Browse publications by year: 2024

  1. Low EL, Chan KL, Zaki NM, Taranenko E, Ordway JM, Wischmeyer C, et al.
    G3 (Bethesda), 2024 Sep 04;14(9).
    PMID: 38918881 DOI: 10.1093/g3journal/jkae135
    Elaeis guineensis and E. oleifera are the two species of oil palm. E. guineensis is the most widely cultivated commercial species, and introgression of desirable traits from E. oleifera is ongoing. We report an improved E. guineensis genome assembly with substantially increased continuity and completeness, as well as the first chromosome-scale E. oleifera genome assembly. Each assembly was obtained by integration of long-read sequencing, proximity ligation sequencing, optical mapping, and genetic mapping. High interspecific genome conservation is observed between the two species. The study provides the most extensive gene annotation to date, including 46,697 E. guineensis and 38,658 E. oleifera gene predictions. Analyses of repetitive element families further resolve the DNA repeat architecture of both genomes. Comparative genomic analyses identified experimentally validated small structural variants between the oil palm species and resolved the mechanism of chromosomal fusions responsible for the evolutionary descending dysploidy from 18 to 16 chromosomes.
    MeSH terms: Chromosome Mapping; Repetitive Sequences, Nucleic Acid; Genome, Plant*; Molecular Sequence Annotation
  2. Aissvarya S, Ling KH, Arumugam M, Thilakavathy K
    EFORT Open Rev, 2024 Aug 01;9(8):723-732.
    PMID: 39087497 DOI: 10.1530/EOR-23-0056
    Dupuytren's contracture (DC) is a fibroproliferative disorder of the palmar fascia characterised by the digits' flexion contractures and is associated with abnormal build-up of type III collagen. The prevalence of the disease is reported to be highest among Northern European descendants. However, the disease is widespread globally with varying prevalence. DC is a multifactorial disease, having both genetic and environmental factors contributing to the causality of the disease. Over the years, various studies have been conducted to understand the molecular mechanism and genetic aspects of DC but there is a lack of reports on the variants found in the exonic regions. Most reports are backdated making it necessary to re-evaluate the variants to further understand the genetic aetiology of DC. In this review, we first highlight the genetic aspects and previous genetic studies on DC. The report is followed by a discussion on the molecular pathways suggested to be associated with DC and a summary of the genetic variants in the exonic regions found in DC and their connections with the molecular pathways. A total of nine variants were reported originating from six genes comprising three pathways. Most variants reported are involved in the Wnt signalling pathway. Moreover, all variants identified are in European/Caucasian subjects and the variants found in the exonic regions are missense variants. A comparison of these findings with variants from populations of other regions can be conducted to identify the variants with the most occurrence to act as biomarkers or therapeutic targets for DC.
  3. Tong ZX, Oh WD
    Int J Biol Macromol, 2024 Oct;277(Pt 3):134453.
    PMID: 39098691 DOI: 10.1016/j.ijbiomac.2024.134453
    Chitosan possesses electron-rich amino (-NH2) and hydroxyl (-OH) moieties which can anchor with transition metal ions during synthesis. Herein, chitosan was employed as an additive to prepare bismuth ferrite (BFO) via hydrothermal approach. The characterization studies revealed that adding chitosan during BFO synthesis leads to the creation of more oxygen vacancies. The performance of chitosan modified BFO (CMB) was evaluated as peroxymonosulfate (PMS) activator for ciprofloxacin (CIP) removal. Apparently, the addition of 10 wt% chitosan during BFO synthesis (CMB-10) resulted in 1.7 times increase of performance compared to the pristine BFO. Increasing the catalyst loading and PMS dosage resulted in positive effect with 5.7 and 1.9 times rate enhancement, respectively. The CMB-10 exhibited tolerance against pH variation, water matrix, and interfering species. The scavenging experiments indicated that singlet oxygen (1O2), superoxide radicals (O2•-) and sulfate radicals (SO4•-) played a major role in CIP degradation. These reactive oxygen species were generated from PMS activation via Fe3+/Fe2+ and Bi5+/Bi3+ coupling, and oxygen vacancies on the catalyst surface. The CIP degradation pathways were also elucidated based on the detected CIP intermediates. Overall, this study provides insights into the use of chitosan to prepare sustainable materials for pollutants removal via PMS activation.
