concentrations of solvent (12.42 g/L) and butanol (6.87 g/L), respectively, with a solvent productivity of 0.248 g/L.h. This study showed that the solvent concentration and productivity in continuous fermentation from SADRB was higher than that obtained from batch culture fermentation. This study also provides an economic assessment for butanol production in continuous fermentation process from DRB to validate the commercial viability of this process.
    Matched MeSH terms: Butanols/metabolism
  18. Basri M, Samsudin S, Ahmad MB, Razak CN, Salleh AB
    Appl Biochem Biotechnol, 1999 Sep;81(3):205-17.
    PMID: 15304777
    Lipase from Candida rugosa was immobilized by entrapment on poly(N-vinyl- 2-pyrrolidone-co-2-hydroxyethyl methacrylate) (poly[VP-co-HEMA]) hydrogel, and divinylbenzene was the crosslinking agent. The immobilized enzymes were used in the esterification reaction of oleic acid and butanol in hexane. The activities of the immobilized enzymes and the leaching ability of the enzyme from the support with respect to the different compositions of the hydrogels were investigated. The thermal, solvent, and storage stability of the immobilized lipases was also determined. Increasing the percentage of composition of VP from 0 to 90, which corresponds to the increase in the hydrophilicity of the hydrogels, increased the activity of the immobilized enzyme. Lipase immobilized on VP(%):HEMA(%) 90:10 exhibited the highest activity. Lipase immobilized on VP(%):HEMA(%) 50:50 showed the highest thermal, solvent, storage, and operational stability compared to lipase immobilized on other compositions of hydrogels as well as the native lipase.
    Matched MeSH terms: Butanols
  19. Nasser Al-Shorgani NK, Kalil MS, Wan Yusoff WM, Shukor H, Hamid AA
    Anaerobe, 2015 Dec;36:65-72.
    PMID: 26439644 DOI: 10.1016/j.anaerobe.2015.09.008
    Improvement in the butanol production selectivity or enhanced butanol:acetone ratio (B:A) is desirable in acetone-butanol-ethanol (ABE) fermentation by Clostridium strains. In this study, artificial electron carriers were added to the fermentation medium of a new isolate of Clostridium acetobutylicum YM1 in order to improve the butanol yield and B:A ratio. The results revealed that medium supplementation with electron carriers changed the metabolism flux of electron and carbon in ABE fermentation by YM1. A decrease in acetone production, which subsequently improved the B:A ratio, was observed. Further improvement in the butanol production and B:A ratios were obtained when the fermentation medium was supplemented with butyric acid. The maximum butanol production (18.20 ± 1.38 g/L) was gained when a combination of methyl red and butyric acid was added. Although the addition of benzyl viologen (0.1 mM) and butyric acid resulted in high a B:A ratio of 16:1 (800% increment compared with the conventional 2:1 ratio), the addition of benzyl viologen to the culture after 4 h resulted in the production of 18.05 g/L butanol. Manipulating the metabolic flux to butanol through the addition of electron carriers could become an alternative strategy to achieve higher butanol productivity and improve the B:A ratio.
    Matched MeSH terms: Butanols
  20. Musa H, Kasim FH, Gunny AAN, Gopinath SCB, Ahmad MA
    3 Biotech, 2019 Aug;9(8):314.
    PMID: 31406636 DOI: 10.1007/s13205-019-1845-y
    Initially, a new moderate halophilic strain was locally isolated from seawater. The partial 16S rRNA sequence analysis positioned the organism in Marinobacter genus and was named 'Marinobacter litoralis SW-45'. This study further demonstrates successful utilization of the halophilic M. litoralis SW-45 lipase (MLL) for butyl ester synthesis from crude palm fruit oil (CPO) and kernel oil (CPKO) in heptane and solvent-free system, respectively, using hydroesterification. Hydrolysis and esterification of enzymatic [Thermomyces lanuginosus lipase (TLL)] hydrolysis of CPO and CPKO to free fatty acids (FFA) followed by MLL-catalytic esterification of the concentrated FFAs with butanol (acyl acceptor) to synthesize butyl esters were performed. A one-factor-at-a-time technique (OFAT) was used to study the influence of physicochemical factors on the esterification reaction. Under optimal esterification conditions of 40 and 45 °C, 150 and 230 rpm, 50% (v/v) biocatalyst concentration, 1:1 and 5:1 butanol:FFA, 9% and 15% (w/v) NaCl, 60 and 15 min reaction time for CPO- and CPKO-derived FFA esterification system, maximum ester conversion of 62.2% and 69.1%, respectively, was attained. Gas chromatography (GC) analysis confirmed the products formed as butyl esters. These results showed halophilic lipase has promising potential to be used for biosynthesis of butyl esters in oleochemical industry.
    Matched MeSH terms: Butanols
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links