Displaying publications 1 - 20 of 81 in total

Abstract:
Sort:
  1. Tasnuva ST, Qamar UA, Ghafoor K, Sahena F, Jahurul MHA, Rukshana AH, et al.
    Nat Prod Res, 2019 May;33(10):1495-1499.
    PMID: 29281898 DOI: 10.1080/14786419.2017.1419224
    The aim of the study was to isolate digestive enzymes inhibitors from Mimosa pudica through a bioassay-guided fractionation approach. Repeated silica gel and sephadex LH 20 column chromatographies of bioactive fractions afforded stigmasterol, quercetin and avicularin as digestive enzymes inhibitors whose IC50 values as compared to acarbose (351.02 ± 1.46 μg mL-1) were found to be as 91.08 ± 1.54, 75.16 ± 0.92 and 481.7 ± 0.703 μg mL-1, respectively. In conclusion, M. pudica could be a good and safe source of digestive enzymes inhibitors for the management of diabetes in future.
    Matched MeSH terms: Hypoglycemic Agents/chemistry
  2. Quek A, Kassim NK, Lim PC, Tan DC, Mohammad Latif MA, Ismail A, et al.
    Pharm Biol, 2021 Dec;59(1):964-973.
    PMID: 34347568 DOI: 10.1080/13880209.2021.1948065
    CONTEXT: Melicope latifolia (DC.) T. G. Hartley (Rutaceae) was reported to contain various phytochemicals including coumarins, flavonoids, and acetophenones.

    OBJECTIVE: This study investigates the antidiabetic and antioxidant effects of M. latifolia bark extracts, fractions, and isolated constituents.

    MATERIALS AND METHODS: Melicope latifolia extracts (hexane, chloroform, and methanol), fractions, and isolated constituents with varying concentrations (0.078-10 mg/mL) were subjected to in vitro α-amylase and dipeptidyl peptidase-4 (DPP-4) inhibitory assay. Molecular docking was performed to study the binding mechanism of active compounds towards α-amylase and DPP-4 enzymes. The antioxidant activity of M. latifolia fractions and compounds were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging and β-carotene bleaching assays.

    RESULTS: Melicope latifolia chloroform extract showed the highest antidiabetic activity (α-amylase IC50: 1464.32 μg/mL; DPP-4 IC50: 221.58 μg/mL). Fractionation of chloroform extract yielded four major fractions (CF1-CF4) whereby CF3 showed the highest antidiabetic activity (α-amylase IC50: 397.68 μg/mL; DPP-4 IC50: 37.16 μg/mL) and resulted in β-sitosterol (1), halfordin (2), methyl p-coumarate (3), and protocatechuic acid (4). Isolation of compounds 2-4 from the species and their DPP-4 inhibitory were reported for the first time. Compound 2 showed the highest α-amylase (IC50: 197.53 μM) and β-carotene (88.48%) inhibition, and formed the highest number of molecular interactions with critical amino acid residues of α-amylase. The highest DPP-4 inhibition was exhibited by compound 3 (IC50: 911.44 μM).

    DISCUSSION AND CONCLUSIONS: The in vitro and in silico analyses indicated the potential of M. latifolia as an alternative source of α-amylase and DPP-4 inhibitors. Further pharmacological studies on the compounds are recommended.

