Browse publications by year: 2021

  1. Wong LM, Phoon LQ, Wei LK
    J Stroke Cerebrovasc Dis, 2021 Dec;30(12):106033.
    PMID: 34598837 DOI: 10.1016/j.jstrokecerebrovasdis.2021.106033
    OBJECTIVES: In recent years, the evidence of the relationship between epigenetics and acute ischemic stroke (AIS) were accumulating, however, the epigenetic characteristics that directs specifically towards the aetiology of large-artery atherosclerosis (LAA) remain ambiguous. The aim of this study was to highlight the overall evidence concerning the epigenetic mechanisms associated with the occurrence of LAA.

    MATERIALS AND METHODS: Studies that involve investigations related to epigenetic markers (DNA methylation and RNA modifications) and LAA were retrieved from eleven scientific publication databases. The studies were screened through the pre-set inclusion and exclusion criteria prior to the NOS evaluation.

    RESULTS: Eligible studies (n=25) were evaluated. Of which, six reported on DNA methylation and 19 studies assessed RNA modifications (16 on miRNAs, two on lncRNAs, and one study on circRNA). Hypomethylation of MTRNR2L8 and ERα promoters; microRNAs (miR-7-2-3p, miR-16, miR-34a-5p, miR-126, miR-143, miR-200b, miR-223, miR-503, miR-1908, miR-146a rs2910164 C/G, miR-149 rs2292832 T/C, miR-200b rs7549819 T/C, miR-34a rs2666433); lncRNA of ZFAS1; and circRNA of hsa_circRNA_102488 were associated with LAA significantly.

    CONCLUSION: Current systematic review highlighted hypomethylation of miRNAs and lncRNA might be the potential biomarkers for LAA.

