Displaying publications 1 - 20 of 39 in total

Abstract:
Sort:
  1. Saad Mohd Said, Zairihan Abdul Halim, Fatimah Said
    MyJurnal
    This study analyzes the determinants of workplace injuries across 44 four-digit manufacturing industries in Malaysia from 1993 to 2008 through the business cycle and structural approaches. The results of fixed-effects estimations revealed that workplace injuries in Malaysian manufacturing sector were negatively influenced by firm size and positively influenced by business cycle. Consistent with the findings of previous studies in other countries, the empirical evidence of this study supports the pro-cyclical behavior of injury rates in manufacturing industries towards business cycle. The analysis demonstrates that both structural and cyclical variation effects are important determinants of workplace injuries in Malaysia.
    Matched MeSH terms: Manufacturing Industry
  2. Roseni Abdul Aziz, Mat Rebi Abdul Rani, Jafri Mohd Rohani, Ademola James Adeyemi
    MyJurnal
    Studies have identified working postures as a major risk factors associated with Work-related musculoskeletal disorders (WMSD) in industries. This study investigated the prevalence of WMSD among assembly workers in Malaysia and how psychosocial factors such as personal values and workers relationship with family and superior are associated with discomfort and pain. A survey was conducted among 127 workers at assembly process in the manufacturing industry. The workers were aged 28.74±6.74 years and 64.6% of them were males. Analysis of Variance (ANOVA) was used to determine the effect of workplace factors on WMSD at different body regions. Spearman’s rank correlation was used to investigate association between psychosocial factors and occurrence of discomfort and pain. Only occupation and job activities revealed any significant different with WMSD in the major body regions while there was no significant difference in gender, age and work duration classifications. Shoulder painis the most prevalent in terms of frequency and intensity of occurrence. Psychosocial issues that have to do with person values, effect of job on family relationship and workers rapport with superiors are all found to be associated with the discomfort and pain among the occupational group. Employers and concerned government agencies need to take more proactive steps in tackling the problem as the occurrence of WMSD will have a significant effect on the overall wellbeing of the working population.
    Matched MeSH terms: Manufacturing Industry
  3. Jafri Mohd Rohani, Hood Atan, Wan Harun Wan Hamid, Mohamed Fitri Johari, Wan Lokman Wan Bedurdin, Hafizah Ithnin
    MyJurnal
    Currently accident cost calculations involve lengthy process of data collection procedures. Accident cost
    calculations can be categorized into direct and indirect costs. Many manufacturing industries are having difficulties
    in identifying and quantifying the accident cost category. Besides, it involves manual data collection which is time
    consuming and has high tendency to make errors throughout the process. The data collection process also involves
    various parties. For example, getting direct cost data from human resource department while indirect cost data need
    to be obtained from manufacturing and safety department. The objective of this study is to propose Web-Based
    interactive Accident Cost Calculator (WBACC) for manufacturing industries. This WBACC has two options; option
    1: calculations based on input data at the time of accident. Option 2: calculations based on historical data such as
    previous accident records. Option 1 is much simpler because it only requires accident demographic data while option
    2 is much more complex. However, option 2 is more accurate compared to option 1. This proposed WBACC can be
    used by safety and health practitioners to convince their top management in making decisions especially on safety
    budget allocation.
    Matched MeSH terms: Manufacturing Industry
  4. Yap HJ, Taha Z, Dawal SZ, Chang SW
    PLoS One, 2014;9(10):e109692.
    PMID: 25360663 DOI: 10.1371/journal.pone.0109692
    Traditional robotic work cell design and programming are considered inefficient and outdated in current industrial and market demands. In this research, virtual reality (VR) technology is used to improve human-robot interface, whereby complicated commands or programming knowledge is not required. The proposed solution, known as VR-based Programming of a Robotic Work Cell (VR-Rocell), consists of two sub-programmes, which are VR-Robotic Work Cell Layout (VR-RoWL) and VR-based Robot Teaching System (VR-RoT). VR-RoWL is developed to assign the layout design for an industrial robotic work cell, whereby VR-RoT is developed to overcome safety issues and lack of trained personnel in robot programming. Simple and user-friendly interfaces are designed for inexperienced users to generate robot commands without damaging the robot or interrupting the production line. The user is able to attempt numerous times to attain an optimum solution. A case study is conducted in the Robotics Laboratory to assemble an electronics casing and it is found that the output models are compatible with commercial software without loss of information. Furthermore, the generated KUKA commands are workable when loaded into a commercial simulator. The operation of the actual robotic work cell shows that the errors may be due to the dynamics of the KUKA robot rather than the accuracy of the generated programme. Therefore, it is concluded that the virtual reality based solution approach can be implemented in an industrial robotic work cell.