    Matched MeSH terms: Hypoglycemic Agents/chemistry
  3. Ali H, Houghton PJ, Soumyanath A
    J Ethnopharmacol, 2006 Oct 11;107(3):449-55.
    PMID: 16678367
    Extracts of six selected Malaysian plants with a reputation of usefulness in treating diabetes were examined for alpha-amylase inhibition using an in vitro model. Inhibitory activity studied by two different protocols (with and without pre-incubation) showed that Phyllanthus amarus hexane extract had alpha-amylase inhibitory properties. Hexane and dichloromethane extracts of Anacardium occidentale, Lagerstroemia speciosa, Averrhoa bilimbiPithecellobium jiringa and Parkia speciosa were not active when tested without pre-incubation. Extraction and fractionation of Phyllanthus amarus hexane extract led to the isolation of dotriacontanyl docosanoate, triacontanol and a mixture of oleanolic acid and ursolic acid. Dotriacontanyl docosanoate and the mixture of oleanolic acid and ursolic acid are reported from this plant species for the first time. All compounds were tested in the alpha-amylase inhibition assay and the results revealed that the oleanolic acid and ursolic acid (2:1) mixture was a potent alpha-amylase inhibitor with IC(50)=2.01 microg/ml (4.41 microM) and that it contributes significantly to the alpha-amylase inhibition activity of the extract. Three pure pentacyclic triterpenoids, oleanolic acid, ursolic acid and lupeol were shown to inhibit alpha-amylase.
    Matched MeSH terms: Hypoglycemic Agents/chemistry
  4. Jadhav PB, Jadhav SB, Zehravi M, Mubarak MS, Islam F, Jeandet P, et al.
    Molecules, 2022 Dec 24;28(1).
    PMID: 36615348 DOI: 10.3390/molecules28010149
    Dipeptidyl peptidase-4 (DPP-IV) inhibitors are known as safe and well-tolerated antidiabetic medicine. Therefore, the aim of the present work was to synthesize some carbohydrazide derivatives (1a-5d) as DPP-IV inhibitors. In addition, this work involves simulations using molecular docking, ADMET analysis, and Lipinski and Veber's guidelines. Wet-lab synthesis was used to make derivatives that met all requirements, and then FTIR, NMR, and mass spectrometry were used to confirm the structures and perform biological assays. In this context, in vitro enzymatic and in vivo antidiabetic activity evaluations were carried out. None of the molecules had broken the majority of the drug-likeness rules. Furthermore, these molecules were put through additional screening using molecular docking. In molecular docking experiments (PDB ID: 2P8S), many molecules displayed more potent interactions than native ligands, exhibiting more hydrogen bonds, especially those with chloro- or fluoro substitutions. Our findings indicated that compounds 5b and 4c have IC50 values of 28.13 and 34.94 µM, respectively, under in vitro enzymatic assays. On the 21st day of administration to animals, compound 5b exhibited a significant reduction in serum blood glucose level (157.33 ± 5.75 mg/dL) compared with the diabetic control (Sitagliptin), which showed 280.00 ± 13.29 mg/dL. The antihyperglycemic activity showed that the synthesized compounds have good hypoglycemic potential in fasting blood glucose in the type 2 diabetes animal model (T2DM). Taken all together, our findings indicate that the synthesized compounds exhibit excellent hypoglycemic potential and could be used as leads in developing novel antidiabetic agents.
    Matched MeSH terms: Hypoglycemic Agents/chemistry
  5. Tiong SH, Looi CY, Arya A, Wong WF, Hazni H, Mustafa MR, et al.
    Fitoterapia, 2015 Apr;102:182-8.
    PMID: 25665941 DOI: 10.1016/j.fitote.2015.01.019
    Vindogentianine, a new indole alkaloid together with six known alkaloids, vindoline, vindolidine, vindolicine, vindolinine, perivine and serpentine were isolated from leaf extract (DA) of Catharanthus roseus (L.) G. Don. Their structures were elucidated by spectroscopic methods; NMR, MS, UV and IR. Vindogentianine is a dimer containing a vindoline moiety coupled to a gentianine moiety. After 24h incubation, vindogentianine exhibited no cytotoxic effect in C2C12 mouse myoblast and β-TC6 mouse pancreatic cells (IC50>50μg/mL). Real-time cell proliferation monitoring also indicated vindogentianine had little or no effect on C2C12 mouse myoblast cell growth at the highest dose tested (200μg/mL), without inducing cell death. Vindogentianine exhibited potential hypoglycemic activity in β-TC6 and C2C12 cells by inducing higher glucose uptake and significant in vitro PTP-1B inhibition. However, in vitro α-amylase and α-glucosidase inhibition assay showed low inhibition under treatment of vindogentianine. This suggests that hypoglycemic activity of vindogentianine may be due to the enhancement of glucose uptake and PTP-1B inhibition, implying its therapeutic potential against type 2 diabetes.
    Matched MeSH terms: Hypoglycemic Agents/chemistry*
  6. Azam AA, Pariyani R, Ismail IS, Ismail A, Khatib A, Abas F, et al.
    BMC Complement Altern Med, 2017 May 25;17(1):278.
    PMID: 28545435 DOI: 10.1186/s12906-017-1777-1
    BACKGROUND: Orthosiphon stamineus (OS) is a herb known in ethnomedicine for treating diabetes mellitus (DM). In this study, a (1)H NMR based urine metabolomics tool has been used for the first time to identify the metabolic protective mechanism of OS in DM using Streptozotocin (STZ) induced experimental model in rats.

