OBJECTIVE: Complexation of rHuKGF with mucoadhesive low molecular weight chitosan to protect rHuKGF from proteolysis and investigate the effect of chitosan-rHuKGF complex on the proliferation rate of FHs 74 Int cells.
METHODS: The interaction between chitosan and rHuKGF was studied by molecular docking. Malvern ZetaSizer Nano Zs and Fourier-Transform Infrared spectroscopy (FTIR) tests were carried out to characterize the chitosan-rHuKGF complex. In addition, SDS-PAGE was performed to investigate the interaction between chitosan-rHuKGF complex and pepsin. The effect of chitosan-rHuKGF complex on the proliferation rate of FHs 74 Int cells was studied by MTT assay.
RESULTS: Chitosan-rHuKGF complex was formed through the hydrogen bonding proven by the docking studies. A stable chitosan-rHuKGF complex was formed at pH 4.5 and was protected from proteolysis and assessed by SDS PAGE. According to the MTT assay results, chitosan-rHuKGF complex increased the cell proliferation rate of FHs 74 Int cells.
CONCLUSION: The developed complex improved the stability and the biological function of rHuKGF.
AIMS OF THE REVIEW: To critically anayze the literature for the botany, traditional uses, phytochemistry, pharmacology, toxicity, and clinical trials of P. sarmentosum in order to provide a scientific consensus for further research and discovery of potential candidate drugs.
MATERIALS AND METHODS: The contents of this review were sourced from electronic databases including PubMed, SciFinder, Web of Science, Science Direct, Elsevier, Google Scholar, Chinese Knowledge On frastructure (CNKI), Wanfang, Chinese Scientific and Technological Periodical Database (VIP), Chinese Biomedical Database (CBM), Cochrane Controlled register of Clinical Trials, Clinical Trials. gov, and Chinese Clinical Trial Registry. Chinese medicine books published over the years were used to elucidate the traditional uses of P. sarmentosum and additional information was also collected from Yao Zhi website (https://db.yaozh.com/).
RESULTS: Phytochemical analyses of the chemical constituents of P. sarmentosum include essential oil, alkaloids, flavonoids, lignans, and steroids. The literature supports the ethnomedicinal uses of P. sarmentosum for the treatment of cold, gastritis, and rheumatoid joint pain, and further confirms its relatively new pharmacological activities, including anti-inflammatory, antineoplastic, and antipyretic activities. Other biological roles such as anti-osteoporosis, antibacterial, antidepressant, anti-atherosclerotic, and hypoglycemic activities have also been reported. However, the methodologies employed in individual studies are limited.
CONCLUSIONS: There is convincing evidence from both in vitro and in vivo studies supporting the traditional use of P. sarmentosum and it is imperative that natural bioactive compounds are examined further. More efforts should be focused on the pharmacodynamic constituents of P. sarmentosum to provide practical basis for quality control, and additional studies are needed to understand the mechanism of their action. Further studies on the comprehensive evaluation of medicinal quality and understandings of serum chemistry, multi-target network pharmacology, and molecular docking technology of P. sarmentosum are of great importance and should be considered.