    Matched MeSH terms: Manufacturing Industry/education; Manufacturing Industry/methods*
  5. Othman R, Abd Rasib AA, Ilias MA, Murthy S, Ismail N, Mohd Hanafi N
    Data Brief, 2019 Jun;24:103824.
    PMID: 30984808 DOI: 10.1016/j.dib.2019.103824
    Eucheuma denticulatum or commonly known as "Spinosum", is an economically important red alga that naturally grows on coral reefs with moderately strong currents in tropical and sub-tropical areas. This species is the primary source of iota-carrageenan which has high demands in the food, pharmaceutical and manufacturing industries, and as such it has been widely cultivated. The increasing global demand for carrageenan has led to extensive commercial cultivation of carrageenophytes mainly in the tropics. The carrageenophyte seaweeds including E. denticulatum are indigenous to Sabah, Malaysia. To enrich the information on the genes involved in carrageenan biosynthesis, RNA sequencing has been performed and transcriptomic dataset has been generated using Illumina HiSeq™ 2000 sequencer. The raw data and transcriptomic data have been deposited in NCBI database with the accession number PRJNA477734. These data will provide valuable resources for functional genomics annotation and investigation of mechanisms underlying the regulations of genes in this algal species.
    Matched MeSH terms: Manufacturing Industry
  6. Omar, Naja Nadiera, Iskandar Shahrim Mustafa, Nurhayati Abdullah, Rokiah Hashim
    MyJurnal
    Phenol Formaldehyde (PF) resin has been extensively used in the manufacturing industry as a binding agent, especially in the production of wood-based panels because of its ability to provide good moisture resistance, exterior strength and durability as well as excellent temperature stability. However, due to the use of limited petroleum-based phenol in its formulation, there is a strong interest in exploring renewable biomass material to partially substitute the petroleum-based phenol. In this study, the slow pyrolysis of biomass decomposition process was used to convert two types of biomass, namely, oil palm frond and Rhizophora hardwood, into bio-oil. The phenol-rich fraction of the bio-oil was separated and added into the formulation of PF resin to produce an environmentally-friendly type of PF resin, known as bio-oilphenol-formaldehyde (BPF) resin. This BPF resin was observed to have comparable viscosity, better alkalinity, improved non-volatile content and faster curing temperature than conventional PF resin. Moreover, the particleboard bonded with this BPF resin was observed to have just as excellent bonding strength as the one bonded using conventional PF resin. However, the BPF resin exhibited an increased level of free formaldehyde and less thermal stability than the conventional PF resin, probably due to the addition of the less reactive bio-oil.
    Matched MeSH terms: Manufacturing Industry
  7. Nadia Abdul Rani, Faieza Abdul Aziz, Rohidatun M,W.
    MyJurnal
    Interactive learning is a pedagogical model that encourages students to be part of the lesson instead of passive observers, quietly sitting at a desk taking notes or memorizing information. Students interact with the material, each other and the teacher in an active way. The new emerging technologies that can overcome some of the potential difficulties in this area includes computer graphics, augmented reality, computational dynamics, and virtual worlds. Therefore, the manufacturing industry relies on new design concepts and methods undertake the challenges in integrating technologies to expedite the march towards industrial revolution 4.0.This paper reviews and investigates the current context of the use of interactive learning such as Virtual Reality(VR),Augmented Reality(AR),Computer aided design and manufacturing(CADCAM), computer graphics, computational dynamics and new emerging technologies that effect on students and lectures in learning and teaching environments for Manufacturing Engineering. Interactive learning is part of the factors that could influence the self-learning and regulations environments.
