Displaying publications 1 - 20 of 56 in total

Abstract:
Sort:
  1. Zamora-Ros R, Knaze V, Rothwell JA, Hémon B, Moskal A, Overvad K, et al.
    Eur J Nutr, 2016 Jun;55(4):1359-75.
    PMID: 26081647 DOI: 10.1007/s00394-015-0950-x
    BACKGROUND/OBJECTIVES: Polyphenols are plant secondary metabolites with a large variability in their chemical structure and dietary occurrence that have been associated with some protective effects against several chronic diseases. To date, limited data exist on intake of polyphenols in populations. The current cross-sectional analysis aimed at estimating dietary intakes of all currently known individual polyphenols and total intake per class and subclass, and to identify their main food sources in the European Prospective Investigation into Cancer and Nutrition cohort.

    METHODS: Dietary data at baseline were collected using a standardized 24-h dietary recall software administered to 36,037 adult subjects. Dietary data were linked with Phenol-Explorer, a database with data on 502 individual polyphenols in 452 foods and data on polyphenol losses due to cooking and food processing.

    RESULTS: Mean total polyphenol intake was the highest in Aarhus-Denmark (1786 mg/day in men and 1626 mg/day in women) and the lowest in Greece (744 mg/day in men and 584 mg/day in women). When dividing the subjects into three regions, the highest intake of total polyphenols was observed in the UK health-conscious group, followed by non-Mediterranean (non-MED) and MED countries. The main polyphenol contributors were phenolic acids (52.5-56.9 %), except in men from MED countries and in the UK health-conscious group where they were flavonoids (49.1-61.7 %). Coffee, tea, and fruits were the most important food sources of total polyphenols. A total of 437 different individual polyphenols were consumed, including 94 consumed at a level >1 mg/day. The most abundant ones were the caffeoylquinic acids and the proanthocyanidin oligomers and polymers.

    CONCLUSION: This study describes the large number of dietary individual polyphenols consumed and the high variability of their intakes between European populations, particularly between MED and non-MED countries.

    Matched MeSH terms: Hydroxybenzoates/administration & dosage
  2. Zainal-Abidin MH, Hayyan M, Hayyan A, Jayakumar NS
    Anal Chim Acta, 2017 08 01;979:1-23.
    PMID: 28599704 DOI: 10.1016/j.aca.2017.05.012
    With the rapid development of ionic liquid analogues, termed 'deep eutectic solvents' (DESs), and their application in a wide range of chemical and biochemical processes in the past decade, the extraction of bioactive compounds has attracted significant interest. Recently, numerous studies have explored the extraction of bioactive compounds using DESs from diverse groups of natural sources, including animal and plant sources. This review summarizes the-state-of-the-art effort dedicated to the application of DESs in the extraction of bioactive compounds. The aim of this review also was to introduce conventional and recently-developed extraction techniques, with emphasis on the use of DESs as potential extractants for various bioactive compounds, such as phenolic acid, flavonoids, tanshinone, keratin, tocols, terpenoids, carrageenans, xanthones, isoflavones, α-mangostin, genistin, apigenin, and others. In the near future, DESs are expected to be used extensively for the extraction of bioactive compounds from various sources.
    Matched MeSH terms: Hydroxybenzoates/isolation & purification
  3. Zahid NA, Jaafar HZE, Hakiman M
    Plants (Basel), 2021 Mar 26;10(4).