    MeSH terms: Catalysis; Ciprofloxacin/pharmacology; Ciprofloxacin/chemistry; Hydrogen-Ion Concentration; Water Pollutants, Chemical/chemistry; Water Purification/methods
  4. Othman JAS, Ilyas RA, Nordin AH, Ngadi N, Alkbir MFM
    Int J Biol Macromol, 2024 Oct;277(Pt 3):134451.
    PMID: 39102907 DOI: 10.1016/j.ijbiomac.2024.134451
    The research interest in sustainable and eco-friendly materials based on natural sources has increased dramatically due to their recyclability, biodegradability, compatibility, and nontoxic behavior. Recently, nanocellulose-based green composites are under extensive exploration and have gained popularity among researchers owing to their lightweight, lost cost, low density, excellent mechanical and physical characteristics. This review provides a comprehensive overview of the recent advancements in the extraction, modification, and application of bamboo nanocellulose as a high-performance bioadsorbent. Bamboo, a rapidly renewable resource, offers an eco-friendly alternative to traditional materials due to its abundant availability and unique structural properties. Significantly, bamboo comprises a considerable amount of cellulose, approximately 40 % to 50%, rendering it a valuable source of cellulose fiber for the fabrication of cellulose nanocrystals. The review highlights different various modification techniques which enhance the adsorption capacities and selectivity of bamboo nanocellulose. Furthermore, the integration of bamboo nanocellulose into novel composite materials and its performance in removing contaminants such as heavy metals, dyes, and organic pollutants from wastewater are critically analyzed. Emphasis is placed on the mechanisms of adsorption, regeneration potential, and the economic and environmental benefits of using bamboo-based bioadsorbents. The findings underscore the potential of bamboo nanocellulose to play a pivotal role in developing sustainable wastewater treatment technologies, offering a promising pathway towards cleaner water and a greener future.
    MeSH terms: Adsorption; Biodegradation, Environmental; Water Pollutants, Chemical/isolation & purification; Water Pollutants, Chemical/chemistry; Sasa/chemistry; Nanoparticles/chemistry
  5. Zhang Z, Miao W, Ji H, Lin Q, Li X, Sang S, et al.
    Food Chem, 2024 Dec 01;460(Pt 3):140792.
    PMID: 39126939 DOI: 10.1016/j.foodchem.2024.140792
    The low bioavailability of polyphenolic compounds due to poor solubility and stability is a major challenge. Encapsulation of polyphenols in zein-based composite nanoparticles can improve the water dispersion, stability, targeted delivery, and controlled release of polyphenols in the gastrointestinal tract. In this study, we investigated the fluorescence properties, bioactivity, and microstructural characteristics of polyphenols during digestion, revealing that zein nanoparticles protect polyphenols from gastric degradation and promote their sustained release in the small intestine. The effects of different ionic species and salt ion concentrations on the digestive properties of polyphenol complex delivery systems have also been explored. In addition, the formation of "protein corona" structures during digestion may affect bioavailability. These findings highlight the potential of nanoparticle formulations to improve polyphenol stability and absorption. The results of this study may provide new insights and references for the study of polyphenol bioavailability enhancement.
    MeSH terms: Animals; Biological Availability*; Digestion; Drug Carriers/chemistry; Humans; Solubility; beta-Cyclodextrins/chemistry; Polyphenols/metabolism; Polyphenols/chemistry
  6. Madhusankha GDMP, Siow LF, Dos Santos Silva Amaral M, Marriott PJ, Thoo YY
    Food Chem, 2024 Dec 01;460(Pt 3):140751.