    Matched MeSH terms: Manufacturing Industry
  8. Shudipta Choudhury
    MyJurnal
    Background: Technological diversity management in the manufacturing of advanced medical devices is
    essential. The manufacturing industries of medical devices should act in accordance with the technical
    guidelines and regulations in order to ensure best practices with the use of devices in hospitals
    Aim: To explore safety hazards, cost implications, and social and ethical standards to be considered during
    the manufacturing of advanced medical devices
    Subject and Methods: Aqualitative descriptive study was used. There was no targeted sample in the current
    study whereby secondary data were used to explore the research topic. Secondary sources were obtained
    from databases including EBSCOHOST, PubMed, ProQuest, Science Direct, and Google Scholar. Peerreviewed
    articles, journals, books, conference proceedings, and other web publications were used to gather
    relevant data.
    Results: The current study indicated that the technological diversity management of advanced medical
    devices is associated with safety hazards like security threats, integrity problems, and medical errors. The
    study also showed that high cost of standardizations, supply, and purchase of advanced medical devices is a
    huge burden faced by the manufacturers andusers. The study showed that the regulation of the medical
    devices, certification, and post-market surveillanceare essential social and ethical considerations during the
    manufacturing process of the new medical devices.
    Conclusion: The current study explored the technological diversity of advanced medical devices. It is
    evident in the current study that technology diversity of medical devices is associated with safety hazards
    and cost implications. The study disclosed that taking into account social and ethical issues aid in
    manufacturing safe and high quality medical devices.
    Matched MeSH terms: Manufacturing Industry
  9. Putra MA, Teh KC, Tan J, Choong TSY
    Environ Sci Pollut Res Int, 2020 Aug;27(23):29352-29360.
    PMID: 32440875 DOI: 10.1007/s11356-020-09207-z
    Cement is a vital material used in the construction of concrete buildings. World annual cement demand is increasing rapidly along with the improvement in infrastructure development. However, cement manufacturing industries are facing challenges in reducing the environmental impacts of cement production. To resolve this issue, a suitable methodology is crucial to ensure the selected processes are effective and efficient and at the same time environmentally friendly. Different technologies and equipment have potential to produce variations in operational effectiveness, environmental impacts, and manufacturing costs in cement manufacturing industries. Therefore, this work aims to present the sustainability assessment of cement plants by taking into consideration of environmental, social, and economic impacts. Three cement production plants located in Western Indonesian are used as case studies where social impact and environmental impact are evaluated via life cycle assessment (LCA) model. This model is integrated with analytic hierarchy process (AHP), a multi-criteria decision analysis tool in selecting the most sustainable cement manufacturing plant.
    Matched MeSH terms: Manufacturing Industry
  10. Ahmad S, Wong KY, Butt SI
    Environ Sci Pollut Res Int, 2023 Mar;30(15):43068-43095.
    PMID: 35904736 DOI: 10.1007/s11356-022-22172-z
    Due to significant requirement of energy, water, material, and other resources, the manufacturing industries significantly impact environmental, economic, and social dimensions of sustainability (triple bottom-line). In response, today's research is focused on finding solution towards sustainable manufacturing. In this regard, sustainability assessment is an essential strategy. In the past, a variety of tools was developed to evaluate the environmental dimension. Because of this fact, previous review studies were grounded mostly on tools for green manufacturing. Unlike previous review articles, this study was aimed to review and analyze the emerging sustainability assessment methodologies (published from 2010 to 2020) for manufacturing while considering the triple bottom-line concept of sustainability. In this way, the paper presents a decade review on this topic, starting from 2010 as the guidelines for the social dimension became available in 2009. This paper has analyzed various methods and explored recent progress patterns. First, this study critically reviewed the methods and then analyzed their different integrating tools, sustainability dimensions, nature of indicators, difficulty levels, assessment boundaries, etc. The review showed that life cycle assessment and analytic hierarchy process-based approaches were most commonly used as integrating tools. Comparatively, still, environmental dimension was more commonly considered than economic and social dimensions by most of the reviewed methods. From indicators' viewpoint, most of the studied tools were based on limited number of indicators, having no relative weights and validation from the experts. To overcome these challenges, future research directions were outlined to make these methods more inclusive and reliable. Along with putting more focus on economic and social dimensions, there is a need to employ weighted, validated, and applicable indicators in sustainability assessment methods for manufacturing.