    METHODS: Four different solvent extracts of OS, namely aqueous, ethanolic, 50% aqueous ethanolic and methanolic, at a dose of 500 mg/kg body weight (bw) were orally administered for 14 days to diabetic rats induced via intraperitoneal injection of 60 mg/kg bw STZ. NMR metabolomics approach using pattern recognition combined with multivariate statistical analysis was applied in the rat urine to study the resulted metabolic perturbations.

    RESULTS: OS aqueous extract (OSAE) caused a reversal of DM comparable to that of 10 mg/kg bw glibenclamide. A total of 15 urinary metabolites, which levels changed significantly upon treatment were identified as the biomarkers of OSAE in diabetes. A systematic metabolic pathways analysis identified that OSAE contributed to the antidiabetic activity mainly through regulating the tricarboxylic acid cycle, glycolysis/gluconeogenesis, lipid and amino acid metabolism.

    CONCLUSIONS: The results of this study validated the ethnopharmacological use of OS in diabetes and unveiled the biochemical and metabolic mechanisms involved.

    Matched MeSH terms: Hypoglycemic Agents/chemistry
  7. Manaharan T, Palanisamy UD, Ming CH
    Molecules, 2012;17(5):5915-23.
    PMID: 22609782 DOI: 10.3390/molecules17055915
    Preliminary investigations on 14 plant extracts (obtained by ethanolic and aqueous extraction) identified those having high antioxidant and a significant total phenolic content. Antihyperglycemic, α-amylase and α-glucosidase inhibition activities were also observed. A correlation between the antihyperglycemic activity, total phenolic content and antioxidant (DPPH scavenging) activity was established. To further substantiate these findings, the possibility of tannins binding non-specifically to enzymes and thus contributing to the antihyperglycemic activity was also investigated. Our study clearly indicated that the antihyperglycemic activity observed in the plant extracts was indeed not due to non-specific tannin absorption.
    Matched MeSH terms: Hypoglycemic Agents/chemistry
  8. Elendran S, Wang LW, Prankerd R, Palanisamy UD
    Pharm Biol, 2015;53(12):1719-26.
    PMID: 25853977 DOI: 10.3109/13880209.2014.1003356
    Natural products play a vital role in the discovery of leads for novel pharmacologically active drugs. Geraniin (GE) was identified as the major compound in the rind of Nephelium lappaceum L. (Sapindaceae), while ellagic and gallic acids have been shown to be its main metabolites. GE and its metabolites possess a range of bioactive properties including being an anti-infective, anticarcinogenic, antihyperglycemic, and antihypertensive.
    Matched MeSH terms: Hypoglycemic Agents/chemistry*
  9. Tan JBL, Kwan YM
    Food Chem, 2020 Jul 01;317:126411.
    PMID: 32087517 DOI: 10.1016/j.foodchem.2020.126411
    Widely used throughout the world as traditional medicine for treating a variety of diseases ranging from cancer to microbial infections, members of the Tradescantia genus show promise as sources of desirable bioactive compounds. The bioactivity of several noteworthy species has been well-documented in scientific literature, but with nearly seventy-five species, there remains much to explore in this genus. This review aims to discuss all the bioactivity-related studies of Tradescantia plants and the compounds discovered, including their anticancer, antimicrobial, antioxidant, and antidiabetic activities. Gaps in knowledge will also be identified for future research opportunities.
    Matched MeSH terms: Hypoglycemic Agents/chemistry
  10. Pang KL, Chin KY
    Molecules, 2019 Mar 06;24(5).
    PMID: 30845769 DOI: 10.3390/molecules24050923