    PMID: 39126948 DOI: 10.1016/j.foodchem.2024.140751
    This study investigated the effect of heat treatments on the pungency and aroma profiles of a spice oleoresin blend, and the emulsion stability with different surfactants, encapsulating agents, and homogenization mechanisms. Total pungency increased with heat until 120 °C and drastically reduced at 150 °C. Thermal processing induced aroma release, and 46 compounds were identified at 90 °C, predominantly comprising sesquiterpenes. Tween 80 dispersed the highest oleoresin mass (6.21 ± 0.31 mg/mL) and reported the maximum emulsion stability index. The oleoresin percentage significantly influenced the emulsion stability, with 1% oleoresin producing the most stable emulsion. High-pressure homogenization applied on gum Arabic resulted in a greater encapsulation efficiency, exceeding 86%, and the lowest creaming index (4.70 ± 0.06%), while Hi-Cap 100 produced the best flow properties. The findings provide insights into incorporating lipophilic spice oleoresin blends in aqueous food systems and understanding the release of flavor compounds during thermal food processing.
    MeSH terms: Food Handling; Hot Temperature*; Taste
  7. Ahmad-Hanafi S, Zulkifli I, Ramiah SK, Chung ELT, Kamil R, Sazili AQ, et al.
    Poult Sci, 2024 Oct;103(10):103948.
    PMID: 39127008 DOI: 10.1016/j.psj.2024.103948
    Feed restriction could induce physiological stress in broiler chickens, leading to welfare issues. Prenatal stimulation could improve stress-coping mechanisms in poultry. The present study aimed to elucidate the effects of subjecting developing embryos to auditory stimulation on physiological stress response to feed restriction in broiler chickens at market age. A total of 423 hatching eggs of Cobb 500 (Gallus domesticus) were subjected to the following auditory treatments: 1) no additional sound treatment other than the background sound of the incubator's compressors at 40 dB (CONTROL), 2) exposure to pre-recorded traffic noise at 90 dB (NOISE), and 3) exposure to Mozart's Sonata for Two Pianos in D Major, K 488 at 90 dB) (MUSIC). The NOISE and MUSIC treatments were for 20 min/h for 24 h (a total of 8 h/d), starting from embryonic days (ED) 12 to hatching. On d 42, an equal number of birds from each prenatal auditory stimulation (PAS) group were subjected to either ad libitum feeding (AL) or 30-h of feed restriction (FR) in a completely randomised design. The FR chickens exhibited significantly higher serum levels of corticosterone (CORT), and heat shock protein (HSP) 70 compared to those of AL. Prenatal auditory stimulation, particularly NOISE, led to lower serum levels of CORT and alpha-1-acid glycoprotein (AGP) levels compared to the CONTROL group. Additionally, NOISE significantly increased brain mRNA glucocorticoid receptor and HSP70 gene expression. The cecal population of E. coli and Lactobacillus spp. was not significantly affected by prenatal auditory stimulation. In conclusion, our findings suggest that prenatal auditory stimulation, particularly NOISE, positively impacts broiler chickens' ability to cope with feed restriction.
    MeSH terms: Acoustic Stimulation/veterinary; Animals; Chick Embryo/physiology; Corticosterone/blood; Female; Food Deprivation/physiology; Random Allocation; Stress, Physiological*
  8. Hameed MM, Mohd Razali SF, Wan Mohtar WHM, Yaseen ZM
    Environ Sci Pollut Res Int, 2024 Aug;31(39):52060-52085.