    Matched MeSH terms: Manufacturing Industry*
  11. Devaraj, V., Zairossani, M.N.
    ASM Science Journal, 2012;6(1):15-21.
    MyJurnal
    Malaysia is the world’s top manufacturer of examination and surgical natural rubber (NR) gloves, exported mainly to the USA and Europe. The glove manufacturing process yields effluent which must be treated to comply with the stringent regulatory requirements imposed by the Malaysian Department of Environment. To make glove manufacturing an eco-friendly process, efforts are geared towards minimizing and utilizing waste or converting it into raw material for making value-added products. Waste generated from the glove industry is mainly rubber sludge which is obtained from the chemical flocculation stage of the effluent treatment process and consists of mainly rubber, remnants of compounding ingredients and water. R&D work by the Malaysian Rubber Board on waste utilization and resource recovery investigations have revealed many uses for this sludge. This paper briefly outlines only one of the many options available, which is the conversion of the sludge into sludge derived fuel (SDF). Preliminary study has identified three formulations of SDF with calorific values (CV) exceeding 16 000 kJ/kg, matching a good grade coal. This was considered as promising results which warrant explorative work for further increasing the CV of SDF to turn it into a viable fuel substitute in the latex products manufacturing industry and subsequently apply for a Clean Development Mechanism status to generate income.
    Matched MeSH terms: Manufacturing Industry
  12. Nurul Nadiah Abdul Halim, S. Sarifah Radiah Shariff, Siti Meriam Zahari
    MATEMATIKA, 2020;36(2):113-126.
    MyJurnal
    Preventive maintenance (PM) planning becomes a crucial issue in the real world of the manufacturing process. It is important in the manufacturing industry to maintain the optimum level of production and minimize its investments. Thus, this paper focuses on multiple jobs with a single production line by considering stochastic machine breakdown time. The aim of this paper is to propose a good integration of production and PM schedule that will minimize total completion time. In this study, a hybrid method, which is a genetic algorithm (GA), is used with the Monte Carlo simulation (MCS) technique to deal with the uncertain behavior of machine breakdown time. A deterministic model is adopted and tested under different levels of complexity. Its performance is evaluated based on the value of average completion time. The result clearly shows that the proposed integrated production with PM schedule can reduce the average completion time by 11.68% compared to the production scheduling with machine breakdown time.
    Matched MeSH terms: Manufacturing Industry
  13. Nurcahyo R, Zulfadlillah, Habiburrahman M
    Heliyon, 2021 Jan;7(1):e05537.
    PMID: 33506119 DOI: 10.1016/j.heliyon.2020.e05537
    Previous research has emphasized the need to further investigate the impact of ISO 9001 on company performance in the manufacturing sector of developing countries. Indonesia is one of those developing countries where the implementation of ISO 9001 is yet to be adequately researched. The Indonesian automotive manufacturing industry is still unable to compete with Malaysia and Thailand even though many companies have implemented ISO 9001. This study aimed to examine the relationship between ISO 9001 and operational (productivity, customer satisfaction, and product quality) and business (sales growth, profit rate, and market share) performance of Indonesian automotive component manufacturing industries. It also aimed to identify major obstacles in the effective implementation of ISO 9001. Multiple linear regression analyses about operational and business performance were employed for this purpose. The sample size comprised 50 automotive component manufacturing industries located in the Jakarta, Bogor, Tangerang, and Bekasi region of Indonesia. The study demonstrates that the implementation of the ISO 9001:2015 quality management system has a significant positive impact on the operational performance as well as the business performance. Additionally, the operational performance has a significant positive impact on the business performance. This study also reveals the major obstacles in the effective implementation of ISO 9001 in the manufacturing industry, which include a lack of qualified personnel, inadequate training, employee resistance, and lack of commitment among top-level management executives. It offers clear implications for managers who focus on elements that will enhance the effectiveness of ISO 9001 implementation by choosing the correct strategies, allocating sufficient resources, and improving their firm's performance. The novelty of this study lies in filling the existing research gap, which involves a detailed examination of the relationship between the implementation of ISO 9001 and the company's performance, particularly in manufacturing industries of developing countries.
    Matched MeSH terms: Manufacturing Industry
  14. Darajeh N, Idris A, Fard Masoumi HR, Nourani A, Truong P, Rezania S
    Int J Phytoremediation, 2017 May 04;19(5):413-424.