    MeSH terms: Humans; Epigenesis, Genetic
  2. M Saber SE, Abdullah LC, Jamil SNAM, Choong TSY, Ting TM
    Sci Rep, 2021 Oct 01;11(1):19573.
    PMID: 34599205 DOI: 10.1038/s41598-021-97397-y
    The method of pre-irradiation grafting was used with the aid of electron beam (EB) accelerator to accomplish the grafting of polyamide 6 fibers (PA6) with glycidyl methacrylate (GMA). The extent to which GMA was grafted on PA6 was found to be markedly influenced by the absorbed dose of radiation and the reaction time of grafting. Trimethylamine (TMA) was afterwards employed for the functionalization of GMA-grafted fibers (PA6-g-GMA). A range of analyses (e.g., FTIR, FESEM, XRD, BET, and pHpzc) were carried out to determine the physiochemical and morphological properties of the fibrous adsorbent. p-Nitrophenol (PNP) adsorption from aqueous solution was conducted with the resulting TMA-(PA6-g-GMA) adsorbent. The adsorption behaviour of PNP on the fibrous adsorbent was clarified by investigating the adsorption kinetics and isotherm. According to the results, the adsorption of PNP on TMA-(PA6-g-GMA) reflected the pseudo-second order model. Meanwhile, the isotherm analysis revealed that the best description of the equilibrium data was provided by Redlich-Peterson model, followed closely by Langmuir isotherm model. The achieved adsorption capacity was highest at 176.036 mg/g. Moreover, the adsorption was indicated by the thermodynamic analysis to be spontaneous and exothermic. Regeneration and recycling of the adsorbent was possible for a minimum of five cycles with no reduction in adsorption capacity. It was concluded that the fibrous adsorbent could have applications for the removal of PNP at industrial pilot scale.
  3. Hannan MA, How DNT, Lipu MSH, Mansor M, Ker PJ, Dong ZY, et al.
    Sci Rep, 2021 Oct 01;11(1):19541.
    PMID: 34599233 DOI: 10.1038/s41598-021-98915-8
    Accurate state of charge (SOC) estimation of lithium-ion (Li-ion) batteries is crucial in prolonging cell lifespan and ensuring its safe operation for electric vehicle applications. In this article, we propose the deep learning-based transformer model trained with self-supervised learning (SSL) for end-to-end SOC estimation without the requirements of feature engineering or adaptive filtering. We demonstrate that with the SSL framework, the proposed deep learning transformer model achieves the lowest root-mean-square-error (RMSE) of 0.90% and a mean-absolute-error (MAE) of 0.44% at constant ambient temperature, and RMSE of 1.19% and a MAE of 0.7% at varying ambient temperature. With SSL, the proposed model can be trained with as few as 5 epochs using only 20% of the total training data and still achieves less than 1.9% RMSE on the test data. Finally, we also demonstrate that the learning weights during the SSL training can be transferred to a new Li-ion cell with different chemistry and still achieve on-par performance compared to the models trained from scratch on the new cell.
  4. Cao Y, Lu Z, Wang D, Tan KS, Liu W, Wu Q, et al.
    Eur J Pharmacol, 2021 Nov 15;911:174539.
    PMID: 34599913 DOI: 10.1016/j.ejphar.2021.174539
    Ischemia heart disease, one of the lethal cardiovascular diseases, irreversibly impairs cardiac function and is recognized as the primary risk factor for mortality in industrialized countries. The myocardial ischemia treatment still faces a considerable degree of increasing unmet needs. Isosteviol sodium (STVNa) and its derivatives have been proven to effectively alleviate metabolic diseases, hypertension, and heart hypertrophy. Little is known about how STVNa confers the cardioprotective effect during acute myocardial ischemia (AMI). In the present study, a rat model of acute ST-segment-elevation myocardial ischemia by left anterior descending (LAD) ligation was established. Compared to the AMI model group, STVNa administration (4 mg/kg, twice a day) well preserved left ventricle function by ejection fraction (45.10 ± 10.39 vs. 73.64 ± 13.15, p = 0.0013) and fractional shortening (22.94 ± 6.28 vs. 44.00 ± 11.05, p = 0.0017). Further analysis shows that high-dose STVNa (4 mg/kg) significantly improved the hemodynamics in AMI rats, with LVSP (88.25 ± 12.78 vs 99.75 ± 5.10, p = 0.018), max dP/dt (2978.45 ± 832.46 vs 4048.56 ± 827.23, p = 0.096), LVEDP (19.88 ± 2.00 vs 22.26 ± 3.21, p = 0.04) and left ventricular relaxation time constant (Tau) (0.030 ± 0.006 vs 0.021 ± 0.004, p = 0.021). Mechanically, STVNa administration retained the myocardial levels of phosphorylated AMPK, and CPT1b. Moreover, STVNa significantly increased the total energy expenditure, and reduced fatty acid accumulation through mitochondrial oxidative phosphorylation, which was supported by the indirect calorimetry and cellular energy analysis. Taken together, these findings suggest that STVNa is a potential cardioprotection agent for ischemic cardiomyopathy, likely through improving energy homeostasis, left ventricular hemodynamics, and heart function.