    PMID: 33810290 DOI: 10.3390/plants10040630
    'Bentong' ginger is the most popular variety of Zingiber officinale in Malaysia. It is vegetatively propagated and requires a high proportion of rhizomes as starting planting materials. Besides, ginger vegetative propagation using its rhizomes is accompanied by several types of soil-borne diseases. Plant tissue culture techniques have been applied in many plant species to produce their disease-free planting materials. As 'Bentong' ginger is less known for its micropropagation, this study was conducted to investigate the effects of Clorox (5.25% sodium hypochlorite (NaOCl)) on explant surface sterilization, effects of plant growth regulators, and basal media on shoots' multiplication and rooting. The secondary metabolites and antioxidant activities of the micropropagated plants were evaluated in comparison with conventionally propagated plants. Rhizome sprouted buds were effectively sterilized in 70% Clorox for 30 min by obtaining 75% contamination-free explants. Murashige and Skoog (MS) supplemented with 10 µM of zeatin was the suitable medium for shoot multiplication, which resulted in the highest number of shoots per explant (4.28). MS medium supplemented with 7.5 µM 1-naphthaleneacetic acid (NAA) resulted in the highest number of roots per plantlet. The in vitro-rooted plantlets were successfully acclimatized with a 95% survival rate in the ex vitro conditions. The phytochemical analysis showed that total phenolic acid and total flavonoid content and antioxidant activities of the micropropagated plants were not significantly different from the conventionally propagated plants of 'Bentong' ginger. In conclusion, the present study's outcome can be adopted for large-scale propagation of disease-free planting materials of 'Bentong' ginger.
    Matched MeSH terms: Hydroxybenzoates
  4. Yew YP, Shameli K, Mohamad SE, Lee KX, Teow SY
    Int J Mol Sci, 2020 Jul 09;21(14).
    PMID: 32659939 DOI: 10.3390/ijms21144851
    Discovery of a novel anticancer drug delivery agent is important to replace conventional cancer therapies which are often accompanied by undesired side effects. This study demonstrated the synthesis of superparamagnetic magnetite nanocomposites (Fe3O4-NCs) using a green method. Montmorillonite (MMT) was used as matrix support, while Fe3O4 nanoparticles (NPs) and carrageenan (CR) were used as filler and stabilizer, respectively. The combination of these materials resulted in a novel nanocomposite (MMT/CR/Fe3O4-NCs). A series of characterization experiments was conducted. The purity of MMT/CR/Fe3O4-NCs was confirmed by X-ray diffraction (XRD) analysis. High resolution transmission electron microscopy (HRTEM) analysis revealed the uniform and spherical shape of Fe3O4 NPs with an average particle size of 9.3 ± 1.2 nm. Vibrating sample magnetometer (VSM) analysis showed an Ms value of 2.16 emu/g with negligible coercivity which confirmed the superparamagnetic properties. Protocatechuic acid (PCA) was loaded onto the MMT/CR/Fe3O4-NCs and a drug release study showed that 15% and 92% of PCA was released at pH 7.4 and 4.8, respectively. Cytotoxicity assays showed that both MMT/CR/Fe3O4-NCs and MMT/CR/Fe3O4-PCA effectively killed HCT116 which is a colorectal cancer cell line. Dose-dependent inhibition was seen and the killing was enhanced two-fold by the PCA-loaded NCs (IC50-0.734 mg/mL) compared to the unloaded NCs (IC50-1.5 mg/mL). This study highlights the potential use of MMT/CR/Fe3O4-NCs as a biologically active pH-responsive drug delivery agent. Further investigations are warranted to delineate the mechanism of cell entry and cancer cell killing as well as to improve the therapeutic potential of MMT/CR/Fe3O4-NCs.
    Matched MeSH terms: Hydroxybenzoates/pharmacology; Hydroxybenzoates/chemistry*
  5. Yew YP, Shameli K, Mohamad SEB, Nagao Y, Teow SY, Lee KX, et al.
    Int J Pharm, 2019 Dec 15;572:118743.