    PMID: 39134798 DOI: 10.1007/s11356-024-34500-6
    The Colorado River has experienced a significant streamflow reduction in recent decades due to climate change, resulting in pronounced hydrological droughts that pose challenges to the environment and human activities. However, current models struggle to accurately capture complex drought patterns, and their accuracy decreases as the lead time increases. Thus, determining the reliability of drought forecasting for specific months ahead presents a challenging task. This study introduces a robust approach that utilizes the Beluga Whale Optimization (BWO) algorithm to train and optimize the parameters of the Regularized Extreme Learning Machine (RELM) and Random Forest (RF) models. The applied models are validated against a KNN benchmark model for forecasting drought from one- to six-month ahead across four hydrological stations distributed over the Colorado River. The achieved results demonstrate that RELM-BWO outperforms RF-BWO and KNN models, achieving the lowest root-mean square error (0.2795), uncertainty (U95 = 0.1077), mean absolute error (0.2104), and highest correlation coefficient (0.9135). Also, the current study uses Global Multi-Criteria Decision Analysis (GMCDA) as an evaluation metric to assess the reliability of the forecasting. The GMCDA results indicate that RELM-BWO provides reliable forecasts up to four months ahead. Overall, the research methodology is valuable for drought assessment and forecasting, enabling advanced early warning systems and effective drought countermeasures.
    MeSH terms: Machine Learning*; Forecasting*; Models, Theoretical; United States; Rivers; Droughts*; Climate Change
  9. Hameed T, Ahmad I, Ullah S, Subramaniyan V, Ali I, Hussain H, et al.
    Braz J Biol, 2024;84:e282479.
    PMID: 39230079 DOI: 10.1590/1519-6984.282479
    The phytosociological survey was conducted during 2018-2020. The research area was classified into five ecological zones based on habitat, physiognomy and species composition. Pc-Ord software was used for cluster analysis and four vegetation communities were established. The Quercus baloot-Quercus incana community is situated in Sair at an altitude of 1196 (mean ± SE) m altitude with a 14.1 ± 0 slope angle and contains eleven tree species. The Pinus wallichiana- Ailanthus altissima community had a relatively small number of tree species reported in Shakawlie at 1556 (mean ± SE) with a 17.5 ± 0 slope angle. The Pinus wallichiana- Quercus incana community is distributed in Wali Kandao and Mangi Kandao at altitudes of 2030.5 (mean ± SE) m and the slope angle was 19.2 ± 1.4. This community possesses a total of twenty-one tree species and is highly diverse. Similarly, the Populus alba - Platanus orientalis group was present in Banr Pate, with an altitude of 1613 (mean ± SE) m and a 16.3 slope angle. The principal component analysis (PCA) and non-metric multidimensional scaling (NMS) ordination methods were applied to study the relationships between ecological and soil variables with trees species. The NMS ordination of axis 1 was significantly correlated with Sand% (p<0.2), Nitrogen% (p<0.1) and Pb (mg/kg) (r= 0.876751, p<0.05), while the ordination of axis 2 was significantly correlated with Silt% (p<0.2), Sand% (p<0.2), Organic matter% (p<0.2), K (mg/kg) (r=0.882433, p<0.02), Fe (mg/kg)(r=0.614833, p<0.2), Ca (mg/kg) (r=0.721712, p< 0.2) and Zn (mg/kg) (r=0.609545, p<0.2). Similarly, the PCA ordination of axis 1 revealed that it was significantly correlated with phosphorus, calcium and slope angle, while that of axis 2 was significantly correlated with altitude, zinc and manganese.
