Browse publications by year: 2016

  1. Tiwari A, Gopalan Kutty N, Kumar N, Chaudhary A, Vasanth Raj P, Shenoy R, et al.
    Cytotechnology, 2016 Dec;68(6):2553-2565.
    PMID: 27282155 DOI: 10.1007/s10616-016-9979-9
    The oxadiazole moiety is known for its anticancer activity through its antiangiogenic and mitostatic potential. Taking this as a cue, the present study was designed to investigate the anti-cancer potential of selected oxadiazole derivatives. Twelve 1,3,4-oxadiazole derivatives (AMK OX-1 to AMK OX-12) were synthesized and were tested for IC50values through brine shrimp lethality assay and MTT assay on HeLa and A549 cell lines. Four compounds, AMK OX-8, 9, 11 and 12 showed potential cytotoxicity activity with low IC50value. These compounds produced considerable cytotoxic effect on Hep-2 and A549 cancer cell lines. However, they were found to be comparatively safer to normal cell lines, viz., V-79 cell lines than to the tested cancer cell lines, such as HeLa, A 549, and Hep2 cell lines. The mechanism of cytotoxicity was evaluated through nuclear staining and DNA ladder assay. Although DNA ladder assay showed DNA fragmentation (apoptotic phenomenon) in Hep-2 cells treated with only AMK OX-12, the staining procedures using acridine orange, ethidium bromide and propidium iodide showed apoptotic bodies in cells treated with AMK OX-8, 9 and 12 also. In JCI staining on isolated mitochondria of Hep2 cells, AMK OX-8, 9-11 and 12 displayed increasing fluorescence intensity with time which confirmed involvement of mitochondrial pathway and intrinsic pathway of apoptosis. All four compounds were found to be safe in acute oral toxicity study in Swiss albino mice. These derivatives were effective in reducing tumor size and weight in the in vivo DLA-induced solid tumor model. They were found to be significantly effective in reducing tumor volume and tumor weight.
  2. Mukhtar NH, See HH
    Anal Chim Acta, 2016 08 10;931:57-63.
    PMID: 27282751 DOI: 10.1016/j.aca.2016.04.032
    In this study, the potential for carbonaceous nanomaterials to be used as adsorbents for the mixed matrix membrane (MMM) microextraction and preconcentration of organic pollutants was demonstrated. For this method, multiwall carbon nanotubes (MWCNT) and single layer graphene (SLG) nanoparticles were individually incorporated through dispersion in a cellulose triacetate (CTA) polymer matrix to form a MWCNT-MMM and SLG-MMM, respectively. The prepared membranes were evaluated for the extraction of selected polycyclic aromatic hydrocarbons (PAHs) present in sewage pond water samples. The extraction was performed by dipping a small piece of membrane (7 mm × 7 mm) in a stirred 7.5 mL sample solution to initiate the analyte adsorption. This step was followed by an analyte desorption into 60 μL of methanol prior to high performance liquid chromatography (HPLC) analysis. When the optimum SLG-MMM microextraction technique was applied to spiked sewage pond water samples, the detection limit of the method for the PAHs were in the range of 0.02-0.09 ng/mL, with relative standard deviations of between 1.4% and 7.8%. Enrichment factors of 54-100 were achieved with relative recoveries of 99%-101%. A comparison was also made between the proposed approach and standard solid phase extraction using polymeric bonded octadecyl (C18) cartridges.
    MeSH terms: Adsorption; Methanol; Cellulose; Chromatography, High Pressure Liquid; Environmental Pollutants; Graphite; Polymers; Sewage; Nanotubes, Carbon; Nanostructures; Solid Phase Extraction; Limit of Detection; Ponds
  3. Tan CH, Tan KY, Tan NH
    J Proteomics, 2016 07 20;144:33-8.