    Obesity is a major risk factor for diabetes, and these two metabolic conditions cause significant healthcare burden worldwide. Chronic inflammation and increased oxidative stress due to exposure of cells to excess nutrients in obesity may trigger insulin resistance and pancreatic β-cell dysfunction. Tocotrienol, as a functional food component with anti-inflammatory, antioxidant, and cell signaling-mediating effects, may be a potential agent to complement the current management of obesity and diabetes. The review aimed to summarize the current evidence on the anti-obesity and antidiabetic effects of tocotrienol. Previous studies showed that tocotrienol could suppress adipogenesis and, subsequently, reduce body weight and fat mass in animals. This was achieved by regulating pathways of lipid metabolism and fatty acid biosynthesis. It could also reduce the expression of transcription factors regulating adipogenesis and increase apoptosis of adipocytes. In diabetic models, tocotrienol was shown to improve glucose homeostasis. Activation of peroxisome proliferator-activated receptors was suggested to be responsible for these effects. Tocotrienol also prevented multiple systemic complications due to obesity and diabetes in animal models through suppression of inflammation and oxidative stress. Several clinical trials have been conducted to validate the antidiabetic of tocotrienol, but the results were heterogeneous. There is no evidence showing the anti-obesity effects of tocotrienol in humans. Considering the limitations of the current studies, tocotrienol has the potential to be a functional food component to aid in the management of patients with obesity and diabetes.
    Matched MeSH terms: Hypoglycemic Agents/chemistry*
  11. Taha M, Rahim F, Imran S, Ismail NH, Ullah H, Selvaraj M, et al.
    Bioorg Chem, 2017 10;74:30-40.
    PMID: 28750203 DOI: 10.1016/j.bioorg.2017.07.009
    Discovery of α-glucosidase inhibitors has been actively pursued with the aim to develop therapeutics for the treatment of type-II diabetes mellitus and the other carbohydrate mediated disease. In continuation of our drug discovery research on potential antidiabetic agents, we synthesized novel tris-indole-oxadiazole hybrid analogs (1-21), structurally characterized by various spectroscopic techniques such as 1H NMR, EI-MS, and 13C NMR. Elemental analysis was found in agreement with the calculated values. All compounds were evaluated for α-glucosidase inhibiting potential and showed potent inhibitory activity in the range of IC50=2.00±0.01-292.40±3.16μM as compared to standard acarbose (IC50=895.09±2.04µM). The pharmacokinetic predictions of tris-indole series using descriptor properties showed that almost all compounds in this series indicate the drug aptness. Detailed binding mode analyses with docking simulation was also carried out which showed that the inhibitors can be stabilized by the formation of hydrogen bonds with catalytic residues and the establishment of hydrophobic contacts at the opposite side of the active site.
    Matched MeSH terms: Hypoglycemic Agents/chemistry
  12. Ibraheem F, Ahmad M, Ashfaq UA, Aslam S, Khan ZA, Sultan S
    Pak J Pharm Sci, 2020 Mar;33(2(Supplementary)):847-854.
    PMID: 32863261