    MeSH terms: Adenosine Triphosphate/biosynthesis; Animals; Echocardiography; Heart; Heart Ventricles; Hemodynamics; Homeostasis; Male; Metabolic Diseases/drug therapy; Myocardium; Sodium; Rats, Sprague-Dawley; Rats
  5. Poh Yen K, Stanslas J, Zhang T, Li H, Wang X, Kok Meng C, et al.
    Bioorg Med Chem, 2021 11 01;49:116442.
    PMID: 34600241 DOI: 10.1016/j.bmc.2021.116442
    Acquired paclitaxel (PTX) chemoresistance in triple-negative breast cancer (TNBC) can be inferred from the overexpression of toll-like receptor 4 (TLR4) and myeloid differentiation primary response 88 (MyD88) proteins and the activation of the TLR4/MyD88 cascading signalling pathway. Finding a new inhibitor that can attenuate the activation of this pathway is a novel strategy for reducing PTX chemoresistance. In this study, a series of small molecule compounds were synthesised and tested in combination with PTX against TNBC cells. The trimethoxy-substituted compound significantly decreased MyD88 overexpression and improved PTX activity in MDA-MB-231TLR4+ cells but not in HCCTLR4- cells. On the contrary, the trifluoromethyl-substituted compound with PTX synergistically improved the growth inhibition in both TNBC subtypes. The fluorescence titrations indicated that both compounds could bind with MD2 with good and comparable binding affinities. This was further supported by docking analysis, in which both compounds fit perfectly well and form some critical binding interactions with MD2, an essential lipid-binding accessory to TLR4 involved in activating the TLR-4/MyD88-dependent pathway.
    MeSH terms: Antineoplastic Agents, Phytogenic/chemical synthesis; Antineoplastic Agents, Phytogenic/pharmacology*; Antineoplastic Agents, Phytogenic/chemistry; Dose-Response Relationship, Drug; Drug Screening Assays, Antitumor; Humans; Structure-Activity Relationship; Molecular Structure; Paclitaxel/chemical synthesis; Paclitaxel/pharmacology*; Paclitaxel/chemistry; Cell Line, Tumor; Cell Proliferation/drug effects; Toll-Like Receptor 4/antagonists & inhibitors; Toll-Like Receptor 4/genetics; Myeloid Differentiation Factor 88/antagonists & inhibitors*; Myeloid Differentiation Factor 88/genetics; Small Molecule Libraries/chemical synthesis; Small Molecule Libraries/pharmacology*; Small Molecule Libraries/chemistry; Triple Negative Breast Neoplasms/drug therapy*; Triple Negative Breast Neoplasms/metabolism; Triple Negative Breast Neoplasms/pathology
  6. Saravanan A, Senthil Kumar P, Khoo KS, Show PL, Femina Carolin C, Fetcia Jackulin C, et al.
    Bioresour Technol, 2021 Dec;342:126021.
    PMID: 34600315 DOI: 10.1016/j.biortech.2021.126021
    Microbial fermentation of organic matter under anaerobic conditions is currently the prominent pathway for biohydrogen production. Organic matter present in waste residues is regarded as an economic feedstock for biohydrogen production by dark and photo fermentative bacteria. Agricultural residues, fruit wastes, vegetable wastes, industrial wastewaters, and other livestock residues are some of the organic wastes most commonly used for biohydrogen production due to their higher organic content and biodegradability. Appropriate pretreatments are required to enhance the performance of biohydrogen from complex organic wastes. Biohydrogen production could also be enhanced by optimizing operation conditions and the addition of essential nutrients and nanoparticles. This review describes the pathways of biohydrogen production, discusses the effect of organic waste sources used and microbes involved on biohydrogen production, along with addressing the key parameters, advantages, and difficulties in each biohydrogen production pathway.
  7. Tan JWY, Alwi M, Siew ELL, Samion H
    Catheter Cardiovasc Interv, 2021 Oct;98(4):738-742.
    PMID: 34143549 DOI: 10.1002/ccd.29838
    Ductal stenting in patients with duct-dependent pulmonary circulation has allowed growth of pulmonary arteries prior to definitive surgical procedures. Intraprocedural stent thrombosis (IPST) of the arterial duct is a life-threatening complication as it leads to total circulatory collapse. Previous reports have described use of tissue plasminogen activators in infants for less emergent settings. We report three infants with IPST and the use of tenecteplase to overcome this. Also discussed are the predisposing mechanisms in each scenario and a possibility of direct catheter-guided tenecteplase administration. Judicious use of tenecteplase can be life-saving and rapid access to this drug may obviate the need for emergency extracorporeal life support.
  8. Tan PP, Abdul Rahman J, Mat Noh S, Mohd Yasin I, Mohd Noor S
    Transfus Apher Sci, 2021 Dec;60(6):103280.
    PMID: 34593332 DOI: 10.1016/j.transci.2021.103280
    MeSH terms: Humans; Malaysia/epidemiology; Pandemics; Tertiary Care Centers
  9. Chang YM, Zhao XF, Liew HJ, Sun B, Wang SY, Luo L, et al.
    Front Physiol, 2021;12:676096.
    PMID: 34594232 DOI: 10.3389/fphys.2021.676096