    MeSH terms: Altitude; Pakistan; Soil/chemistry; Ecosystem; Biodiversity; Forests*
  10. Al Kouzbary M, Al Kouzbary H, Liu J, Shasmin HN, Arifin N, Osman NAA
    PMID: 39230205 DOI: 10.1080/10255842.2024.2399023
    The aim of the present study is to investigate the complexity and stability of human ambulation and the implications on robotic prostheses control systems. Fourteen healthy individuals participate in two experiments, the first group run at three different speeds. The second group ascended and descended stairs of a five-level building block at a self-selected speed. All participants completed the experiment with seven inertial measurement units wrapped around the lower body segments and waist. The data were analyzed to determine the fractal dimension, spectral entropy, and the Lyapunov exponent (LyE). Two methods were used to calculate the long-term LyE, first LyE calculated using the full size of data sets. And the embedding dimensions were calculated using Average Mutual Information (AMI) and the False Nearest Neighbor (FNN) algorithm was used to find the time delay. Besides, a second approach was developed to find long-term LyE where the time delay was based on the average period of the gait cycle using adaptive event-based window. The average values of spectral entropy are 0.538 and 0.575 for stairs ambulation and running, respectively. The degree of uncertainty and complexity increases with the ambulation speed. The short term LyEs for tibia orientation have the minimum range of variation when it comes to stairs ascent and descent. Using two-way analysis of variance we demonstrated the effect of the ambulation speed and type of ambulation on spectral entropy. Moreover, it was shown that the fractal dimension only changed significantly with ambulation speed.
  11. Hoang T, Kieu H, Nguyen V, Tran T, Ngee T, Duong H
    PMID: 39230213
    BACKGROUND: To evaluate the treatment outcomes of lateral interbody bone graft surgery and posterior percutaneous screws for lumbar spinal stenosis Methods: This is a cross-sectional descriptive study. There were 27 patients with 30 segments of surgery diagnosed with lumbar spinal stenosis that were surgically treated with the XLIF method. Clinical outcomes measured included VAS scores for lower back pain and leg pain, ODI, and JOA scores. Magnetic resonance imaging of the lumbar spine after surgery was used to evaluate indirect decompression. X-ray or CT scan to evaluate bone fusion after 6 months of surgery. Differences were determined by independent T-test.

    RESULTS: There were 27 patients with 30 segments of surgery. They were 12 males and 15 females with an average age of 58.81±8.1. There was significant improvement in VAS for lower back pain from 7.11±1.31 to 3.67±1.3, VAS for leg pain from 6.81±2.19 to 1.59±1.89, ODI from 26.41±8.95 to 13.69±8.34, and JOA score from 7.63±2.87 to 13.5±1.73. A-P diameter increased 134%, lateral diameter increased 120%, lateral recess depth increased 166%, disc height increased 126%, foraminal height increased 124%, spinal canal area increased 30%. The p-values were all <0.001. The average hospital stay was 6.79±3.01 days. Complications included 1 pedicle screw malformation, 1 ALL avulsion fracture, 1 abdominal herniation, 1 venous damage, 1 failure.

    CONCLUSION: XLIF surgery presents a favorable option for patients with lumbar spinal stenosis. This is a minimally invasive surgical method that reduces pain, reduces bleeding, and is effective in indirectly decompressing the spinal canal both clinal and imaging.

    MeSH terms: Aged; Bone Screws; Cross-Sectional Studies; Female; Humans; Magnetic Resonance Imaging; Male; Middle Aged; Tomography, X-Ray Computed; Bone Transplantation/methods; Treatment Outcome; Low Back Pain/etiology; Low Back Pain/surgery; Decompression, Surgical/methods
  12. Zeng G, Zhu W, Somani B, Choong S, Straub M, Maroccolo MV, et al.
    Urolithiasis, 2024 Sep 04;52(1):124.
    PMID: 39230669 DOI: 10.1007/s00240-024-01621-z
    The aim of this study was to construct the sixth in a series of guidelines on the treatment of urolithiasis by the International Alliance of Urolithiasis (IAU) that by providing a clinical framework for the management of pediatric patients with urolithiasis based on the best available published literature. All recommendations were summarized following a systematic review and assessment of literature in the PubMed database from January 1952 to December 2023. Each generated recommendation was graded using a modified GRADE methodology. Recommendations are agreed upon by Panel Members following review and discussion of the evidence. Guideline recommendations were developed that addressed the following topics: etiology, risk factors, clinical presentation and symptoms, diagnosis, conservative management, surgical interventions, prevention, and follow-up. Similarities in the treatment of primary stone episodes between children and adults, incorporating conservative management and advancements in technology for less invasive stone removal, are evident. Additionally, preventive strategies aiming to reduce recurrence rates, such as ensuring sufficient fluid intake, establishing well-planned dietary adjustments, and selective use pharmacologic therapies will also result in highly successful outcomes in pediatric stone patients. Depending on the severity of metabolic disorders and also anatomical abnormalities, a careful and close follow-up program should inevitably be planned in each pediatric patient to limit the risk of future recurrence rates.