    Pyrazoline and benzimidazoles derivatives have been widely studied due to their potential applications in the medicinal field. In this research project, we have hybridized these two heterocyclic systems in the same molecule. A new series of compounds, 2-((3,5-diaryl-4,5-dihydro-1H-pyrazol-1-yl)methyl)-1H-benzo[d]imidazole (5a-i) were synthesized through a multistep reaction. In the first step, chalcones 3a-i were prepared by coupling of various acetophenones and benzaldehydes under alkaline conditions. These chalcones were cyclized with hydrazine hydrate to form a series of pyrazolines which were finally coupled with 2-chloromethyl-1H-benzimidazole to get a new series of titled hybrid molecules. The structures of these compounds were elucidated by spectral (1H NMR and 13C NMR) analysis. The anti-diabetic potential of these compounds was studied by screening them for their α-glucosidase inhibition activity. The SAR was established through molecular docking analysis. Compound 5d appeared as effective inhibitor with IC50 = 50.06μM as compared to reference drug (acarbose) having IC50 = 58.8μM.
    Matched MeSH terms: Hypoglycemic Agents/chemistry*
  13. Mphahlele MJ, Choong YS, Maluleka MM, Gildenhuys S
    Biomolecules, 2020 03 07;10(3).
    PMID: 32156083 DOI: 10.3390/biom10030418
    The 5-acetyl-2-aryl-6-hydroxybenzo[b]furans 2a-h have been evaluated through in vitro enzymatic assay against targets which are linked to type 2 diabetes (T2D), namely, α-glucosidase, protein tyrosine phosphatase 1B (PTP1B) and β-secretase. These compounds have also been evaluated for antioxidant activity using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free-radical scavenging method. The most active compounds against α-glucosidase and/or PTP1B, namely, 4-fluorophenyl 2c, 4-methoxyphenyl 2g and 3,5-dimethoxyphenyl substituted 2h derivatives were also evaluated for potential anti-inflammatory properties against cyclooxygenase-2 activity. The Lineweaver-Burk and Dixon plots were used to determine the type of inhibition on compounds 2c and 2h against α-glucosidase and PTP1B receptors. The interactions were investigated in modelled complexes against α-glucosidase and PTP1B via molecular docking.
    Matched MeSH terms: Hypoglycemic Agents/chemistry*
  14. Taha M, Irshad M, Imran S, Chigurupati S, Selvaraj M, Rahim F, et al.
    Eur J Med Chem, 2017 Dec 01;141:530-537.
    PMID: 29102178 DOI: 10.1016/j.ejmech.2017.10.028
    Piperazine Sulfonamide analogs (1-19) have been synthesized, characterized by different spectroscopic techniques and evaluated for α-amylase Inhibition. Analogs 1-19 exhibited a varying degree of α-amylase inhibitory activity with IC50 values ranging in between 1.571 ± 0.05 to 3.98 ± 0.397 μM when compared with the standard acarbose (IC50 = 1.353 ± 0.232 μM). Compound 1, 2, 3 and 7 showed significant inhibitory effects with IC50 value 2.348 ± 0.444, 2.064 ± 0.04, 1.571 ± 0.05 and 2.118 ± 0.204 μM, respectively better than the rest of the series. Structure activity relationships were established. Molecular docking studies were performed to understand the binding interaction of the compounds.
    Matched MeSH terms: Hypoglycemic Agents/chemistry
  15. Taha M, Alrashedy AS, Almandil NB, Iqbal N, Anouar EH, Nawaz M, et al.
    Int J Biol Macromol, 2021 Nov 01;190:301-318.
    PMID: 34481854 DOI: 10.1016/j.ijbiomac.2021.08.207
    In this study, we have investigated a series of indole-based compounds for their inhibitory study against pancreatic α-amylase and intestinal α-glucosidase activity. Inhibitors of carbohydrate degrading enzymes appear to have an essential role as antidiabetic drugs. All analogous exhibited good to moderate α-amylase (IC50 = 3.80 to 47.50 μM), and α-glucosidase inhibitory interactions (IC50 = 3.10-52.20 μM) in comparison with standard acarbose (IC50 = 12.28 μM and 11.29 μM). The analogues 4, 11, 12, 15, 14 and 17 had good activity potential both for enzymes inhibitory interactions. Structure activity relationships were deliberated to propose the influence of substituents on the inhibitory potential of analogues. Docking studies revealed the interaction of more potential analogues and enzyme active site. Further, we studied their kinetic study of most active compounds showed that compounds 15, 14, 12, 17 and 11 are competitive for α-amylase and non- competitive for α-glucosidase.