    The Amur ide (Leuciscus waleckii) is a fish in the Cyprinidae family. Compared with other Amur ide living in freshwater ecosystems, the Amur ide population in Lake Dali Nor of China is famous for its high tolerance to the alkaline conditions of 54 mM (pH 9.6). Yet, surprisingly, the ionoregulatory mechanism responsible for this remarkable alkaline adaptation remains unclear. Therefore, this study sought to investigate how bicarbonate affects the acid-base balancing and ionoregulatory responses of this animal. Here, using a comparative approach, the alkali form of Amur ide and its ancestral freshwater form living in other freshwater basins were each exposed to 50 mM (pH 9.59 ± 0.09), a level close to the alkalinity of Lake Dali Nor, and their physiological (AE1) adjustment of ions and acid-base regulation were investigated. This study highlighted differences in blood pH and serum ions (e.g., Na+, K+, Cl-, and Ca2+), Na+/K+ ATPase (NKA) activity and its mRNA level, and mRNA expression of gill transporters (Na+/H+ exchanger member 2 and/or 3, Na+/ HCO 3 - cotransporter (NBC1), Cl-/ HCO 3 - exchanger, Na+/Cl- cotransporter (NCC), Na+/K+/2Cl- (NKCC1), SLC26A5, and SLC26A6) for alkalinity adaptation between the two forms of Amur ide differing in alkalinity tolerance. Specifically, close relationships among the serum Na+ and mRNA levels of NCC, NKCC1, and NHE, and also NKA and NBC1, in addition to serum Cl- and bicarbonate transporters (e.g., SLC26A5 and SLC26A6), characterized the alkali form of Amur ide. We propose that this ecotype can ensure its transepithelial Cl- and Na+ uptake/base secretions are highly functional, by its basolateral NKA with NBC1 and apical ionic transporters, and especially NCC incorporated with other transporters (e.g., SLC26). This suggests an evolved strong ability to maintain an ion osmotic and acid-base balance for more effectively facilitating its adaptability to the high alkaline environment. This study provides new insights into the physiological responses of the alkaline form of the Amur ide fish for adapting to extreme alkaline conditions. This information could be used as a reference to cultivating alkaline-tolerant fish species in abandoned alkaline waters.
  10. Alshwaiyat NM, Ahmad A, Wan Hassan WMR, Al-Jamal HAN
    Exp Ther Med, 2021 Nov;22(5):1268.
    PMID: 34594405 DOI: 10.3892/etm.2021.10703
    Obesity is a risk factor for several comorbidities and complications, including iron deficiency anemia. Iron deficiency anemia is a serious global public health problem, with a worldwide prevalence. The high prevalence of obesity in combination with iron deficiency incidence observed in different age and sex categories suggests an association between obesity and iron status. Obesity may disrupt iron homeostasis, resulting in iron deficiency anemia. The association between obesity and iron deficiency may be due to increased hepcidin levels mediated by chronic inflammation. Hepcidin is a small peptide hormone that functions as a negative regulator of intestinal iron absorption. Significant body weight loss in overweight and obese individuals decreases chronic inflammation and serum hepcidin levels, resulting in improved iron status due to increased iron absorption. However, further randomized controlled trials are required to confirm this effect.
  11. Lim SK, Khoo BY
    Oncol Lett, 2021 Nov;22(5):785.
    PMID: 34594426 DOI: 10.3892/ol.2021.13046
    There has been increased interest in using stem cells for regenerative medicine and cancer therapy in the past decade. Mesenchymal stem cells (MSCs) are among the most studied stem cells due to their unique characteristics, such as self-renewal and developmental potency to differentiate into numerous cell types. MSC use has fewer ethical challenges compared with other types of stem cells. Although a number of studies have reported the beneficial effects of MSC-based therapies in treating various diseases, their contribution to cancer therapy remains controversial. The behaviour of MSCs is determined by the interaction between intrinsic transcriptional genes and extrinsic environmental factors. Numerous studies continue to emerge, as there is no denying the potential of MSCs to treat a wide variety of human afflictions. Therefore, the present review article provided an overview of MSCs and their differences compared with embryonic stem cells, and described the molecular mechanisms involved in maintaining their stemness. In addition, the article examined the therapeutic application of stem cells in the field of cancer. The present article also discussed the current divergent roles of MSCs in cancer therapy and the future potential in this field.
  12. Boo NY, Chee SC, Neoh SH, Ang EB, Ang EL, Choo P, et al.
    BMJ Paediatr Open, 2021;5(1):e001149.
    PMID: 34595358 DOI: 10.1136/bmjpo-2021-001149
    OBJECTIVES: To determine a 10-year trend of survival, morbidities and care practices, and predictors of in-hospital mortality in very preterm neonates (VPTN, gestation 22 to <32 weeks) in the Malaysian National Neonatal Registry.

