This study is the first report to suggest a morphological phylogenetic framework for the seven varieties of Ficus deltoidea Jack (Ficus: Moraceae) from the Malay Peninsula of Malaysia. Several molecular-based classifications on the genus Ficus had been proposed, but neither had discussed the relationship between seven varieties of F. deltoidea to its allies nor within the varieties. The relationship between seven varieties of F. deltoidea is still debated due to the extreme morphological variabilities and ambiguous boundaries between taxa. Thus, the correct identification of these varieties is important as several morphological characters are variety-specific. To test the monophyly and further resolved the relationship in F. deltoidea, a morphological phylogenetic analysis was conducted based on herbarium specimens representing the seven varieties of F. deltoidea that were collected from the Malay Peninsula of Malaysia, by using related species of the genus Ficus; F. grossularioides, F. ischnopoda and F. oleifolia as the outgroups. Parsimony and neighbour-joining analyses indicated that F. deltoidea is monophyletic, in that the seven varieties of F. deltoidea nested into two clades; clade subspecies deltoidea (var. deltoidea, var. bilobata, var. angustifolia, var. kunstleri and var. trengganuensis) and clade subspecies motleyana (var. intermedia and var. motleyana).
Ficus deltoidea from the Moraceae family has been scientifically proven to reduce hyperglycemia at different prandial states. In this study, we evaluate the mechanisms that underlie antihyperglycemic action of Ficus deltoidea. The results had shown that hot aqueous extract of Ficus deltoidea stimulated insulin secretion significantly with the highest magnitude of stimulation was 7.31-fold (P < 0.001). The insulin secretory actions of the hot aqueous extract involved K(+) (ATP) channel-dependent and K(+) (ATP)-channel-independent pathway. The extract also has the ability to induce the usage of intracellular Ca(2+) to trigger insulin release. The ethanolic and methanolic extracts enhanced basal and insulin-mediated glucose uptake into adipocytes cells. The extracts possess either insulin-mimetic or insulin-sensitizing property or combination of both properties during enhancing glucose uptake into such cells. Meanwhile, the hot aqueous and methanolic extracts augmented basal and insulin-stimulated adiponectin secretion from adipocytes cells. From this study, it is suggested that Ficus deltoidea has the potential to be developed as future oral antidiabetic agent.
Ficus deltoidea atau nama tempatannya 'Alas Cotek' telah dipercayai secara tradisional mempunyai aktiviti hipoglisemia. Dalam kajian ini, aktiviti hipoglisemia ekstrak akuas Ficus deltoidea pada tikus normal dan diabetik ringan (aruhan streptozotocin) telah dikaji. Ekstrak pada dos berbeza (100, 500 dan 1000 mg/kg) telah diberi secara oral kepada kedua-dua kumpulan dalam keadaan puasa dan pasca prandial. Keputusan menunjukkan bahawa ekstrak akuas Ficus deltoidea tidak mempunyai kesan hipoglisemia pada tikus normal dan tikus diabetik ringan puasa. Pada tikus diabetik ringan pasca prandial, ekstrak akuas Ficus deltoidea pada dos 1000 mg/kg menunjukkan menunjukkan aktiviti hipoglisemia selepas 2 (p < 0.01), 4 (p < 0.05) and 6 (p < 0.01) jam pengambilan ekstrak. Mefformin, 500 mg/kg juga menunjukkan aktiviti hipoglisemia selepas 2 (p < 0.05), 4 (p < 0.01) and 6 (p < 0.01) jam pengambilan. Oleh sebab itu, kami mencadangkan bahawa mekanisme tindakan ekstrak akuas Ficus deltoidea mungkin melalui peningkatan pengambilan glukos oleh tisu otot serta pengurangan glukoneogenesis pada hepar.