    Matched MeSH terms: Hypoglycemic Agents/chemistry
  16. Saddique FA, Aslam S, Ahmad M, Ashfaq UA, Muddassar M, Sultan S, et al.
    Molecules, 2021 May 20;26(10).
    PMID: 34065194 DOI: 10.3390/molecules26103043
    Diabetes mellitus (DM) is a chronic disorder and has affected a large number of people worldwide. Insufficient insulin production causes an increase in blood glucose level that results in DM. To lower the blood glucose level, various drugs are employed that block the activity of the α-glucosidase enzyme, which is considered responsible for the breakdown of polysaccharides into monosaccharides leading to an increase in the intestinal blood glucose level. We have synthesized novel 2-(3-(benzoyl/4-bromobenzoyl)-4-hydroxy-1,1-dioxido-2H-benzo[e][1,2]thiazin-2-yl)-N-arylacetamides and have screened them for their in silico and in vitro α-glucosidase inhibition activity. The derivatives 11c, 12a, 12d, 12e, and 12g emerged as potent inhibitors of the α-glucosidase enzyme. These compounds exhibited good docking scores and excellent binding interactions with the selected residues (Asp203, Asp542, Asp327, His600, Arg526) during in silico screening. Similarly, these compounds also showed good in vitro α-glucosidase inhibitions with IC50 values of 30.65, 18.25, 20.76, 35.14, and 24.24 μM, respectively, which were better than the standard drug, acarbose (IC50 = 58.8 μM). Furthermore, a good agreement was observed between in silico and in vitro modes of study.
    Matched MeSH terms: Hypoglycemic Agents/chemistry
  17. Ngo YL, Lau CH, Chua LS
    Food Chem Toxicol, 2018 Nov;121:687-700.
    PMID: 30273632 DOI: 10.1016/j.fct.2018.09.064
    Rosmarinic acid is a bioactive phytochemical that can be found in many herbs as ethnomedicines. It possesses remarkable pharmacological activities, and thus leading to its exploration as a therapeutic drug in diabetes treatment recently. This article reviews the extraction and fractionation techniques for plant-based natural rosmarinic acid and its anti-diabetic potential based on literature data published in journals, books, and patents from 1958 to 2017. Factors affecting the performance of rosmarinic acid extraction and fractionation such as operating temperature, time, solvent to sample ratio and eluent system are compiled and discussed in detail. The inhibitory action of rosmarinic acid against sugar digestive enzymes, and protective action towards pancreatic β-cell dysfunction and glucolipotoxicity mediated oxidative stress are also critically reviewed. The optimal parameters are largely dependent on the applied extraction and fractionation techniques, as well as the nature of plant samples. Previous studies have proven the potent role of rosmarinic acid to control plasma glucose level and increase insulin sensitivity in hyperglycemia. Although rosmarinic acid is readily absorbed by human body, its mechanism after consumption is remained unclear. Intensive studies should be well planned to determine the dosage and toxicity level of rosmarinic acid for efficacy and safe consumption.
    Matched MeSH terms: Hypoglycemic Agents/chemistry
  18. Robert SD, Ismail AA, Rosli WI
    Eur J Nutr, 2016 Oct;55(7):2275-80.
    PMID: 26358163 DOI: 10.1007/s00394-015-1037-4
    PURPOSE: This study aimed to determine whether fenugreek seed powder could reduce the glycemic response and glycemic index (GI) when added to buns and flatbreads.