    DESIGN: Retrospective cohort study.

    SETTING: 43 Malaysian neonatal intensive care units.

    PATIENTS: 29 010 VPTN (without major malformations) admitted between 1 January 2009 and 31 December 2018.

    MAIN OUTCOME MEASURES: Care practices, survival, admission hypothermia (AH, <36.5°C), late-onset sepsis (LOS), pneumothorax, necrotising enterocolitis grade 2 or 3 (NEC), severe intraventricular haemorrhage (sIVH, grade 3 or 4) and bronchopulmonary dysplasia (BPD).

    RESULTS: During this 10-year period, there was increased use of antenatal steroid (ANS), lower segment caesarean section (LSCS) and early continuous positive airway pressure (eCPAP); but decreased use of surfactant therapy. Survival had increased from 72% to -83.9%. The following morbidities had decreased: LOS (from 27.9% to 7.1%), pneumothorax (from 6.0% to 2.7%), NEC (from 8.1% to 4.7%) and sIVH (from 12.2% to 7.5%). However, moderately severe AH (32.0°C-35.9°C) and BPD had increased. Multiple logistic regression analyses showed that lower birth weight, no ANS, no LSCS, admission to neonatal intensive care unit with <100 VPTN admissions/year, no surfactant therapy, no eCPAP, moderate and severe AH, LOS, pneumothorax, NEC and sIVH were significant predictors of mortality.

    CONCLUSION: Survival and major morbidities had improved modestly. Failure to use ANS, LSCS, eCPAP and surfactant therapy, and failure to prevent AH and LOS increased risk of mortality.