    MeSH terms: Child; Humans
  13. Halim-Fikri H, Zulkipli NN, Alauddin H, Bento C, Lederer CW, Kountouris P, et al.
    Database (Oxford), 2024 Sep 04;2024.
    PMID: 39231257 DOI: 10.1093/database/baae080
    Thalassemia is one of the most prevalent monogenic disorders in low- and middle-income countries (LMICs). There are an estimated 270 million carriers of hemoglobinopathies (abnormal hemoglobins and/or thalassemia) worldwide, necessitating global methods and solutions for effective and optimal therapy. LMICs are disproportionately impacted by thalassemia, and due to disparities in genomics awareness and diagnostic resources, certain LMICs lag behind high-income countries (HICs). This spurred the establishment of the Global Globin Network (GGN) in 2015 at UNESCO, Paris, as a project-wide endeavor within the Human Variome Project (HVP). Primarily aimed at enhancing thalassemia clinical services, research, and genomic diagnostic capabilities with a focus on LMIC needs, GGN aims to foster data collection in a shared database by all affected nations, thus improving data sharing and thalassemia management. In this paper, we propose a minimum requirement for establishing a genomic database in thalassemia based on the HVP database guidelines. We suggest using an existing platform recommended by HVP, the Leiden Open Variation Database (LOVD) (https://www.lovd.nl/). Adoption of our proposed criteria will assist in improving or supplementing the existing databases, allowing for better-quality services for individuals with thalassemia. Database URL: https://www.lovd.nl/.
    MeSH terms: Globins/genetics; Humans; Genetic Variation; Genomics/methods; Databases, Genetic*
  14. Yeap MW, Loh TC, Chong MC, Yeo WK, Girard O, Tee CCL
    PMID: 39231493 DOI: 10.1123/ijspp.2024-0083
    PURPOSE: We investigated the effects of manipulating running velocity and hypoxic exposure on vastus lateralis muscle oxygenation levels during treadmill running.

    METHODS: Eleven trained male distance runners performed 7 randomized runs at different velocities (8, 10, 12, 14, 16, 18, and 20 km·h-1), each lasting 45 seconds on an instrumented treadmill in normoxia (fraction of inspired oxygen [FiO2] = 20.9%), moderate hypoxia (FiO2 = 16.1%), high hypoxia (FiO2 = 14.1%), and severe hypoxia (FiO2 = 13.0%). Continuous assessment of Tissue Saturation Index (TSI) in the vastus lateralis muscle was conducted using near-infrared spectroscopy. Subsequently, changes in TSI (ΔTSI) data over the final 20 seconds of each run were compared between velocities and conditions.

    RESULTS: There was a significant velocity × condition interaction for ΔTSI% (P < .001, ηp2=.19), with a smaller ΔTSI% decline in normoxia compared with high hypoxia and severe hypoxia at 8 km·h-1 (g = 1.30 and 1.91, respectively), 10 km·h-1 (g = 0.75 and 1.43, respectively), and 12 km·h-1 (g = 1.47 and 1.95, respectively) (pooled values for all conditions: P < .037). The ΔTSI% decline increased with each subsequent velocity increment from 8 km·h-1 (-9.2% [3.7%]) to 20 km·h-1 (-22.5% [4.1%]) irrespective of hypoxia severity (pooled values for all conditions: P < .048).