    PMID: 31705969 DOI: 10.1016/j.ijpharm.2019.118743
    Superparamagnetic magnetite nanocomposites (Fe3O4-NCs) were successfully synthesized, which comprised of montmorillonite (MMT) as matrix support, Kappaphycus alvarezii (SW) as bio-stabilizer and Fe3O4 as filler in the composites to form MMT/SW/Fe3O4-NCs. Nanocomposite with 0.5 g Fe3O4 (MMT/SW/0.5Fe3O4) was selected for anticancer activity study because it revealed high crystallinity, particle size of 7.2 ± 1.7 nm with majority of spherical shape, and Ms = 5.85 emu/g with negligible coercivity. Drug loading and release studies were carried out using protocatechuic acid (PCA) as the model for anticancer drug, which showed 19% and 87% of PCA release in pH 7.4 and 4.8, respectively. Monolayer anticancer assay showed that PCA-loaded MMT/SW/Fe3O4 (MMT/SW/Fe3O4-PCA) had selectivity towards HCT116 (colorectal cancer cell line). Although MMT/SW/Fe3O4-PCA (0.64 mg/mL) showed higher IC50 than PCA (0.148 mg/mL) and MMT/SW/Fe3O4 (0.306 mg/mL, MMT/SW/Fe3O4-PCA showed more effective killing towards tumour spheroid model generated from HCT116. The IC50 for MMT/SW/Fe3O4-PCA, MMT/SW/Fe3O4 and PCA were 0.132, 0.23 and 0.55 mg/mL, respectively. This suggests the improved penetration efficiency and drug release of MMT/SW/Fe3O4-PCA towards HCT116 spheroids. Moreover, concentration that lower than 2 mg/mL MMT/SW/Fe3O4-PCA did not result any hemolysis in human blood, which suggests them to be ideal for intravenous injection. This study highlights the potential of MMT/SW/Fe3O4-NCs as drug delivery agent.
    Matched MeSH terms: Hydroxybenzoates/pharmacology*; Hydroxybenzoates/chemistry
  6. Yaacob NS, Nengsih A, Norazmi MN
    PMID: 23476711 DOI: 10.1155/2013/989841
    Tualang honey (TH) is rich in flavonoids and phenolic acids and has significant anticancer activity against breast cancer cells comparable to the effect of tamoxifen (TAM), in vitro. The current study evaluated the effects of TH when used in combination with TAM on MCF-7 and MDA-MB-231 cells. We observed that TH promoted the anticancer activity of TAM in both the estrogen receptor-(ER-)responsive and ER-nonresponsive human breast cancer cell lines. Flow cytometric analyses indicated accelerated apoptosis especially in MDA-MB-231 cells and with the involvement of caspase-3/7, -8 and -9 activation as shown by fluorescence microscopy. Depolarization of the mitochondrial membrane was also increased in both cell lines when TH was used in combination with TAM compared to TAM treatment alone. TH may therefore be a potential adjuvant to be used with TAM for reducing the dose of TAM, hence, reducing TAM-induced adverse effects.
    Matched MeSH terms: Hydroxybenzoates
  7. Usman MS, Hussein MZ, Kura AU, Fakurazi S, Masarudin MJ, Ahmad Saad FF
    Molecules, 2018 Feb 24;23(2).
    PMID: 29495251 DOI: 10.3390/molecules23020500
    We have synthesized a graphene oxide (GO)-based theranostic nanodelivery system (GOTS) for magnetic resonance imaging (MRI) using naturally occurring protocatechuic acid (PA) as an anticancer agent and gadolinium (III) nitrate hexahydrate (Gd) as the starting material for a contrast agent,. Gold nanoparticles (AuNPs) were subsequently used as second diagnostic agent. The GO nanosheets were first prepared from graphite via the improved Hummer's protocol. The conjugation of the GO and the PA was done via hydrogen bonding and π-π stacking interactions, followed by surface adsorption of the AuNPs through electrostatic interactions. GAGPA is the name given to the nanocomposite obtained from Gd and PA conjugation. However, after coating with AuNPs, the name was modified to GAGPAu. The physicochemical properties of the GAGPA and GAGPAu nanohybrids were studied using various characterization techniques. The results from the analyses confirmed the formation of the GOTS. The powder X-ray diffraction (PXRD) results showed the diffractive patterns for pure GO nanolayers, which changed after subsequent conjugation of the Gd and PA. The AuNPs patterns were also recorded after surface adsorption. Cytotoxicity and magnetic resonance imaging (MRI) contrast tests were also carried out on the developed GOTS. The GAGPAu was significantly cytotoxic to the human liver hepatocellular carcinoma cell line (HepG2) but nontoxic to the standard fibroblast cell line (3T3). The GAGPAu also appeared to possess higher T1 contrast compared to the pure Gd and water reference. The GOTS has good prospects of serving as future theranostic platform for cancer chemotherapy and diagnosis.