Six varieties of Ficus deltoidea Jack (Moraceae) showed leaf morphological variations through quantitative measurement on different plant parts. There were significant differences among six varieties studied by plant parts. The varieties studied include var. deltoidea Corner, var. angustifolia (Miq.) Corner, var. trengganuensis Corner, var. bilobata Corner, var. intermedia Corner, and var. kunstleri (King) Corner. The upper, middle and lower plant parts showed morphological variations in terms of leaf length, leaf width, leaf area and petiole length. Qualitative parameters also showed trends in morphological variations in terms of leaf shape, leaf base, leaf apex and leaf attachment. However, some qualitative parameters were not the recommended parameters to differentiate among varieties. On the other hand, leaf heterophylly has occurred in F. deltoidea because foliage of the young plant was different from the mature plant. Leaf heterophylly was observed in leaf shape and leaf apex parameters, whereby leaves from the lower plant parts were different from the upper and middle parts. The heterophylly in leaf shape was detected in varieties angustifolia, bilobata, intermedia and trengganuensis, whilst six varieties of F. deltoidea showed leaf apex heterophylly
The use of artificial light sources such as light-emitting diodes (LEDs) has become a prerequisite in tissue culture studies to obtain morphogenetic enhancements on in vitro plants. This technology is essential for developmental enhancements in the growing plant cultures due to its light quality and intensity greatly influencing the in vitro growing explants at a cellular level. The current study investigates the effects of different light-emitting diode (LED) spectra on the growth of apical buds of Ficus carica var. Black Jack. Ficus carica, commonly known as figs is rich in vitamins, minerals, and phytochemicals capable of treating microbial infections and gastric, inflammatory, and cardiac disorders. Apical buds of Ficus carica var. Black Jack, presented morphogenetic changes when grown under six different LED spectra. The highest multiple shoots (1.80 per growing explant) and healthy growing cultures were observed under the blue + red LED spectrum. Wound-induced callus formation was observed on apical buds grown under green LED spectrum and discolouration of the growing shoots were observed on the cultures grown under far-red LED spectrum. Multiple shoots obtained from the blue + red LED treatment were rooted using 8 µM indole-3-acetic acid (IAA), and the rooted plantlets were successfully acclimatised. Compared with the other monochromatic LEDs, blue + red proved to be significantly better for producing excellent plant morphogeny. It is apparent that blue and red LED is the most suitable spectra for the healthy development of plants. The findings have confirmed that the combination of blue + red LED can potentially be used for enhancing growth yields of medicinally and commercially important plants.
Following the publication of the article it has come to the authors' attention that the first panel of Fig. 11 has been repeated with the second panel of Fig. 11.
Genetic structure and biodiversity of the medicinal plant Ficus deltoidea have rarely been scrutinized. To fill these lacunae, five varieties, consisting of 30 F. deltoidea accessions were collected across the country and studied on the basis of molecular and morphological data. Molecular analysis of the accessions was performed using nine Inter Simple Sequence Repeat (ISSR) markers, seven of which were detected as polymorphic markers. ISSR-based clustering generated four clusters supporting the geographical distribution of the accessions to some extent. The Jaccard's similarity coefficient implied the existence of low diversity (0.50-0.75) in the studied population. STRUCTURE analysis showed a low differentiation among the sampling sites, while a moderate varietal differentiation was unveiled with two main populations of F. deltoidea. Our observations confirmed the occurrence of gene flow among the accessions; however, the highest degree of this genetic interference was related to the three accessions of FDDJ10, FDTT16 and FDKT25. These three accessions may be the genetic intervarietal fusion points of the plant's population. Principal Components Analysis (PCA) relying on quantitative morphological characteristics resulted in two principal components with Eigenvalue >1 which made up 89.96% of the total variation. The cluster analysis performed by the eight quantitative characteristics led to grouping the accessions into four clusters with a Euclidean distance ranged between 0.06 and 1.10. Similarly, a four-cluster dendrogram was generated using qualitative traits. The qualitative characteristics were found to be more discriminating in the cluster and PCA analyses, while ISSRs were more informative on the evolution and genetic structure of the population.