    CONCLUSIONS: Running at slower velocities in conjunction with high and severe hypoxia reduces vastus lateralis muscle oxygenation levels. Muscle ΔTSI% proves to be a sensitive indicator, underscoring the potential use of near-infrared spectroscopy as a reference index of internal load during treadmill runs.

  15. Tingga RCT, Gani M, Mohd-Ridwan AR, Aifat NR, Matsuda I, Md-Zain BM
    J Vet Sci, 2024 Aug 16.
    PMID: 39231790 DOI: 10.4142/jvs.23312
    IMPORTANCE: Recent developments in genetic analytical techniques have enabled the comprehensive analysis of gastrointestinal symbiotic bacteria as a screening tool for animal health conditions, especially the endangered gibbons at the National Wildlife Rescue Centre (NWRC).

    OBJECTIVE: High-throughput sequencing based on 16S ribosomal RNA genes was used to determine the baseline gut bacterial composition and identify potential pathogenic bacteria among three endangered gibbons housed in the NWRC.

    METHODS: Feces were collected from 14 individuals (Hylobates lar, n = 9; Hylobates agilis, n = 4; and Symphalangus syndactylus, n = 1) from March to November 2022. Amplicon sequencing were conducted by targeting V3-V4 region.

    RESULTS: The fecal microbial community of the study gibbons was dominated by Bacteroidetes and Firmicutes (phylum level), Prevotellaceae and Lachnospiraceae/Muribaculaceae (family level), and Prevotella (and its subgroups) (genera level). This trend suggests that the microbial community composition of the study gibbons differed insignificantly from previously reported conspecific or closely related gibbon species.

    CONCLUSIONS AND RELEVANCE: This study showed no serious health problems that require immediate attention. However, relatively low alpha diversity and few potential bacteria related to gastrointestinal diseases and streptococcal infections were detected. Information on microbial composition is essential as a guideline to sustain a healthy gut condition of captive gibbons in NWRC, especially before releasing this primate back into the wild or semi-wild environment. Further enhanced husbandry environments in the NWRC are expected through continuous health monitoring and increase diversity of the gut microbiota through diet diversification.

  16. Ambalavanan A, Chang L, Choi J, Zhang Y, Stickley SA, Fang ZY, et al.
    Nat Commun, 2024 Sep 04;15(1):7735.
    PMID: 39232002 DOI: 10.1038/s41467-024-51743-6
    Breastfeeding provides many health benefits, but its impact on respiratory health remains unclear. This study addresses the complex and dynamic nature of the mother-milk-infant triad by investigating maternal genomic factors regulating human milk oligosaccharides (HMOs), and their associations with respiratory health among human milk-fed infants. Nineteen HMOs are quantified from 980 mothers of the CHILD Cohort Study. Genome-wide association studies identify HMO-associated loci on chromosome 19p13.3 and 19q13.33 (lowest P = 2.4e-118), spanning several fucosyltransferase (FUT) genes. We identify novel associations on chromosome 3q27.3 for 6'-sialyllactose (P = 2.2e-9) in the sialyltransferase (ST6GAL1) gene. These, plus additional associations on chromosomes 7q21.32, 7q31.32 and 13q33.3, are replicated in the independent INSPIRE Cohort. Moreover, gene-environment interaction analyses suggest that fucosylated HMOs may modulate overall risk of recurrent wheeze among preschoolers with variable genetic risk scores (P 
    MeSH terms: Adult; Breast Feeding; Child; Child, Preschool; Chromosomes, Human, Pair 3/genetics; Female; Fucosyltransferases/genetics; Humans; Infant; Lactose/analogs & derivatives; Male; Mothers; Respiratory Sounds/genetics; Cohort Studies; Polymorphism, Single Nucleotide; Genome-Wide Association Study*; Gene-Environment Interaction
  17. Zhao Y, Wang T, Zhang C, Hamat B, Pang LLL
    Sci Rep, 2024 Sep 04;14(1):20550.