    PMID: 27282922 DOI: 10.1016/j.jprot.2016.06.004
    Recent advances in proteomics enable deep profiling of the compositional details of snake venoms for improved understanding on envenomation pathophysiology and immunological neutralization. In this study, the venom of Australian tiger snake (Notechis scutatus) was trypsin-digested in solution and subjected to nano-ESI-LCMS/MS. Applying a relative quantitative proteomic approach, the findings revealed a proteome comprising 42 toxin subtypes clustered into 12 protein families. Phospholipases A2 constitute the most abundant toxins (74.5% of total venom proteins) followed by Kunitz serine protease inhibitors (6.9%), snake venom serine proteases (5.9%), alpha-neurotoxins (5.6%) and several toxins of lower abundance. The proteome correlates with N. scutatus envenoming effects including pre-synaptic and post-synaptic neurotoxicity and consumptive coagulopathy. The venom is highly lethal in mice (intravenous median lethal dose=0.09μg/g). BioCSL Sea Snake Antivenom, raised against the venoms of beaked sea snake (Hydrophis schistosus) and N. scutatus (added for enhanced immunogenicity), neutralized the lethal effect of N. scutatus venom (potency=2.95mg/ml) much more effectively than the targeted H.schistosus venom (potency=0.48mg/ml). The combined venom immunogen may have improved the neutralization against phospholipases A2 which are abundant in both venoms, but not short-neurotoxins which are predominant only in H. schistosus venom.

    SIGNIFICANCE: A shotgun proteomic approach adopted in this study revealed the compositional details of the venom of common tiger snake from Australia, Notechis scutatus. The proteomic findings provided additional information on the relative abundances of toxins and the detection of proteins of minor expression unreported previously. The potent lethal effect of the venom was neutralized by bioCSL Sea Snake Antivenom, an anticipated finding due to the fact that the Sea Snake Antivenom is actually bivalent in nature, being raised against a mix of venoms of the beaked sea snake (Hydrophis schistosus) and N. scutatus. However, it is surprising to note that bioCSL Sea Snake Antivenom neutralized N. scutatus venom much more effectively compared to the targeted sea snake venom by a marked difference in potency of approximately 6-fold. This phenomenon may be explained by the main difference in the proteomes of the two venoms, where H. schistosus venom is dominated by short-neurotoxins in high abundance - this is a poorly immunogenic toxin group that has been increasingly recognized in the venoms of a few cobras. Further investigations should be directed toward strategies to improve the neutralization of short-neurotoxins, in line with the envisioned production of an effective pan-regional elapid antivenom.

    MeSH terms: Animals; Antivenins/immunology*; Elapid Venoms/chemistry*; Immunologic Factors; Neurotoxins/immunology; Proteome/analysis; Proteomics/methods*; History, Ancient; Mice; Antibodies, Neutralizing/pharmacology; Antibodies, Neutralizing/therapeutic use
  4. Lee NY, Khoo WK, Adnan MA, Mahalingam TP, Fernandez AR, Jeevaratnam K
    J Pharm Pharmacol, 2016 Jun 10.
    PMID: 27283048 DOI: 10.1111/jphp.12565
    Phyllanthus niruri is a traditional shrub of the genus Phyllanthaceae with long-standing Ayurvedic, Chinese and Malay ethnomedical records. Preliminary studies from cell and animal model have provided valuable scientific evidence for its use.
    MeSH terms: Animals; Disease Models, Animal; Malaysia; Medicine, Traditional; Phyllanthus
  5. Abedini A, Bakar AA, Larki F, Menon PS, Islam MS, Shaari S
    Nanoscale Res Lett, 2016 Dec;11(1):287.
    PMID: 27283051 DOI: 10.1186/s11671-016-1500-z
    This paper focuses on the recent advances on radiolysis-assisted shape-controlled synthesis of noble metal nanostructures. The techniques and protocols for producing desirable shapes of noble metal nanoparticles are discussed through introducing the critical parameters which can influence the nucleation and growth mechanisms. Nucleation rate plays a vital role on the crystallinity of seeds while growth rate of different seeds' facets determines the final shape of resultant nanoparticles. Nucleation and growth rate both can be altered with factors such as absorbed dose, capping agents, and experimental environment condition to control the final shape. Remarkable physical and chemical properties of synthesized noble metal nanoparticles by controlled morphology have been systematically evaluated to fully explore their applications.
    MeSH terms: Metals; Nanostructures; Metal Nanoparticles
  6. Mat Yusoff M, Gordon MH, Ezeh O, Niranjan K
    Food Chem, 2016 Nov 15;211:400-8.
