INTRODUCTION: The search for food and spices that can induce apoptosis in cancer cells has been a major study interest in the last decade. Chlorella vulgaris, a unicellular green algae, has been reported to have antioxidant and anti-cancer properties. However, its chemopreventive effects in inhibiting the growth of cancer cells have not been studied in great detail.
METHODS: HepG2 liver cancer cells and WRL68 normal liver cells were treated with various concentrations (0-4 mg/ml) of hot water extract of C. vulgaris after 24 hours incubation. Apoptosis rate was evaluated by TUNEL assay while DNA damage was assessed by Comet assay. Apoptosis proteins were evaluated by Western blot analysis.
RESULTS: Chlorella vulgaris decreased the number of viable HepG2 cells in a dose dependent manner (p < 0.05), with an IC50 of 1.6 mg/ml. DNA damage as measured by Comet assay was increased in HepG2 cells at all concentrations of Chlorella vulgaris tested. Evaluation of apoptosis by TUNEL assay showed that Chlorella vulgaris induced a higher apoptotic rate (70%) in HepG2 cells compared to normal liver cells, WRL68 (15%). Western blot analysis showed increased expression of pro-apoptotic proteins P53, Bax and caspase-3 in the HepG2 cells compared to normal liver cells WRL68, and decreased expression of the anti-apoptotic protein Bcl-2.
CONCLUSIONS: Chlorella vulgaris may have anti-cancer effects by inducing apoptosis signaling cascades via an increased expression of P53, Bax and caspase-3 proteins and through a reduction of Bcl-2 protein, which subsequently lead to increased DNA damage and apoptosis.
METHODS AND RESULTS: TQRF was extracted from N. sativa seeds using supercritical fluid extraction. The regulatory effects of TQRF at 80 microg/ml and TQ at 2 microg/ml on LDLR and HMGCR gene expression were investigated in HepG2 cells using quantitative real-time PCR. The TQ content in TQRF was 2.77% (w/w) and was obtained at a temperature of 40 degrees C and a pressure of 600 bar. Treatment of cells with TQRF and TQ resulted in a 7- and 2-fold upregulation of LDLR mRNA level, respectively, compared with untreated cells. The mRNA level of HMGCR was downregulated by 71 and 12%, respectively, compared with untreated cells.
CONCLUSION: TQRF and TQ regulated genes involved in cholesterol metabolism by two mechanisms, the uptake of low-density lipoprotein cholesterol via the upregulation of the LDLR gene and inhibition of cholesterol synthesis via the suppression of the HMGCR gene.
METHODS: A 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used to analyze the pinnatane A selectivity in inducing cell death in cancer and normal cells. Various biological assays were carried out to analyze the anti-cancer properties of pinnatane A, such as a live/dead assay for cell death microscopic visualization, cell cycle analysis using propidium iodide (PI) to identify the cell cycle arrest phase, annexin V-fluorescein isothiocyanate (annexin V-FITC)/PI flow cytometry assay to measure percentage of cell populations at different stages of apoptosis and necrosis, and DNA fragmentation assay to verify the late stage of apoptosis.
RESULTS: The MTT assay identified pinnatane A prominent dose- and time-dependent cytotoxicity effects in Hep3B and HepG2 cells, with minimal effect on normal cells. The live/dead assay showed significant cell death, while cell cycle analysis showed arrest at the G₀/G₁ phase in both cell lines. Annexin V-FITC/PI flow cytometry and DNA fragmentation assays identified apoptotic cell death in Hep3B and necrotic cell death in HepG2 cell lines.
CONCLUSIONS: Pinnatane A has the potential for further development as a chemotherapeutic agent prominently against human liver cells.
AIM OF THE STUDY: This study aimed to investigate the detoxification effects and potential mechanism of action of spironolactone on triptolide-induced hepatotoxicity to provide a potential detoxifying strategy for triptolide, thereby promoting the safe applications of T. wilfordii preparations in clinical settings.
MATERIALS AND METHODS: Cell viability was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and crystal violet staining. Nuclear fragmentation was visualized using 4',6-diamidino-2-phenylindole (DAPI) staining, and protein expression was analyzed by Western blotting. The inhibitory effect of spironolactone on triptolide-induced hepatotoxicity was evaluated by examining the effects of spironolactone on serum alanine aminotransferase and aspartate aminotransferase levels, as well as liver pathology in a mouse model of triptolide-induced acute hepatotoxicity. Furthermore, a survival assay was performed to investigate the effects of spironolactone on the survival rate of mice exposed to a lethal dose of triptolide. The effect of spironolactone on triptolide-induced global transcriptional repression was assessed through 5-ethynyl uridine staining.
RESULTS: Triptolide treatment decreased the cell viability, increased the nuclear fragmentation and the cleaved caspase-3 levels in both hepatoma cells and hepatocytes. It also increased the alanine aminotransferase and aspartate aminotransferase levels, induced the hepatocyte swelling and necrosis, and led to seven deaths out of 11 mice. The above effects could be mitigated by pretreatment with spironolactone. Additionally, molecular mechanism exploration unveiled that spironolactone inhibited triptolide-induced DNA-directed RNA polymerase II subunit RPB1 degradation, consequently increased the fluorescence intensity of 5-ethynyl uridine staining for nascent RNA.
CONCLUSIONS: This study shows that spironolactone exhibits a potent detoxification role against triptolide hepatotoxicity, through inhibition of RPB1 degradation induced by triptolide and, in turn, retardation of global transcriptional inhibition in affected cells. These findings suggest a potential detoxification strategy for triptolide that may contribute to the safe use of T. wilfordii preparations.