As synthetic antioxidants that are widely used in foods are known to cause detrimental health effects, studies on natural additives as potential antioxidants are becoming increasingly important. In this work, the total phenolic content (TPC) and antioxidant activity of Ficus carica Linn latex from 18 cultivars were investigated. The TPC of latex was calculated using the Folin-Ciocalteu assay. 1,1-Diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and ferric ion reducing antioxidant power (FRAP) were used for antioxidant activity assessment. The bioactive compounds from F. carica latex were extracted via maceration and ultrasound-assisted extraction (UAE) with 75% ethanol as solvent. Under the same extraction conditions, the latex of cultivar 'White Genoa' showed the highest antioxidant activity of 65.91% ± 1.73% and 61.07% ± 1.65% in DPPH, 98.96% ± 1.06% and 83.04% ± 2.16% in ABTS, and 27.08 ± 0.34 and 24.94 ± 0.84 mg TE/g latex in FRAP assay via maceration and UAE, respectively. The TPC of 'White Genoa' was 315.26 ± 6.14 and 298.52 ± 9.20 µg GAE/mL via the two extraction methods, respectively. The overall results of this work showed that F. carica latex is a potential natural source of antioxidants. This finding is useful for further advancements in the fields of food supplements, food additives and drug synthesis in the future.
Present study aimed to investigate the in vitro antimicrobial activity of the chloroform, methanol and aqueous extracts of Ficus deltoidea at 10mg/ml, 20mg/ml and 50 mg/ml, respectively using the disc diffusion method against 2 Gram positive {Staphylococcus aureus (IMR S-277), Bacillus subtilis (IMR K-1)}, 2 Gram negative {Escherichia coli (IMR E-940), Pseudomonas aeroginosa (IMR P-84)} and 1 fungal strain, Candida albicans (IMR C-44). All the extracts showed inhibitory activity on the fungus, Gram-positive and Gram-negative bacteria strains tested except for the chloroform and aqueous extracts on B. subtilis, E. coli, and P. aeroginosa. The methanol extract exhibited good antibacterial and antifungal activities against the test organisms. The methanol extract significantly inhibited the growth of S. aureus forming a wide inhibition zone (15.67 ± 0.58 mm) and lowest minimum inhibitory concentration (MIC) value (3.125 mg/ml). B. subtilis was the least sensitive to the chloroform extract (6.33 ± 0.58 mm) and highest minimum inhibitory concentration (MIC) value (25 mg/ml). Antimicrobial activity of F. deltoidea in vitro further justifies its utility in folkleric medicines for the treatment of infections of microbial origin.
Aqueous extract of Ficus deltoidea var. agustifolia was examined for the subchronic toxicity effects in rats. Groups of 10 rats were given the extract daily by oral gavage for 90 days at 0 (control), 100 and 300mg/kg/body weight, respectively. Blood samples were collected upon sacrificed and analysed for haemogram and biochemistry. The results showed there were no significant changes of the blood parameters in all treated groups compared to the control.
Ficus deltoidea var angustifolia (FD-A) reduces blood pressure in spontaneously hypertensive rats (SHR) but the mechanism remains unknown. Changes in urine metabolites following FD-A treatment in SHR were, therefore, examined to identify the mechanism of its antihypertensive action. Male SHR were given either FD-A (1000 mg kg-1 day-1) or losartan (10 mg kg-1 day-1) or 0.5 mL of ethanolic-water (control) daily for 4 weeks. Systolic blood pressure (SBP) was measured every week and urine spectra data acquisition, on urine collected after four weeks of treatment, were compared using multivariate data analysis. SBP in FD-A and losartan treated rats was significantly lower than that in the controls after four weeks of treatment. Urine spectra analysis revealed 24 potential biomarkers with variable importance projections (VIP) above 0.5. These included creatine, hippurate, benzoate, trimethylamine N-oxide, taurine, dimethylamine, homocysteine, allantoin, methylamine, n-phenylacetylglycine, guanidinoacetate, creatinine, lactate, glucarate, kynurenine, ethanolamine, betaine, 3-hydroxybutyrate, glycine, lysine, glutamine, 2-hydroxyphenylacetate, 3-indoxylsulfate and sarcosine. From the profile of these metabolites, it seems that FD-A affects urinary levels of metabolites like taurine, hypotaurine, glycine, serine, threonine, alanine, aspartate and glutamine. Alterations in these and the pathways involved in their metabolism might underlie the molecular mechanism of its antihypertensive action.