    MeSH terms: Cesarean Section; Female; Humans; Infant, Newborn; Morbidity; Pregnancy; Registries; Retrospective Studies; Infant, Extremely Premature*
  13. Kong BH, Fung SY
    Int J Med Mushrooms, 2021;23(10):61-68.
    PMID: 34595892 DOI: 10.1615/IntJMedMushrooms.2021040120
    Traditional use of the tiger milk medicinal mushroom, Lignosus rhinocerus, to treat various illnesses has been recorded for > 4 centuries. Successful cultivation of L. rhinocerus using proprietary solid-state fermentation (SSF) technology by LiGNO Biotech has enabled large-scale production of L. rhinocerus sclerotia (termed L. rhinocerus TM02) and further investigations into its medicinal properties. Pharmacological activities of L. rhinocerus TM02, including its antioxidant, anti-inflammatory, anticancer, and immunomodulatory effects and the bioactive components responsible, have been validated by various scientific studies. In this study, we assessed the consistency of the bioactive components in 11 batches of L. rhinocerus TM02 produced over a 9-year period. The different batches of L. rhinocerus TM02 consisted of stable protein, polysaccharide, and glycoprotein contents, and all tested samples were comparable to the wild type. L. rhinocerus TM02 had greater protein, carbohydrate, and glycoprotein contents, which were mostly bioactive compared to another cultivar from a different cultivation technology (TM-UN). Together with previous scientific validations, L. rhinocerus TM02 produced using SSF cultivation is of optimal quality with high consistent bioactive contents, which can be an appropriate indicator for quality validation of the much sought-after medicinal mushroom, L. rhinocerus.
    MeSH terms: Agaricales*; Anti-Inflammatory Agents; Antioxidants; Polyporaceae*
  14. Awang NA, Chua SJL, Ali AS, Au-Yong CP, Naicker AS, Yuliawiratman BS
    Int J Health Care Qual Assur, 2021 Oct 04;ahead-of-print(ahead-of-print).
    PMID: 34595895 DOI: 10.1108/IJHCQA-08-2020-0165
    PURPOSE: This study aims to discover the perception of persons with disabilities (PWDs) towards facilities management (FM) service quality at hospital buildings in Malaysia.

    DESIGN/METHODOLOGY/APPROACH: A questionnaire survey was conducted with 99 respondents in selected hospitals in Selangor, Malaysia.

    FINDINGS: This study aims to discover the perception of PWDs towards FM service quality, and it has found a gap for improvement. The area that requires the highest attention includes the importance of (1) assurance on accessibility despite maintenance activity being conducted (2) criticality of facilities maintenance itself, (3) assurance on comfort and safety, (4) reliable medium to ask for assistance or giving feedback, (5) signage that is clearly seen and easily understood and (6) staff responsiveness.

    RESEARCH LIMITATIONS/IMPLICATIONS: This instrument is validated by PWDs under the physical disability category only, specifically in the hospital context. Future research is recommended to identify the FM service quality aspect for different categories of disability (sensory, mental or intellectual impairment).

    PRACTICAL IMPLICATIONS: The findings provide evidence for FM to consider PWDs' perceptions in FM strategy development. Even FM provides a healthcare support system. FM service quality partly reflects healthcare service quality.

    SOCIAL IMPLICATIONS: Accommodating the need of PWDs through the improvement of FM service quality aspect will partly fulfil the right of PWDs for equality of access to healthcare.

    ORIGINALITY/VALUE: This SERVQUAL tools can be improvised and used to measure the perception of PWDs on FM service quality systematically and holistically. Understanding the service quality aspect is important for a facility manager to precisely measure and prioritise what is truly important to the building users with special needs and try to accommodate this need in the management activity.

    MeSH terms: Disabled Persons*; Hospitals; Humans; Malaysia; Perception; Surveys and Questionnaires
  15. Rossaki FM, Hurst JR, van Gemert F, Kirenga BJ, Williams S, Khoo EM, et al.
    Expert Rev Respir Med, 2021 12;15(12):1563-1577.
    PMID: 34595990 DOI: 10.1080/17476348.2021.1985762
    INTRODUCTION: Low- and middle-income countries (LMICs) bear a high proportion of the global morbidity and mortality caused by COPD. Increased exposure to risk factors throughout life (e.g. malnutrition, indoor and outdoor air pollution, and smoking) is associated with higher COPD prevalence in LMICs and the lack of treatment availability increases avoidable harm.

    AREAS COVERED: This review covers the epidemiology and burden of COPD in LMICs, and challenges and recommendations related to health-care systems, prevention, diagnosis, and treatment. Main challenges are related to under-resourced health-care systems (such as limited availability of spirometry, rehabilitation, and medicines). Lack of policy and practical local guidelines on COPD diagnosis and management further contribute to the low diagnostic and treatment rates. In the absence of, or limited number of respiratory specialists, primary care practitioners (general practitioners, nurses, pharmacists, physiotherapists, and community health workers) play an even more pivotal role in COPD management in LMICs.