    Matched MeSH terms: Hydroxybenzoates/administration & dosage*; Hydroxybenzoates/chemistry
  8. Syarifah-Noratiqah SB, Zulfarina MS, Ahmad SU, Fairus S, Naina-Mohamed I
    Int J Med Sci, 2019;16(5):711-719.
    PMID: 31217739 DOI: 10.7150/ijms.29934
    The oil palm tree (Elaeis guineensis) from the family Arecaceae is a high oil-producing agricultural crop. A significant amount of vegetation liquor is discarded during the palm oil milling process amounting to 90 million tons per year around the world. This water-soluble extract is rich in phenolic compounds known as Oil Palm Phenolics (OPP). Several phenolic acids including the three isomers of caffeoylshikimic acid (CFA), p-hydroxybenzoic acid (PHBA), protocatechuic acid (PCA) and hydroxytyrosol are among the primary active ingredients in the OPP. Previous investigations have reported several positive pharmacological potentials by OPP such as neuroprotective and atheroprotective effects, anti-tumor and reduction in Aβ deposition in Alzheimer's disease model. In the current review, the pharmacological potential for CFA, PHBA, PCA and hydroxytyrosol is carefully reviewed and evaluated.
    Matched MeSH terms: Hydroxybenzoates/chemistry
  9. Sun, J., Jiang, Y., Amin, I., Li, Z., Prasad, K.N., Duan, X., et al.
    MyJurnal
    This research was to determine nutritional composition, essential and toxic elemental content, and major phenolic acid with antioxidant activity in Kadsura coccinea fruit. The results indicated that Kadsura coccinea fruit exhibited the high contents of total protein, total fat, ash and essential elements such as calcium (Ca), ferrum (Fe) and phosphorus (P). The levels of four common toxic elements, i.e. cadmium (Cd), mercury (Hg), arsenic (As) and lead (Pb), were lower than legal limits. By high-performance liquid chromatography (HPLC) analysis, gallic acid was identified as major phenolic acid in peel and pulp tissues. Its contents were no significant difference in both tissues. In comparison with two commercial antioxidants, the major phenolic acid extracted from Kadsura coccinea exhibited stronger 1,1-diphenyl-2-picrylhydrazyl radical-scavenging activity and reducing power. Kadsura coccinea fruit is a good source of nutrition and natural antioxidant. It is worthwhile to popularize this exotic fruit around the world.
    Matched MeSH terms: Hydroxybenzoates
  10. Sulaiman SF, Ooi KL
    J Agric Food Chem, 2012 Nov 28;60(47):11832-8.
    PMID: 23136968 DOI: 10.1021/jf303736h
    Mature-green and ripe fleshes from 12 samples of Mangifera were selected for this study. The mature-green fleshes were found to have higher vitamin C contents than the ripe fleshes. However, not all higher total or individual phenolic contents were measured from the mature-green fleshes. The highest contents of vitamin C and total phenolics were respectively measured from the aqueous extracts of mature-green (255.86 ± 12.98 μg AAE/g sample) and ripe (142.57 ± 0.38 μg GAE/g sample) fleshes of M. petandra cv. Pauh. Gallic acid and mangiferin were detected in all aqueous extracts. The extracts of the mature-green flesh of M. indica cv. Chokanan and the ripe flesh of M. indica cv. Siku Raja, respectively, exhibited the greatest 1,1-diphenyl-2-picrylhydrazyl radical (DPPH)-scavenging activity (408.21 ± 5.37 μg TE/g sample) and metal chelating activity (93.68 ± 0.74%). The combined or potentiation effects of the moderate vitamin C, gallic acid, and mangiferin contents in both extracts may be responsible for the activities. The highest mangiferin content (31.72 ± 2.57 μg/g sample) in the mature-green M. caesia (Binjai) could be the major contributor to its highest FRAP activity (868.29 ± 2.71 μg TE/g sample). This paper reports apparently the first comparative study highlighting the antioxidant activities of these fruit fleshes.