Schwarzinicines A-D, a series of alkaloids recently discovered from Ficus schwarzii, exhibit pronounced vasorelaxant activity in rat isolated aorta. Building on this finding, a concise synthesis of schwarzinicines A and B has been reported, allowing further investigations into their biological properties. Herein, a preliminary exploration of the chemical space surrounding the structure of schwarzinicine A (1) was carried out aiming to identify structural features that are essential for vasorelaxant activity. A total of 57 analogs were synthesized and tested for vasorelaxant activity in rat isolated aorta. Both efficacy (Emax) and potency (EC50) of these analogs were compared. In addition to identifying structural features that are required for activity or associated with potency enhancement effect, four analogs showed significant potency improvements of up to 40.2-fold when compared to 1. Molecular dynamics simulation of a tetrameric 44-bound transient receptor potential canonical-6 (TRPC6) protein indicated that 44 could potentially form important interactions with the residues Glu509, Asp530, Lys748, Arg758, and Tyr521. These results may serve as a foundation for guiding further structural optimization of the schwarzinicine A scaffold, aiming to discover even more potent analogs.
A study was conducted to establish in vitro culture conditions for maximum production of biomass and flavonoid content for Ficus deltoidea var. kunstleri, locally named as Mas Cotek, known to have a wide variety of potential beneficial attributes for human health. Size of initial inoculum, cell aggregate and initial pH value have been suggested to influent content of biomass and flavonoid for cell suspension culture in several plant species. In the present study, leaf explants were cultured by cell suspension culture procedures in MSB5 basal medium supplemented with predetermined supplements of 30 g/L sucrose, 2.75 g/L gelrite, 2 mg/L picloram and 1 mg/L kinetin with continuous agitation of 120 rpm in a standard laboratory environment. Establishment of cell suspension culture was accomplished by culturing resulting callus in different initial fresh weight of cells (0.10, 0.25, 0.50, 1.0, and 2.0 g/25 mL of media) using similar basal medium. The results showed that the highest production of biomass (0.65 g/25 mL of media) was recorded from an initial inoculum size of 2.0 g/25 mL media, whereas the highest flavonoid (3.3 mg RE/g DW) was found in 0.5 g/25 mL of media. Cell suspension fractions classified according to their sizes (500-750 µm, 250-500 µm, and <250 µm). Large cell aggregate size (500-750 µm) cultured at pH 5.75 produced the highest cell biomass (0.28 g/25 mL media) and flavonoid content (3.3 mg RE/g DW). The study had established the optimum conditions for the production of total antioxidant and flavonoid content using DPPH and FRAP assays in cell suspension culture of F. deltoidea var. kunstleri.
This study aimed at determining the effects of propagation medium and cutting types on the early growth performance of fig (Ficus carica L.) root and shoot. The experiment was conducted at the Glasshouse and Nursery Complex (GNC), International Islamic University Malaysia (IIUM). The split-plot design was employed with the main plot (propagation medium) and sub-plot (types of cutting). The propagation medium were sand:topsoil (1:3) (M1), topsoil:peat:sawdust (1:1:1) (M2) and peat:perlite (1:1) (M3). Two types of cutting were semi-hardwood (C1) and hardwood (C2). As a result, there were a significant effect of propagation medium on measured parameters. This study revealed that the most effective propagation medium and cutting types for the propagation of fig were a combination of peat and perlite at 1:1 ratio (M3) and hardwood cutting (C2), respectively as evidenced by significantly higher root and shoot growth quality as compared to other treatments.
The present study was carried out to assess the genotoxicity potential of Ficus deltoidea var. kunstleri aqueous extract (FDAE) using standard in vitro assays. The DNA damage of V79B cells was measured using the alkaline comet assay treated at 0.1 mg/mL (IC10) and 0.3 mg/mL (IC25) of FDAE together with positive and negative controls. For in vitro micronucleus assay, the V79B cells were treated with FDAE at five different concentrations (5, 2.5, 1.25, 0.625, and 0.3125 mg/mL) with and without S9 mixture. The bacteria reverse mutation assay of FDAE was performed on Salmonella typhimurium strains TA98, 100, 1535, 1537, and Escherichia coli strain WP2uvrA using pre-incubation method in the presence or in the absence of an extrinsic metabolic system (S9 mixture). FDAE at 0.1 and 0.3 mg/mL significantly increased DNA damage in both comet tail and tail moment (p < 0.05). No significant changes were detected in the number of micronucleated cell when compared to control. Tested at the doses up to 5000 µg/plate, the FDAE did not increase the number of revertant colonies for all strains. In conclusion, further investigation needs to be conducted in animal model to confirm the non-genotoxicity activities of FDAE.