    PMID: 27283648 DOI: 10.1016/j.foodchem.2016.05.050
    This paper reports on the extraction of Moringa oleifera (MO) oil by using aqueous enzymatic extraction (AEE) method. The effect of different process parameters on the oil recovery was discovered by using statistical optimization, besides the effect of selected parameters on the formation of its oil-in-water cream emulsions. Within the pre-determined ranges, the use of pH 4.5, moisture/kernel ratio of 8:1 (w/w), and 300stroke/min shaking speed at 40°C for 1h incubation time resulted in highest oil recovery of approximately 70% (goil/g solvent-extracted oil). These optimized parameters also result in a very thin emulsion layer, indicating minute amount of emulsion formed. Zero oil recovery with thick emulsion were observed when the used aqueous phase was re-utilized for another AEE process. The findings suggest that the critical selection of AEE parameters is key to high oil recovery with minimum emulsion formation thereby lowering the load on the de-emulsification step.
    MeSH terms: Emulsions/analysis; Emulsions/metabolism; Plant Oils/analysis*; Plant Oils/metabolism; Water/chemistry*; Moringa oleifera/enzymology*; Moringa oleifera/metabolism; Moringa oleifera/chemistry*
  7. Wang X, Song T, Gong F, Zheng P
    Sci Rep, 2016 06 10;6:27624.
    PMID: 27283843 DOI: 10.1038/srep27624
    Neural-like computing models are versatile computing mechanisms in the field of artificial intelligence. Spiking neural P systems (SN P systems for short) are one of the recently developed spiking neural network models inspired by the way neurons communicate. The communications among neurons are essentially achieved by spikes, i. e. short electrical pulses. In terms of motivation, SN P systems fall into the third generation of neural network models. In this study, a novel variant of SN P systems, namely SN P systems with self-organization, is introduced, and the computational power of the system is investigated and evaluated. It is proved that SN P systems with self-organization are capable of computing and accept the family of sets of Turing computable natural numbers. Moreover, with 87 neurons the system can compute any Turing computable recursive function, thus achieves Turing universality. These results demonstrate promising initiatives to solve an open problem arisen by Gh Păun.
    MeSH terms: Neural Networks (Computer)*
  8. Lunze K, Idrisov B, Golichenko M, Kamarulzaman A
    BMJ, 2016 Jun 09;353:i2943.
    PMID: 27284009 DOI: 10.1136/bmj.i2943
    Global evidence indicates that mandated treatment of drug dependence conflicts with drug users’ human rights and is not effective in treating addiction. Karsten Lunze and colleagues argue that drug treatment policies must be evidence based and meet international standards
    MeSH terms: Humans; Human Rights/standards*; Russia/epidemiology; Global Health; Government Regulation
  9. Daker M, Yeo JT, Bakar N, Abdul Rahman AS, Ahmad M, Yeo TC, et al.
    Exp Ther Med, 2016 Jun;11(6):2117-2126.
    PMID: 27284293
    Nasopharyngeal carcinoma (NPC) is a type of tumour that arises from the epithelial cells that line the surface of the nasopharynx. NPC is treated with radiotherapy and cytotoxic chemotherapeutic drugs such as cisplatin and 5-fluorouracil. However, current strategies are often associated with potential toxicities. This has prompted efforts to identify alternative methods of treatment. The present study aimed to investigate silvestrol and episilvestrol-mediated inhibition of cell proliferation in human NPC cells. The growth kinetics of NPC cells treated with silvestrol or episilvestrol were monitored dynamically using a real-time, impedance-based cell analyzer, and dose-response profiles were generated using a colorimetric cell viability assay. Furthermore, apoptosis was evaluated using flow cytometry and high content analysis. In addition, flow cytometry was performed to determine cell cycle distribution. Finally, the effects of combining silvestrol or episilvestrol with cisplatin on NPC cells was examined. Apoptosis was not observed in silvestrol and episilvestrol-treated NPC cells, although cell cycle perturbation was evident. Treatment with both compounds induced a significant increase in the percentage of cells in the G2/M phase, as compared with the control. In vitro cultures combining silvestrol or episilvestrol with cisplatin showed synergistic effects against NPC cells. The results of the present study suggested that silvestrol and episilvestrol had an anti-tumour activity in NPC cells. Silvestrol and episilvestrol, particularly in combination with cisplatin, merit further investigation, so as to determine the cellular mechanisms underlying their action(s) as anti-NPC agents.