    Matched MeSH terms: Hydroxybenzoates/analysis
  11. Sukor NF, Jusoh R, Kamarudin NS, Abdul Halim NA, Sulaiman AZ, Abdullah SB
    Ultrason Sonochem, 2020 Apr;62:104876.
    PMID: 31796331 DOI: 10.1016/j.ultsonch.2019.104876
    Phenolic acids of oak gall were extracted using ultrasonic-probe assisted extraction (UPAE) method in the presence of ionic liquid. It was compared with classical ultrasonic-bath assisted extraction (CUBAE) and conventional aqueous extraction (CAE) method, with and without the presence of ionic liquid. Remarkably, the UPAE method yielded two-fold higher extraction yield with the presence of ionic liquid, resulting 481.04 mg/g for gallic acids (GA) and 2287.90 mg/g for tannic acids (TA), while a decreased value of 130.36 mg/g for GA and 1556.26 mg/g for TA were resulted with the absence of ionic liquid. Intensification process resulted the highest yield of 497.34 mg/g and 2430.48 mg/g for GA and TA, respectively, extracted at temperature 50 °C with sonication intensity of 8.66 W/cm2 and 10% duty cycle, diluted in ionic liquid, 1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [Bmim][Tf2N] at concentration of 0.10 M with sample-to-solvent ratio 1:10 for 8 h. Peleg's model successfully predicted the UPAE process confirming that extraction capacity is the controlling factor in extracting phenolic acids. Hence, it can be concluded that UPAE method and ionic liquid have synergistic effect as it effectively enhanced the extraction efficiency to increase the bioactive constituents yield.
    Matched MeSH terms: Hydroxybenzoates/isolation & purification*
  12. Shalash M, Makahleh A, Salhimi SM, Saad B
    Talanta, 2017 Nov 01;174:428-435.
    PMID: 28738603 DOI: 10.1016/j.talanta.2017.06.039
    A vortex-assisted liquid-liquid-liquid microextraction method followed by high performance liquid chromatography-diode array detection for the determination of fourteen phenolic acids (cinnamic, m-coumaric, chlorogenic, syringic, ferulic, o-coumaric, p-coumaric, vanillic, p-hydroxybenzoic, caffeic, 2, 4-dihydroxybenzoic, sinapic, gentisic and gallic acids) in honey, iced tea and canned coffee drink samples has been developed. The separation was achieved using a Poroshell 120-EC-C18 column under a gradient elution at a flow rate of 0.6mLmin-1 and mobile phase composed of methanol and acetic acid (1%, v/v). Under the optimum chromatographic conditions, the fourteen phenolic acids were separated in less than 32min. The extraction was performed using a small volume (400µL) of ternary organic solvents (1-pentanol, propyl acetate and 1-hexanol) dispersed into the aqueous sample (10mL) and assisted by vortex agitation (2500rpm for 45s), the analytes were next back-extracted from the organic solvent using 0.02M KOH (40µL) with vortex speed and time of 2500rpm and 60s, respectively. Under these conditions, enrichment factors of 30-193-fold were achieved. The limits of detection (LODs) were 0.05-0.68µgL-1. Recoveries in honey, iced tea and canned coffee drinks were in the range 72.2-112%. The method was successfully applied for the determination of the phenolic acids in honey, iced tea and canned coffee drinks.