A concise synthesis of the 1,4-diarylbutanoid-phenethylamine alkaloids, schwarzinicines A (1) and B (2), recently isolated from Ficus schwarzii, is reported. Key steps include a Claisen condensation to assemble the 1,4-diaryl-2-butanone intermediate, followed by a reductive amination to furnish the core skeleton of the target compounds. The overall synthetic yields of 1 and 2 were 9.1% and 3.5%, respectively. Synthetic (-)-1, (+)-1 and (±)-1 exhibited comparable vasorelaxation as natural schwarzinicine A on rat isolated aortic rings, suggesting that the observed vasorelaxant effects were not influenced by the chirality at C-2.
A study on the variation of leaf venation patterns was conducted on 21 taxa of the genus Ficus in Peninsular Malaysia. The results showed the existence of eight leaf venation patterns based on veinlets, the ultimate marginal and areolar venation. The majority of species, such as F. annulata, F. benghalensis, F. benjamina, F. deltoidea var. angustifolia, F. deltoidea var. kunstleri, F. depressa, F. elastica, F. hispida, F. microcarpa, F. religiosa, F. tinctoria, F. ucinata and F. vasculosa, show tri-veinlets. The others exhibit the following: bi-veinlets in F. aurata and F. heteropleura; uni-veinlets in F. lepicarpa, F. schwarzii and F. superba; and simple veinlets in F. aurantiacea and F. fulva. F. sagittata presents no veinlets for areolar venation. The presence of tracheid or swollen veins at the centre of the lamina and the presence of cystolith cells and trichomes are common anatomical characteristics that could assist in group classification of the studied species. Variations in leaf venation patterns are not only valuable in identifying a taxon group, but can also be used to differentiate between species in the genus Ficus.
Ficus plants are commonly planted as ornamentals along roadsides in Malaysia. In 2010, Ficus plants in Kuala Terengganu were found to be attacked by a moth, identified as Trilocha varians. The larvae of this moth fed on Ficus leaves causing up to 100% defoliation. This study was conducted to determine the life cycle of T. varians under two different environmental temperatures and to control this pest using two different insecticides. Our findings showed that there were significant differences in the time taken for eggs to hatch and larval and pupation period between low and high environmental temperatures. Results also showed that fipronil had lower LT50 and LT95 than malathion. This study provides new information on the life history of T. varians under two different conditions and the efficiency in controlling T. varians larvae using insecticides. The results of this study are important for future management in controlling T. varians population especially in Kuala Terengganu, Malaysia.
A 38-year-old female presented with foreign body sensation in the throat for one year. It was
increasing in severity. There was no other associated symptom. Examination of the oral cavity showed an abnormal looking uvula(Fig. 1). The rest part of the oral cavity, oropharynx and larynx were unremarkable. What is your diagnosis?(Copied from article).
Ficus deltoidea or locally known as Mas cotek is one of the common medicinal plants used in
Malaysia. Our previous studies showed that this plant have blood glucose lowering effect. Glucose
uptake into muscle and adipocytes cells is one of the known mechanisms of blood glucose lowering
effect. This study was performed to evaluate the effect of Ficus deltoidea on glucose uptake activity
into muscle cells. The cells were incubated with Ficus deltoidea extracts either a,lone or combination
with insulin. Amount of glucose uptake by L6 myotubes was determined using glucose tracer, 2-deoxy-
[l-:-Hj-glucose. The results showed that Ficus deltoidea extracts at particular doses enhanced basal or
insulin-mediated glucose uptake into muscle cells significantly. Hot aqueous extract enhanced glucose
uptake at the low concentration (10 pg/ml) whereas methanolic extract enhanced basal glucose uptake
at high concentrations (500 and 1000 fig/ml). Meanwhile, ethanolic extract enhanced glucose uptake at
low and high concentrations. Methanolic extract also mimicked insulin activity during enhancing
glucose uptake into L6 muscle cells. Glucose uptake activity of Ficus deltoidea could be attributed by
the phenolic compounds presence in the plant. This study had shown that Ficus deltoidea has the
ability to enhance glucose uptake into muscle cells which is partly contributed the antidiabetic activity
of this plant.