    MeSH terms: Antineoplastic Agents; Cell Survival; Cisplatin; Colorimetry; Flow Cytometry; Fluorouracil; Humans; Kinetics; Nasopharyngeal Neoplasms; Triterpenes; G2 Phase; Electric Impedance; Cell Proliferation
  10. Zahari Z, Lee CS, Ibrahim MA, Musa N, Mohd Yasin MA, Lee YY, et al.
    Am J Drug Alcohol Abuse, 2016 09;42(5):587-596.
    PMID: 27284701 DOI: 10.3109/00952990.2016.1172078
    BACKGROUND: Methadone is a substrate of the permeability glycoprotein (P-gp) efflux transporter, which is encoded by the ABCB1 (MDR1) gene. Large interindividual variability in serum methadone levels for therapeutic response has been reported. Genetic variations in ABCB1 gene may be responsible for the variability in observed methadone concentrations.
    OBJECTIVE: This study investigated the associations of ABCB1 polymorphisms and serum methadone concentration over the 24-hour dosing interval in opioid-dependent patients on methadone maintenance therapy (MMT).
    METHODS: One hundred and forty-eight male opioid-dependent patients receiving MMT were recruited. Genomic deoxyribonucleic acid (DNA) was extracted from whole blood and genotyped for ABCB1 polymorphisms [i.e. 1236C>T (dbSNP rs1128503), 2677G>T/A (dbSNP rs2032582), and 3435C>T (dbSNP rs1045642)] using the allelic discrimination real-time polymerase chain reaction (PCR). Blood samples were collected at 0, 0.5, 1, 2, 4, 8, 12, and 24 hours after the dose. Serum methadone concentrations were measured using the Methadone ELISA Kit.
    RESULTS: Our results revealed an association of CGC/TTT diplotype (1236C>T, 2677G>T/A, and 3435C>T) with dose-adjusted serum methadone concentration over the 24-hour dosing interval. Patients with CGC/TTT diplotype had 32.9% higher dose-adjusted serum methadone concentration over the 24-hour dosing interval when compared with those without the diplotype [mean (SD) = 8.12 (0.84) and 6.11 (0.41) ng ml-1mg-1, respectively; p = 0.033].
    CONCLUSION: There was an association between the CGC/TTT diplotype of ABCB1 polymorphisms and serum methadone concentration over the 24-hour dosing interval among patients on MMT. Genotyping of ABCB1 among opioid-dependent patients on MMT may help individualize and optimize methadone substitution treatment.
    Study site: Psychiatric Clinic, Hospital Universiti Sains Malaysia (HUSM), and other MMT clinics in Kelantan,
    Malaysia
    MeSH terms: Adult; Cross-Sectional Studies; Genotype; Hospitals, University; Humans; Malaysia; Male; Methadone/blood*; Methadone/pharmacokinetics; Methadone/therapeutic use*; Middle Aged; Outpatient Clinics, Hospital; P-Glycoproteins/genetics; Polymorphism, Single Nucleotide/genetics*; Opiate Substitution Treatment*
  11. N Ahmed M, Abdullah AH, Kaiwartya O
    PLoS One, 2016;11(6):e0156885.
    PMID: 27285146 DOI: 10.1371/journal.pone.0156885
    Due to the continuous advancements in wireless communication in terms of quality of communication and affordability of the technology, the application area of Mobile Adhoc Networks (MANETs) significantly growing particularly in military and disaster management. Considering the sensitivity of the application areas, security in terms of detection of Denial of Service (DoS) and intrusion has become prime concern in research and development in the area. The security systems suggested in the past has state recognition problem where the system is not able to accurately identify the actual state of the network nodes due to the absence of clear definition of states of the nodes. In this context, this paper proposes a framework based on Finite State Machine (FSM) for denial of service and intrusion detection in MANETs. In particular, an Interruption Detection system for Adhoc On-demand Distance Vector (ID-AODV) protocol is presented based on finite state machine. The packet dropping and sequence number attacks are closely investigated and detection systems for both types of attacks are designed. The major functional modules of ID-AODV includes network monitoring system, finite state machine and attack detection model. Simulations are carried out in network simulator NS-2 to evaluate the performance of the proposed framework. A comparative evaluation of the performance is also performed with the state-of-the-art techniques: RIDAN and AODV. The performance evaluations attest the benefits of proposed framework in terms of providing better security for denial of service and intrusion detection attacks.