    Matched MeSH terms: Hydroxybenzoates/analysis*; Hydroxybenzoates/isolation & purification*
  13. Saifullah B, Buskaran K, Shaikh RB, Barahuie F, Fakurazi S, Mohd Moklas MA, et al.
    Nanomaterials (Basel), 2018 Oct 11;8(10).
    PMID: 30314340 DOI: 10.3390/nano8100820
    The treatment of cancer through chemotherapy is limited by its toxicity to healthy tissues and organs, and its inability to target the cancer site. In this study, we have designed an anticancer nanocomposite delivery system for protocatechuic acid (PCA) using graphene oxide⁻polyethylene glycol as the nanocarrier, and coated with folic acid (GO⁻PEG⁻PCA⁻FA) for targeting the cancer cells. The designed anticancer delivery system was found to show much better anticancer activity than the free drug PCA against liver cancer HEP-G2 cells and human colon cancer HT-29 cells; at same time, it was found to be less toxic to normal fibroblast 3T3 cells. The folate-coated anticancer delivery system was found to show better activity then the free drug and the uncoated anticancer delivery system. The in vitro release of the PCA was found to be sustained in human physiological pHs, i.e., blood pH 7.4 and intracellular lysosomal pH 4.8. These in vitro findings are highly encouraging for further in vivo evaluation studies.
    Matched MeSH terms: Hydroxybenzoates
  14. Rahimlou M, Baghdadi G, Khodi A, Rahimi Z, Saki N, Banaei Jahromi N, et al.
    Sci Rep, 2024 Mar 21;14(1):6752.
    PMID: 38514756 DOI: 10.1038/s41598-024-57416-0
    In this cross-sectional investigation, the primary objective was to explore the correlation between the consumption of polyphenols and the likelihood of non-alcoholic fatty liver disease (NAFLD) in the adult population participating in the Hoveyzeh cohort. Data from the Hoveyzeh cohort study, part of the Persian Cohort Study, involving 10,009 adults aged 35-70, were analyzed. Exclusions were made for missing data, extreme energy intake, and liver cancer patients. Dietary habits were assessed using a food frequency questionnaire, and polyphenol intake was calculated using the Phenol Explorer database. Logistic regression analyses, adjusted for confounders, were performed to assess the relationship between polyphenol subclasses (total polyphenols, total flavonoids, phenolic acid, and lignin) and NAFLD. Among 9894 participants, those in the highest quintile of total polyphenol (OR 0.65, CI 0.5-0.84; P = 0.007), phenolic acid (OR 0.67, CI 0.52-0.86; P 
    Matched MeSH terms: Hydroxybenzoates*
  15. Radzali SA, Markom M, Saleh NM
    Molecules, 2020 Dec 11;25(24).
    PMID: 33322389 DOI: 10.3390/molecules25245859
    A preliminary study was conducted to study the effects of different types and concentrations of co-solvents based on yield, composition and antioxidants capacity of extract prior to optimization studies of supercritical fluid extraction (SFE) of Labisia pumila (locally referred to as 'kacip fatimah'). The following co-solvents were studied prior to the optimization of supercritical carbon dioxide (SC-CO2) technique: ethanol, water, methanol, as well as aqueous solutions of ethanol-water and methanol-water (50% and 70% v/v). By using the selected co-solvents, identification of phenolic acids (gallic acid, methyl gallate and caffeic acid) was determined by using High-Performance Liquid Chromatography (HPLC). Then, the antioxidant capacity was evaluated by using three different assays: total phenolic content (TPC), ferric reducing/antioxidant power (FRAP) and free radical-scavenging capacity of 2,2-diphenyl-1-picrylhydrazyl (DPPH). SC-CO2 with 70% ethanol-water co-solvent was superior in terms of a higher combination of phenolic compounds extracted and antioxidants capacity. Overall, SC-CO2 with co-solvent 70% ethanol-water technique was efficient in extracting phenolic compounds from L. pumila, and thus the usage of this solvent system should be considered for further optimization studies.