    PMID: 39232124 DOI: 10.1038/s41598-024-71651-5
    With the outbreak and continued spread of the COVID-19 pandemic, people's demand for daily disinfection products has increased rapidly, and its innovative design has received widespread attention. In this context, this study aims to propose a design methodology for home entrance disinfection devices based on AHP-FAST-FBS. Firstly, the design requirements of the home entrance disinfection device were collected and analyzed through in-depth interviews and the KJ method, and a hierarchical model of design demand indicators was constructed. Secondly, the Analytical Hierarchy Process (AHP) was employed to quantify these design demand indicators, and core design demands for home entrance disinfection devices were identified by weight calculations. On this basis, the Functional Analysis System Technique (FAST) method was combined to rationally transform the design demands into product functional indicators, constructing a functional system model for the home entrance disinfection device through systematic decomposition and categorization. Lastly, based on the Function-Behavior-Structure (FBS) theoretical model, the mapping of each function of the product to its structure was realized, the product structure modules were determined, and the comprehensive design and output of the innovative design scheme for the home entrance disinfection device were completed. The results of this study indicate that the design methodology combining AHP-FAST-FBS can effectively improve the scientific rigor and effectiveness of the home entrance disinfection device design, thereby generating an ideal product design scheme. This study provides systematic theoretical guidance and practical reference for designers of subsequent related disinfection products and also offers a new path for improving social health and safety.
    MeSH terms: Humans; Models, Theoretical; Pandemics/prevention & control
  18. Syed Ali SA, Ilankoon IMSK, Zhang L, Tan J
    J Hazard Mater, 2024 Aug 17;479:135554.
    PMID: 39232354 DOI: 10.1016/j.jhazmat.2024.135554
    Achieving circularity in the plastic economy predominantly depends on sourcing higher quality recyclates. Packaging plastic poses a significant challenge as it is often not prioritised for collection or recycling initiatives. The presence of additives, such as printing ink, impedes the quality of recyclates. Considering the volume of packaging plastics and the importance of branding (aesthetics and consumer information), ink removal is a critical pre-treatment step. However, the literature is limited, with only 14 studies exploring de-inking processes. Drawing parallels with the detergent laundering process, surfactants have been widely investigated in plastic de-inking, with cationic surfactants proving the most effective with a de-inking efficiency of up to 100%. However, concerns exist regarding the toxic and hazardous nature of the surfactants and chemicals. The average hazard quotient (AHQ) was developed, which compares de-inking chemicals as one of the key findings. AHQ provides a quantitative proxy for the hazards and toxicities, which are qualitatively presented as part of the globally harmonised system (GHS) classification of chemicals. To drive emerging packaging plastic de-inking, including the development of green surfactants (e.g. gamma-valerolactone), this work enables an informed chemical selection minimising potential hazards (rather than creating more adverse effects in plastic recycling processes) and toxicities from plastic waste, fulfilling the objectives of cleaner plastic waste recycling.
  19. Agatonovic-Kustrin S, Wong S, Dolzhenko AV, Gegechkori V, Morton DW
    J Chromatogr A, 2024 Aug 31;1735:465310.
    PMID: 39232418 DOI: 10.1016/j.chroma.2024.465310
    The goal of preparative chromatography is to isolate suitable amounts of compound(s) at the required purity in the most cost-effective way. This study analyses the power of High-performance thin-layer chromatography (HPTLC) guided preparative flash chromatography to separate and isolate bioactive compounds from an olive flower extract for their further characterisation via spectroscopy. The structure and purity of isolated bioactive compounds were assessed using Fourier-transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopy. Flash chromatography of the olive flower extract successfully isolated pure oleanolic and maslinic acids. Moreover, the flash chromatography of the extract allowed isolation and phytochemical analysis of the most lipophilic fraction of the extract, which was found to contain n-eicosane and n-(Z)-eicos-5-ene, that has not been isolated previously with preparative TLC.
External Links