    PMID: 27748626 DOI: 10.1080/15226514.2016.1244159
    Artificial neural networks (ANNs) have been widely used to solve the problems because of their reliable, robust, and salient characteristics in capturing the nonlinear relationships between variables in complex systems. In this study, ANN was applied for modeling of Chemical Oxygen Demand (COD) and biodegradable organic matter (BOD) removal from palm oil mill secondary effluent (POMSE) by vetiver system. The independent variable, including POMSE concentration, vetiver slips density, and removal time, has been considered as input parameters to optimize the network, while the removal percentage of COD and BOD were selected as output. To determine the number of hidden layer nodes, the root mean squared error of testing set was minimized, and the topologies of the algorithms were compared by coefficient of determination and absolute average deviation. The comparison indicated that the quick propagation (QP) algorithm had minimum root mean squared error and absolute average deviation, and maximum coefficient of determination. The importance values of the variables was included vetiver slips density with 42.41%, time with 29.8%, and the POMSE concentration with 27.79%, which showed none of them, is negligible. Results show that the ANN has great potential ability in prediction of COD and BOD removal from POMSE with residual standard error (RSE) of less than 0.45%.
    Matched MeSH terms: Manufacturing Industry
  15. Lee, Siew Yi, Janna Ong Abdullah
    MyJurnal
    Widespread applications of phenol in manufacturing industries and oil refineries had resulted in unprecedented leakage of phenol into the environment, which can cause serious health effects such as tissue necrosis and cardiac arrhythmia upon contact or ingestion. Plants exposed to phenol had reduced seed germination index, inhibited growth or even fatality. There are many technologies currently practised to remediate phenol pollution such as physiochemical methods (adsorption to activated carbon and chemical oxidation), biological methods (biodegradation by bacteria or fungus, and soil bioaugmentation), and phytoremediation method (using hairy roots of plants). As physiochemical and microbial phenol degradation are destructive and costly, phytoremediation is widely studied as an alternative phenol remediator which is environmental friendly and cost effective. Microorganisms can detoxify the aromatic xenobiotic through the aerobic or anaerobic pathway. Aerobic degradation of phenol is through either the meta- or ortho-pathway of catechol cleavage while anaerobic degradation occurs through the benzoate pathway. In plants, degradation of phenol is also through catechol cleavage as in microorganisms. However, different enzyme systems were utilised in the different pathways involved.
    Matched MeSH terms: Manufacturing Industry
  16. Li, Sa Lau, Talwar, P.Y., Shahren Ahmad Zaidi Adruce, Yin, Bee Oon
    MyJurnal
    Perceived work environment could be described as the opinions and attitudes of workers towards their work condition. Elements of perceived work environment such as physical environment, supportive work environment, and perceived work tasks may possibly be important factors that influence the occurrence of accidents. The objective of this study is to examine the relationship between perceived work environment and the occurrence of accidents within an electronic manufacturing industry in Kuching, Sarawak. A cross-sectional survey utilizing a bilingual self-report questionnaire was conducted to garner data from 50 workers. Independent t-test and Pearson moment correlation were used to assess data. The results indicated that the occurrence of accidents was not affected by age group. Although physical environment and perceived work tasks did not demonstrate significant relationships with the occurrence of accidents, supportive work environment exhibited a significant inverse relationship, thereby indicating that accidents could be lowered in the presence of higher supportive work environment. Thus, support and help from co-workers are essential determinants of safety at the workplace.
    Matched MeSH terms: Manufacturing Industry
  17. Ahmad A, Lajis MA, Yusuf NK
    Materials (Basel), 2017 Sep 19;10(9).