    Matched MeSH terms: Hydroxybenzoates/chemistry
  16. Prasad N, Yang B, Kong KW, Khoo HE, Sun J, Azlan A, et al.
    PMID: 23710209 DOI: 10.1155/2013/154606
    Nypa fruticans Wurmb. is one of the important underutilized fruit of Malaysia, which lacks scientific attention. Total phenolics, flavonoid content, and antioxidant capacities from endosperm extracts of Nypa fruticans (unripe and ripe fruits) were evaluated. Endosperm extract of unripe fruits (EEU) exhibited the highest phenolics (135.6 ± 4.5 mg GAE/g), flavonoid content (68.6 ± 3.1 RE/g), and antioxidant capacity. Free radical scavenging capacity of EEU as assessed by 2-2'-azino-bis (3-ethylbenz-thiazoline-6-sulfonic acid (ABTS) and 1,1-diphenyl-2-picryl hydrazyl (DPPH) radicals showed inhibitory activity of 78 ± 1.2% and 85 ± 2.6%, respectively. Beta carotene bleaching coefficient of EEU was higher (2550 ± 123), when compared to endosperm extract of ripe fruits (1729 ± 172). Additionally, EEU exhibited high antioxidant capacity by phosphomolybdenum method and ferric reducing antioxidant power values. Eight phenolic compounds from Nypa fruticans endosperm extracts were identified and quantified by ultra-high-performance liquid chromatography. Chlorogenic acid, protocatechuic acid, and kaempferol were the major phenolic compounds. Thus this fruit could be used as a potential source of natural antioxidant.
    Matched MeSH terms: Hydroxybenzoates
  17. Nordin MA, Wan Harun WH, Abdul Razak F, Musa MY
    Int J Oral Sci, 2014 Mar;6(1):15-21.
    PMID: 24406634 DOI: 10.1038/ijos.2013.97
    Candida species have been associated with the emergence of strains resistant to selected antifungal agents. Plant products have been used traditionally as alternative medicine to ease mucosal fungal infections. This study aimed to investigate the effects of Piper betle extract on the growth profile and the ultrastructure of commonly isolated oral candidal cells. The major component of P. betle was identified using liquid chromatography-mass spectrophotometry (LC-MS/MS). Seven ATCC control strains of Candida species were cultured in yeast peptone dextrose broth under four different growth environments: (i) in the absence of P. betle extract; and in the presence of P. betle extract at respective concentrations of (ii) 1 mg⋅mL(-1); (iii) 3 mg⋅mL(-1); and (iv) 6 mg⋅mL(-1). The growth inhibitory responses of the candidal cells were determined based on changes in the specific growth rates (µ). Scanning electron microscopy (SEM) was used to observe any ultrastructural alterations in the candida colonies. LC-MS/MS was performed to validate the presence of bioactive compounds in the extract. Following treatment, it was observed that the µ-values of the treated cells were significantly different than those of the untreated cells (P<0.05), indicating the fungistatic properties of the P. betle extract. The candidal population was also reduced from an average of 13.44×10(6) to 1.78×10(6) viable cell counts (CFU)⋅mL(-1). SEM examination exhibited physical damage and considerable morphological alterations of the treated cells. The compound profile from LC-MS/MS indicated the presence of hydroxybenzoic acid, chavibetol and hydroxychavicol in P. betle extract. The effects of P. betle on candida cells could potentiate its antifungal activity.