    EXPERT OPINION: Raising awareness on COPD, educating health-care workers, patients, and communities on cost-effective preventive measures as well as improving availability, affordability and proper use of diagnostic and pharmacological and non-pharmacologic treatment in primary care are the key interventions needed to improve COPD prevention, diagnosis, and care in LMICs.

    MeSH terms: Developing Countries; Humans; Poverty; Primary Health Care; Smoking; Spirometry
  16. Prasher P, Sharma M, R Wich P, Jha NK, Singh SK, Chellappan DK, et al.
    Future Med Chem, 2021 12;13(23):2027-2031.
    PMID: 34596425 DOI: 10.4155/fmc-2021-0218
    MeSH terms: Dextrans/chemistry*; Drug Carriers/chemistry; Humans; Inflammation/drug therapy*; Lung Diseases/drug therapy*; Drug Delivery Systems; RNA, Small Interfering/therapeutic use*; RNA, Small Interfering/chemistry; Nanoparticles/chemistry*
  17. Arul P, Huang ST, Gowthaman NSK, Shankar S
    Mikrochim Acta, 2021 Oct 01;188(10):358.
    PMID: 34596766 DOI: 10.1007/s00604-021-05021-7
    An efficient electrochemical biosensor has been developed for the simultaneous evaluation of DNA bases using AgNPs-embedded covalent organic framework (COF). The COF (p-Phenylenediamine and terephthalaldehyde) was synthesized by reflux (DMF; 150 °C; 12 h) and the nanoparticles were embedded from the aqueous solutions of AgNO3 and NaBH4. The nanocomposite-modified COF was confirmed by spectral, microscopic, and electrochemical techniques. The nanocomposite material was deposited on a glassy carbon electrode (GCE) and the redox behavior of AgNPs was confirmed by cyclic voltammetry. The electrocatalytic activities of DNA bases were analyzed by differential pulse voltammetry (DPV) in a physiological environment (PBS; pH = 7.0) based on simple and easy-to-use electrocatalyst. The AgNPs-COF/GCE showed well-defined anodic peak currents for the bases guanine (+ 0.63 V vs. Ag/AgCl), adenine (+ 0.89 V vs. Ag/AgCl), thymine (+ 1.10 V vs. Ag/AgCl), and cytosine (+ 1.26 V vs. Ag/AgCl) in a mixture as well as individuals with respect to the conventional, COF, and AgNPs/GCEs. The AgNPs-COF/GCE showed linear concentration range of DNA bases from 0.2-1000 µM (guanine; (G)), 0.1-500 µM (adenine (A)), 0.25-250 µM (thymine (T)) and 0.15-500 µM (cytosine (C)) and LOD of 0.043, 0.056, 0.062, and 0.051 µM (S/N = 3), respectively. The developed sensor showed reasonable selectivity, reproducibility (RSD = 1.53 ± 0.04%-2.58 ± 0.02% (n = 3)), and stability (RSD = 1.22 ± 0.06%-2.15 ± 0.04%; n = 3) over 5 days of storage) for DNA bases. Finally, AgNPs-COF/GCE was used for the determination of DNA bases in human blood serum, urine and saliva samples with good recoveries (98.60-99.11%, 97.80-99.21%, and 98.69-99.74%, respectively).
    MeSH terms: Adenine/analysis; Adenine/chemistry; Cytosine/chemistry; Electrodes; Guanine/analysis; Guanine/chemistry; Humans; Phenylenediamines/chemistry; Saliva/chemistry; Thymine/chemistry; Biosensing Techniques/methods; Nanocomposites/chemistry; Limit of Detection*
External Links