    MeSH terms: Algorithms; Communication; Disasters; Humans; Information Systems; Longitudinal Studies; Military Personnel
  12. Shirley Ding SL, Leow SN, Munisvaradass R, Koh EH, Bastion ML, Then KY, et al.
    Eye (Lond), 2016 Oct;30(10):1293-1309.
    PMID: 27285322 DOI: 10.1038/eye.2016.94
    Erythropoietin (EPO) is a glycoprotein hormone conventionally thought to be responsible only in producing red blood cells in our body. However, with the discovery of the presence of EPO and EPO receptors in the retinal layers, the EPO seems to have physiological roles in the eye. In this review, we revisit the role of EPO in the eye. We look into the biological role of EPO in the development of the eye and the physiologic roles that it has. Apart from that, we seek to understand the mechanisms and pathways of EPO that contributes to the therapeutic and pathological conditions of the various ocular disorders such as diabetic retinopathy, retinopathy of prematurity, glaucoma, age-related macular degeneration, optic neuritis, and retinal detachment. With these understandings, we discuss the clinical applications of EPO for treatment of ocular disorders, modes of administration, EPO formulations, current clinical trials, and its future directions.
    MeSH terms: Erythropoietin/physiology; Erythropoietin/therapeutic use*; Eye Diseases/drug therapy*; Eye Diseases/etiology; Eye Diseases/physiopathology; Eye Diseases/prevention & control; Humans
  13. Shariat A, Tamrin SB, Arumugam M, Danaee M, Ramasamy R
    Work, 2016 Jun 8;54(3):753-8.
    PMID: 27286077 DOI: 10.3233/WOR-162313
    The accuracy of instruments such as questionnaires and the goniometer are critical for measuring the severity of musculoskeletal disorders among office workers.
  14. Low CS, Ho JJ, Nallusamy R
    World J Pediatr, 2016 Nov;12(4):450-454.
    PMID: 27286688 DOI: 10.1007/s12519-016-0037-7
    BACKGROUND: Most of the evidence on early feeding of preterm infants was derived from high income settings, it is equally important to evaluate whether it can be successfully implemented into less resourced settings. This study aimed to compare growth and feeding of preterm infants before and after the introduction of a new aggressive feeding policy in Penang Hospital, a tertiary referral hospital in a middle income country.

    METHODS: The new aggressive feeding policy was developed mainly from Cochrane review evidence, using early parenteral and enteral nutrition with standardized breastfeeding counselling aimed at empowering mothers to provide early expressed milk. A total of 80 preterm babies (34 weeks and below) discharged from NICU were included (40 pre- and 40 post-intervention). Pre and post-intervention data were compared. The primary outcome was growth at day 7, 14, 21 and at discharge and secondary outcomes were time to full oral feeding, breastfeeding rates, and adverse events.

    RESULTS: Complete data were available for all babies to discharge. One baby was discharged prior to day 14 and 10 babies before day 21, so growth data for these babies were unavailable. Baseline data were similar in the two groups. There was no significant weight difference at 7, 14, 21 days and at discharge. More post-intervention babies were breastfed at discharge than pre-intervention babies (21 vs. 8, P=0.005). Nosocomial infection (11 vs. 4, P=0.045), and blood transfusion were significantly lower in the postintervention babies than in the pre-intervention babies (31 vs. 13, P=0.01). The post-intervention babies were more likely to achieve shorter median days (interquartile range) to full oral feeding [11 (6) days vs. 13 (11) days, P=0.058] and with lower number affecting necrotising enterocolitis (0 vs. 5, P=0.055).