    Matched MeSH terms: Hydroxybenzoates/analysis
  18. Noratirah Shazlin, M.A., Asmah, R., Nurul Shazini, R., Hawa, Z.E.J.
    MyJurnal
    Mangosteen is a native fruit from Southeast Asia. It is rich in phenolic compounds like xanthones, anthocyanins and phenolic acids and also a good source of fibre and minerals. The present study aim to investigate the effects of mangosteen aril supplementation on the histopathological changes of liver and kidney in rats fed with high fat diet. Forty male Sprague Dawley rats were divided into five groups (n=8), which consisted of normal control group (NC), obese control group (OC), obese supplemented with 200 mg/kg mangosteen group (M200), obese supplemented with 400 mg/kg mangosteen group (M400) and obese supplemented with 600 mg/kg mangosteen group (M600). At the end of seven weeks, obese groups supplemented with mangosteen aril were force feed to correspond mangosteen dosage while the control groups were force feed with distilled water as placebo. At the end of seven weeks of supplementation period, all rats were sacrificed and liver and kidney were collected. All data were analyzed using one way ANOVA and the differences between groups were considered significant at p < 0.05. Results showed that supplementation of mangosteen aril in obese rats able to ameliorate the abnormalities in their liver and kidney tissue caused by high fat diet.
    Matched MeSH terms: Hydroxybenzoates
  19. Musa M, Wan Ibrahim WA, Mohd Marsin F, Abdul Keyon AS, Rashidi Nodeh H
    Food Chem, 2018 Nov 01;265:165-172.
    PMID: 29884368 DOI: 10.1016/j.foodchem.2018.04.020
    Graphene-magnetite composite (G-Fe3O4) was successfully synthesized and applied as adsorbent for magnetic solid phase extraction (MSPE) of two phenolic acids namely 4-hydroxybenzoic acid (4-HB) and 3,4-dihydroxybenzoic acid (3,4-DHB) from stingless bee honey prior to analysis using high performance liquid chromatography with ultraviolet-visible detection (HPLC-UV/Vis). Several MSPE parameters affecting extraction of these two acids were optimized. Optimum MSPE conditions were 50 mg of G-Fe3O4 adsorbent, 5 min extraction time at 1600 rpm, 30 mL sample volume, sample solution pH 0.5, 200 µL methanol as desorption solvent (5 min sonication assisted) and 5% w/v NaCl. The LODs (3 S/N) calculated for 4-HB and 3,4-DHB were 0.08 and 0.14 µg/g, respectively. Good relative recoveries (72.6-110.6%) and reproducibility values (RSD 
    Matched MeSH terms: Hydroxybenzoates/analysis*; Hydroxybenzoates/isolation & purification
  20. Moniruzzaman M, Yung An C, Rao PV, Hawlader MN, Azlan SA, Sulaiman SA, et al.
    Biomed Res Int, 2014;2014:737490.
    PMID: 25045696 DOI: 10.1155/2014/737490
    The aim of the present study was to characterize the phenolic acids, flavonoids, and antioxidant properties of monofloral honey collected from five different districts in Bangladesh. A new high performance liquid chromatography (HPLC) equipped with a UV detector method was developed for the identification of the phenolic acids and flavonoids. A total of five different phenolic acids were identified, with the most abundant being caffeic acid, benzoic acid, gallic acid, followed by chlorogenic acid and trans-cinnamic acid. The flavonoids, kaempferol, and catechin were most abundant, followed by myricetin and naringenin. The mean moisture content, total sugar content, and color characteristics of the honey samples were 18.36 ± 0.95%, 67.40 ± 5.63 g/100 g, and 129.27 ± 34.66 mm Pfund, respectively. The mean total phenolic acids, total flavonoid content, and proline content were 199.20 ± 135.23, 46.73 ± 34.16, and 556.40 ± 376.86 mg/kg, respectively, while the mean FRAP values and DPPH radical scavenging activity were 327.30 ± 231.87 μM Fe (II)/100 g and 36.95 ± 20.53%, respectively. Among the different types of honey, kalijira exhibited the highest phenolics and antioxidant properties. Overall, our study confirms that all the investigated honey samples are good sources of phenolic acids and flavonoids with good antioxidant properties.
    Matched MeSH terms: Hydroxybenzoates/isolation & purification*; Hydroxybenzoates/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links