METHODS: This was a prospective single center study which recruited 217 asymptomatic adult male participants in a coronavirus disease 2019 (COVID-19) quarantine center who had tested positive for SARS-CoV-2 8-10 days prior to isolation. Paired NPS and saliva specimens were collected and processed within 5 hours of sample collection. Real time reverse transcription polymerase chain reaction (RT-PCR) targeting Envelope (E) and RNA-dependent RNA polymerase (RdRp) genes was performed and the results were compared.
RESULTS: Overall, 160 of the 217 (74%) participants tested positive for COVID-19 based on saliva, NPS, or both testing methods. The detection rate for SARS-CoV-2 was higher in saliva compared to NPS testing (93.1%, 149/160 vs 52.5%, 84/160, P < .001). The concordance between the 2 tests was 45.6% (virus was detected in both saliva and NPS in 73/160), whereas 47.5% were discordant (87/160 tested positive for 1 whereas negative for the other). The cycle threshold (Ct) values for E and RdRp genes were significantly lower in saliva specimens compared to NP swab specimens.
CONCLUSIONS: Our findings demonstrate that saliva is a better alternative specimen for detection of SARS-CoV-2. Taking into consideration, the simplicity of specimen collection, shortage of PPE and the transmissibility of the virus, saliva could enable self-collection for an accurate SARS-CoV-2 surveillance testing.
METHODS: We recruited 81 travelers and 15 non-travelers (including ten controls) prospectively within a mean of 3·22 days of RT-PCR confirmed COVID-19. Each study participant provided 2 mls of early morning fresh drooled whole saliva separately into a sterile plastic container and GeneFiX™ saliva collection kit. The saliva specimens were processed within 4 h and tested for SARS-CoV-2 genes (E, RdRP, and N2) and the results compared to paired NPS RT-PCR for diagnostic accuracy.
RESULTS: Majority of travellers were asymptomatic (75·0%) with a mean age of 34·26 years. 77 travelers were RT-PCR positive at the time of hospitalization whilst three travelers had positive contacts. In this group, the detection rate for SARS-CoV-2 with NPS, whole saliva, and GeneFiX™ were comparable (89·3%, 50/56; 87·8%, 43/49; 89·6%, 43/48). Both saliva collection methods were in good agreement (Kappa = 0·69). There was no statistical difference between the detection rates of saliva and NPS (p > 0·05). Detection was highest for the N2 gene whilst the E gene provided the highest viral load (mean = 27·96 to 30·10, SD = 3·14 to 3·85). Saliva specimens have high sensitivity (80·4%) and specificity (90·0%) with a high positive predictive value of 91·8% for SARS-CoV-2 diagnosis.
CONCLUSION: Saliva for SARS-CoV-2 screening is a simple accurate technique comparable with NPS RT-PCR.
METHODS: A single case report of a female patient with the diagnosis of REAH, detailing her presenting symptoms, clinical findings, management and follow up.
RESULTS: Histopathological assessment of the excised nasopharyngeal polyp was consistent with a diagnosis of REAH with a discussion on the disease and its current literature reviews.
CONCLUSION: The incidence of REAH within the nasopharynx remain rare with only few cases described in literature, especially in females.
MATERIALS AND METHODS: An electronic search of the scientific literature from January 2005 to June 2016 was done using Web of Science, Dentistry & Oral Sciences Source and PubMed databases. A combination of search terms "rapid maxillary expansion", "nasal", "airway" and "breathing" were used. Studies that involved surgical or combined RME-surgical treatments and patients with craniofacial anomalies were excluded.
RESULTS: The initial screening yielded a total of 183 articles. After evaluation of the titles, abstracts and accessing the full text, a total of 20 articles fulfilled both inclusion/exclusion criteria and possessed adequate evidence to be incorporated into this review.
CONCLUSIONS: Non-surgical RME was found to improve breathing, increase nasal cavity geometry and decrease nasal airway resistance in children and adolescents.
METHOD: The nasopharyngeal airway device was modified to use as an airway stent by trimming it to the desired length. Next, the stent was inserted endoscopically and anchored using a novel approach.
RESULTS: The surgery was performed successfully without complications. The patients had full use of their voice while the stent was in situ. No significant granulation tissue was observed.
CONCLUSION: This paper demonstrates the feasibility of using a nasopharyngeal airway device as a temporary stent to prevent restenosis in cases where the patients have a strong demand for phonation. The modified nasopharyngeal airway device is potentially very promising, but cases must be selected carefully to avoid compromising efficacy and safety.