    PMID: 28925963 DOI: 10.3390/ma10091098
    Solid-state recycling, which involves the direct recycling of scrap metal into bulk material using severe plastic deformation, has emerged as a potential alternative to the conventional remelting and recycling techniques. Hot press forging has been identified as a sustainable direct recycling technique that has fewer steps and maintains excellent material performance. An experimental investigation was conducted to explore the hardness and density of a recycled aluminum-based metal matrix composite by varying operating temperature and holding time. A mixture of recycled aluminum, AA6061, and aluminum oxide were simultaneously heated to 430, 480, and 530 °C and forged for 60, 90, and 120 min. We found a positive increase in microhardness and density for all composites. The hardness increased approximately 33.85%, while density improved by about 15.25% whenever the temperature or the holding time were increased. Based on qualitative analysis, the composite endures substantial plastic deformation due to the presence of hardness properties due to the aluminum oxide embedded in the aluminum matrix. These increases were significantly affected by the operating temperature; the holding time also had a subordinate role in enhancing the metal matrix composite properties. Furthermore, in an effort to curb the shortage of primary resources, this study reviewed the promising performance of secondary resources produced by using recycled aluminum and aluminum oxide as the base matrix and reinforcement constituent, respectively. This study is an outline for machining practitioners and the manufacturing industry to help increase industry sustainability with the aim of preserving the Earth for our community in the future.
    Matched MeSH terms: Manufacturing Industry
  18. Siti Suhaili Shahlan, Mimi H. Hassim, Kamarizan Kidam, Haszlee Mohd Safuan, Norasikin Othman, Adnan Ripin, et al.
    MyJurnal
    According to annual reports from the Social Security Organization (SOCSO), between years 2009 and 2011,
    metal industry has the highest reported number of accidents compared to the other manufacturing industry in small
    and medium enterprises (SMEs). Therefore, the aim of this study was to investigate the actual causes of problems that
    lead to the accidents involving metal industries within SMEs. In this study, a checklist through site visits was used to
    collect the data. The overall results revealed that the main causes of accidents are; organization failure, human factor,
    machine failure and surrounding environments.
    Matched MeSH terms: Manufacturing Industry
  19. Jafri Mohd Rohani, Hood Atan, Wan Harun Wan Hamid, Mohamed Fitri Johari, Edly Ramly
    MyJurnal
    This objective of the study is to estimate occupational accident cost in manufacturing industries, especially in
    wood based related industries. The study attempts to identify, define, and classify the cost components of occupational
    accident related cost and to catalogue the various economic approaches used to estimate the entire costs of occupational
    accident and to propose the risk prevention plan. The study uses local specific approach by reviewing company
    historical records on occupational accident as reported in JKKP 6, JKKP 8, JKKP 9 and company internal investigation
    reports. For each occupational accident, the site safety officer in charge, human resource and, account employee,
    supervisor, victim, related co-workers and relatives were interviewed in order to estimate direct costs, indirect costs,
    prevention costs and other personal cost related to the accident. Other related information such as personal data of the
    victim, type of injuries, location of injuries and cause of injuries were recorded. A total of 24 occupational accidents
    data for the past five years were analyzed in the cost of accident summary report to determine the overall ratio of direct
    to indirect cost and ratio of total cost of accident to prevention cost. A further analysis was carried out to determine
    the most significant cost of accident related to demographic profiles for Malaysian and Non Malaysian employees. In
    conclusion, this study has determined the ratio of direct to indirect cost of occupational accident and has proposed the
    risk prevention plan with additional information on cost of accident and cost of prevention.
    Matched MeSH terms: Manufacturing Industry
  20. Wai Onn Hong
    MyJurnal
    Malaysia’s palm oil industry is growing in complexity and successively to succeed on the global level by accounts for about 36% of the word production of palm oil [1]. But, Occupational Health and Safety (OHS) issues are still problematic areas that need to be addressed by all parties concerned in this industry. In the olden days, unlike construction or manufacturing industry, palm oil industry was green in OHS management system. However, due to stringent in the legislative enforcement in the past few years, it has lead some of the plantation companies to develop OHS management system, which are based on Occupational Health and Safety Assessment Series (OHSAS), towards corporate sustainability. Sustainability is not about paying lip-service to the latest corporate buzzword; neither is it about superficially meeting minimum requirements for the sake of compliance. Rather, sustainability is a core value that lies at the heart of the companies’ business conduct. In practical terms, this means strive to operate with due consideration for the interest of all stakeholders by making the health and safety of all workers a priority. This paper describes the certification of OHSAS 18001 and MS 1722 in Genting Plantations Berhad (GENP) prove the commitment to sustainability by forming guiding principle on safety management. Further, this paper also demonstrates that the implementation of safety management can help to reduce the accident rate, especially fatal accident.
    Matched MeSH terms: Manufacturing Industry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links