    CONCLUSION: Early aggressive parenteral nutrition and early provision of mother's milk did not result in improved growth as evidenced by weight gain at discharge. However we found more breastfeeding babies, lower nosocomial infection and transfusion rates. Our findings suggest that implementing a more aggressive feeding policy supported by high level scientific evidence is able to improve important outcomes.
    MeSH terms: Breast Feeding/trends*; Developing Countries; Female; Follow-Up Studies; Gestational Age; Humans; Infant Nutritional Physiological Phenomena; Infant, Newborn; Infant, Premature/growth & development*; Intensive Care Units, Neonatal; Length of Stay; Malaysia; Male; Parenteral Nutrition/standards*; Parenteral Nutrition/trends; Patient Discharge; Policy Making; Pregnancy; Retrospective Studies; Cohort Studies; Chi-Square Distribution; Outcome Assessment (Health Care)*; Nutrition Policy*; Statistics, Nonparametric; Tertiary Care Centers
  15. Nizar SA, Mohd Suah FB
    J Fluoresc, 2016 Jul;26(4):1167-71.
    PMID: 27286697 DOI: 10.1007/s10895-016-1845-9
    The effect of room temperature ionic liquid (RTIL) on the formation of the fluorescence ternary complex oxalate-sodium morin-5-sulfonate (NaMSA)-Aluminium(III) has been studied. In weakly acidic medium and in the presence of RTIL, 1-Butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6), total complex formation is achieved as compared with the formation of the binary complex of NaMSA-Aluminium(III). The fluorescence characteristics of the system allowed the establishment of a very sensitive method for the spectrofluorimetric determination of oxalate ion. The ternary complex formed its highest fluorescence signal at 513 nm and excitation at 420 nm. In these conditions, the method produces a detection limit of 0.57 ng mL(-1). The procedure has been satisfactorily applied to the determination of oxalate ion in a vegetal tissue (spinach leaves).
    MeSH terms: Aluminum/chemistry*; Flavonoids/chemistry*; Models, Molecular; Molecular Conformation; Oxalates/chemistry*; Spectrometry, Fluorescence; Sulfonic Acids/chemistry*; Temperature*; Ionic Liquids/chemistry*
  16. Marjanovic J, Mulder HA, Khaw HL, Bijma P
    Genet. Sel. Evol., 2016 06 10;48(1):41.
    PMID: 27286860 DOI: 10.1186/s12711-016-0218-9
    Animal breeding programs have been very successful in improving the mean levels of traits through selection. However, in recent decades, reducing the variability of trait levels between individuals has become a highly desirable objective. Reaching this objective through genetic selection requires that there is genetic variation in the variability of trait levels, a phenomenon known as genetic heterogeneity of environmental (residual) variance. The aim of our study was to investigate the potential for genetic improvement of uniformity of harvest weight and body size traits (length, depth, and width) in the genetically improved farmed tilapia (GIFT) strain. In order to quantify the genetic variation in uniformity of traits and estimate the genetic correlations between level and variance of the traits, double hierarchical generalized linear models were applied to individual trait values.
    MeSH terms: Animals; Body Weight/genetics*; Phenotype; Selection, Genetic; Genetic Variation*; Quantitative Trait, Heritable*; Cichlids/genetics*; Cichlids/growth & development*; Body Size/genetics*
  17. Bera H, Gaini C, Kumar S, Sarkar S, Boddupalli S, Ippagunta SR
    Mater Sci Eng C Mater Biol Appl, 2016 Oct 01;67:170-181.