    METHODS: In a randomised, controlled crossover trial, ten healthy human subjects (five men, five women) were given 50 g glucose (reference food, twice); buns (0 and 10 % fenugreek seed powder); and flatbreads (0 and 10 % fenugreek seed powder) on six different occasions. Finger prick capillary blood samples were collected at 0, 15, 30, 45, 60, 90 and 120 min after the start of the meal. The palatability of the test meals was scored using Likert scales.

    RESULTS: The incremental areas under the glucose curve value of buns and flatbreads with 10 % fenugreek (138 ± 17 mmol × min/L; 121 ± 16 mmol × min/L) were significantly lower than those of 0 % fenugreek bun and flatbreads (227 ± 15 mmol × min/L; 174 ± 14 mmol × min/L, P = <0.01). Adding 10 % fenugreek seed powder reduced the GI of buns from 82 ± 5 to 51 ± 7 (P 

    Matched MeSH terms: Hypoglycemic Agents/chemistry
  19. Singhal S, Manikrao Patil V, Verma S, Masand N
    Bioorg Chem, 2024 May;146:107277.
    PMID: 38493634 DOI: 10.1016/j.bioorg.2024.107277
    Diabetes mellitus (DM) is one of the largest public health problems worldwide and in the last decades various therapeutic targets have been investigated. For the treatment of type-2 DM (T2DM), dipeptidyl peptidase-4 (DPP-4) is one of the well reported target and has established safety in terms of cardiovascular complexicity. Preclinical and clinical studies using DPP-4 inhibitors have demonstrated its safety and effectiveness and have lesser risk of associated hypoglycaemic effect making it suitable for elderly patients. FDA has approved a number of structurally diverse DPP-4 inhibitors for clinical use. The present manuscript aims to focus on the well reported hybrid and non-hybrid analogues and their structural activity relationship (SAR) studies. It aims to provide structural insights for this class of compounds pertaining to favourable applicability of selective DPP-4 inhibitors in the treatment of T2DM.
    Matched MeSH terms: Hypoglycemic Agents/chemistry
  20. Ahamad Tarmizi AA, Nik Ramli NN, Adam SH, Abdul Mutalib M, Mokhtar MH, Tang SGH
    Molecules, 2023 Jul 10;28(14).
    PMID: 37513196 DOI: 10.3390/molecules28145322
    The advancement in nanotechnology is the trigger for exploring the synthesis of selenium nanoparticles and their use in biomedicine. Therefore, this study aims to synthesize selenium nanoparticles using M. oleifera as a reducing agent and evaluate their antioxidant and antidiabetic potential. Our result demonstrated a change in the color of the mixture from yellow to red, and UV-Vis spectrometry of the suspension solution confirmed the formation of MO-SeNPs with a single absorbance peak in the range of 240-560 nm wavelength. FTIR analysis revealed several bioactive compounds, such as phenols and amines, that could possibly be responsible for the reduction and stabilization of the MO-SeNPs. FESEM + EDX analysis revealed that the amorphous MO-SeNPs are of high purity, have a spherical shape, and have a size of 20-250 nm in diameter, as determined by HRTEM. MO-SeNPs also exhibit the highest DPPH scavenging activity of 84% at 1000 μg/mL with an IC50 of 454.1 μg/mL and noteworthy reducing ability by reducing power assay. Furthermore, MO-SeNPs showed promising antidiabetic properties with dose-dependent inhibition of α-amylase (26.7% to 44.53%) and α-glucosidase enzyme (4.73% to 19.26%). Hence, these results demonstrated that M. oleifera plant extract possesses the potential to reduce selenium ions to SeNPs under optimized conditions with notable antioxidant and antidiabetic activities.
    Matched MeSH terms: Hypoglycemic Agents/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links