    PMID: 27287111 DOI: 10.1016/j.msec.2016.05.016
    Novel alginate-fenugreek gum (FG) gel membrane coated hydroxypropylmethylcellulose (HPMC) based matrix tablets were developed for intragastric quetiapine fumarate (QF) delivery by combining floating and swelling mechanisms. The effects of polymer blend ratios [HPMC K4M:HPMC E15] and citric acid contents on time taken for 50% drug release (t50%, min) and drug release at 8h (Q8h, %) were studied to optimize the core tablets by 3(2) factorial design. The optimized tablets (F-O) exhibited t50% of 247.67±3.51min and Q8h of 71.11±0.32% with minimum errors in prediction. The optimized tablets were coated with Ca(+2) ions crosslinked alginate-FG gel membrane by diffusion-controlled interfacial complexation technique. The biopolymeric-coated optimized matrices exhibited superior buoyancy, preferred swelling characteristics and slower drug release rate. The drug release profiles of the QF-loaded uncoated and coated optimized matrices were best fitted in Korsmeyer-Peppas model with anomalous diffusion driven mechanism. The uncoated and coated tablets containing QF were also characterized for drug-excipients compatibility, thermal behaviour and surface morphology by FTIR, DSC and SEM analyses, respectively. Thus, the newly developed alginate-FG gel membrane coated HPMC matrices are appropriate for intragastric delivery of QF over a prolonged period of time with greater therapeutic benefits.
    MeSH terms: Gingiva/chemistry*; Membranes, Artificial*; Tablets, Enteric-Coated; Trigonella/chemistry*
  18. Michael FM, Khalid M, Walvekar R, Ratnam CT, Ramarad S, Siddiqui H, et al.
    Mater Sci Eng C Mater Biol Appl, 2016 Oct 01;67:792-806.
    PMID: 27287178 DOI: 10.1016/j.msec.2016.05.037
    Bones are nanocomposites consisting of a collagenous fibre network, embedded with calcium phosphates mainly hydroxyapatite (HA) nanocrystallites. As bones are subjected to continuous loading and unloading process every day, they often tend to become prone to fatigue and breakdown. Therefore, this review addresses the use of nanocomposites particularly polymers reinforced with nanoceramics that can be used as load bearing bone implants. Further, nanocomposite preparation and dispersion modification techniques have been highlighted along with thorough discussion on the influence that various nanofillers have on the physico-mechanical properties of nanocomposites in relation to that of natural bone properties. This review updates the nanocomposites that meet the physico-mechanical properties (strength and elasticity) as well as biocompatibility requirement of a load bearing bone implant and also attempts to highlight the gaps in the reported studies to address the fatigue and creep properties of the nanocomposites.
    MeSH terms: Animals; Bone and Bones*; Humans; Weight-Bearing; Absorbable Implants*
  19. Zakaria ZA, Yahya F, Mamat SS, Mahmood ND, Mohtarrudin N, Taher M, et al.
    BMC Complement Altern Med, 2016;16(1):175.
    PMID: 27287196 DOI: 10.1186/s12906-016-1110-4
    Methanol extract of Bauhinia purpurea L. (family Fabaceae) (MEBP) possesses high antioxidant and anti-inflammatory activities and recently reported to exert hepatoprotection against paracetamol (PCM)-induced liver injury in rats. In an attempt to identify the hepatoprotective bioactive compounds in MEBP, the extract was prepared in different partitions and subjected to the PCM-induced liver injury model in rats.
  20. Lazim ZM, Hadibarata T
    Braz J Microbiol, 2016 Jul-Sep;47(3):610-6.
    PMID: 27287336 DOI: 10.1016/j.bjm.2016.04.015
    This study aimed to investigate the impact of nonionic surfactants on the efficacy of fluorine degradation by Polyporus sp. S133 in a liquid culture. Fluorene was observed to be degraded in its entirety by Polyporus sp. S133 subsequent to a 23-day incubation period. The fastest cell growth rate was observed in the initial 7 days in the culture that was supplemented with Tween 80. The degradation process was primarily modulated by the activity of two ligninolytic enzymes, laccase and MnP. The highest laccase activity was stimulated by the addition of Tween 80 (2443U/L) followed by mixed surfactant (1766U/L) and Brij 35 (1655U/L). UV-vis spectroscopy, TLC analysis and mass spectrum analysis of samples subsequent to the degradation process in the culture medium confirmed the biotransformation of fluorene. Two metabolites, 9-fluorenol (λmax 270, tR 8.0min and m/z 254) and protocatechuic acid (λmax 260, tR 11.3min and m/z 370), were identified in the treated medium.
    MeSH terms: Biotransformation; Fluorenes; Fluorine; Polyethylene Glycols; Polysorbates; Spectrum Analysis; Mass Spectrometry; Surface-Active Agents; Laccase; Polyporus; Hydroxybenzoates
External Links