Displaying publications 1 - 20 of 141 in total

Abstract:
Sort:
  1. Yan W, Vadivelu V, Maspolim Y, Zhou Y
    Waste Manag, 2021 Feb 01;120:221-229.
    PMID: 33310598 DOI: 10.1016/j.wasman.2020.11.047
    Anaerobic digestion is a promising way for resource recovery from waste cooking oil (WCO) due to its high bio-methanation potential. In-situ mild alkaline (pH 8) enhanced two-stage continuous stirred tank reactors (ALK-2-CSTRs) were implemented to explore its efficiency in co-digesting WCO and sewage sludge with stepwise increase of WCO in the co-substrates. Results demonstrate that the ALK-2-CSTRs effectively promoted methane yield from the co-substrates via promoting hydrolysis, long chain fatty acids (LCFAs) degradation and protecting methanogens from exposure to high concentration of LCFAs directly. The maximum methane yield of the ALK-2-CSTRs is 39.2% higher than that of a single stage CSTR system at the optimal feed mixture of 45:55 (WCO:SS [VS]). The thermophilic operation applied to the stage-1 of the ALK-2-CSTRs failed to improve the methane yield when the methanogenic performance was stable; while upon WCO overloaded, the elevated temperature mitigated the deterioration of methanogenesis by stimulating the bioconversion of the toxic LCFAs, especially the unsaturated oleic acid. Microbial community analysis reveals the ALK-2-CSTRs stimulated the growth of lipolytic bacteria and hydrogenotrophic methanogens, which suggests the hydrogenotrophic methanogenic pathway was promoted. Cost evaluation demonstrates the economical superiority of the ALK-2-CSTR over the prevailing strategies developed for enhancing methane yield from the co-substrates.
    Matched MeSH terms: Methane
  2. Kong Y, Ma NL, Yang X, Lai Y, Feng Z, Shao X, et al.
    Environ Pollut, 2020 Oct;265(Pt A):114951.
    PMID: 32554093 DOI: 10.1016/j.envpol.2020.114951
    Greenhouse gases (GHGs) carbon dioxide (CO2) and nitrous oxide (N2O), contribute significantly to global warming, and they have increased substantially over the years. Reforestation is considered as an important forestry application for carbon sequestration and GHGs emission reduction, however, it remains unknown whether reforestation may instead produce too much CO2 and N2O contibuting to GHGs pollution. This study was performed to characterize and examine the CO2 and N2O emissions and their controlling factors in different species and types of pure and mixture forest used for reforestation. Five soil layers from pure forest Platycladus orientalis (PO), Robinia pseudoacacia (RP), and their mixed forest P-R in the Taihang mountains of central China were sampled and incubated aerobically for 11 days. The P-R soil showed lower CO2 and N2O production potentials than those of the PO soils (P 
    Matched MeSH terms: Methane/analysis
  3. Hoo PY, Hashim H, Ho WS, Yunus NA
    J Environ Manage, 2019 Jul 01;241:603-611.
    PMID: 30616893 DOI: 10.1016/j.jenvman.2018.11.092
    Energy is widely used in industry for heating and cooling, with natural gas (NG) being the largest primary energy source in Malaysia, closely followed by coal. Renewable energy, such as biogas upgrading to biomethane, could cut the use of fossil fuels by supplementing NG usage due to their similar physicochemical and thermochemical characteristics. Biogas production plants in Malaysia are more commonly seen in waste-to-energy scenarios, with the technology anaerobic digestion, and their deployment is supported via feed-in tariffs (FiT) for power generation. Other potential applications such as the conversion of biogas into biomethane, injection into the natural gas grid or transportation through a virtual pipeline may still need further technical development. This paper presents spatial techno economic optimisation modelling using BeWhere to determine decentralised biomethane production plants using feedstock from multiple sources of biogas, including palm oil mill effluent (POME), food waste, cattle manure and chicken manure. This model considered potential configurations and sizes of the biomethane plants, the transportation of biomethane using a virtual pipeline (at 250 psig) and demand in one of the states in Malaysia, namely Johor. It was found that two to four biomethane plants with capacities ranging between 125 and 700 m3/h were located in densely populated areas or heavier industrial consumers when the carbon tax was implemented at 167.71 EUR/tCO2 (800 MYR/tCO2). Sensitivity analysis suggested that biomethane production increases with the increasing country renewable energy share target to beyond 2080 MW. It is recommended that specific policy regulations and Feed-in Tariff (FiT) mechanisms are used to expand the biomethane market share in the country.
    Matched MeSH terms: Methane
  4. Cao Z, Liang JB, Liao XD, Wright AD, Wu YB, Yu B
    Animal, 2016 Oct;10(10):1666-76.
    PMID: 27052363 DOI: 10.1017/S1751731116000525
    The primary objective of this study was to investigate the effect of dietary fiber on methanogenic diversity and community composition in the hindgut of indigenous Chinese Lantang gilts to explain the unexpected findings reported earlier that Lantang gilts fed low-fiber diet (LFD) produced more methane than those fed high-fiber diet (HFD). In total, 12 Lantang gilts (58.7±0.37 kg) were randomly divided into two dietary groups (six replicates (pigs) per group) and fed either LFD (NDF=201.46 g/kg) or HFD (NDF=329.70 g/kg). Wheat bran was the main source of fiber for the LFD, whereas ground rice hull (mixture of rice hull and rice bran) was used for the HFD. Results showed that the methanogens in the hindgut of Lantang gilts belonged to four known species (Methanobrevibacter ruminantium, Methanobrevibacter wolinii, Methanosphaera stadtmanae and Methanobrevibacter smithii), with about 89% of the methanogens belonging to the genus Methanobrevibacter. The 16S ribosomal RNA (rRNA) gene copies of Methanobrevibacter were more than three times higher (P0.05) was observed in 16S rRNA gene copies of Fibrobacter succinogenes between the two dietary groups, and 18S rRNA gene copies of anaerobic fungi in gilts fed LFD were lower than (P<0.05) those fed HFD. To better explain the effect of different fiber source on the methanogen community, a follow-up in vitro fermentation using a factorial design comprised of two inocula (prepared from hindgut content of gilts fed two diets differing in their dietary fiber)×four substrates (LFD, HFD, wheat bran, ground rice hull) was conducted. Results of the in vitro fermentation confirmed that the predominant methanogens belonged to the genus of Methanobrevibacter, and about 23% methanogens was found to be distantly related (90%) to Thermogymnomonas acidicola. In vitro fermentation also seems to suggest that fiber source did change the methanogens community. Although the density of Methanobrevibacter species was positively correlated with CH4 production in both in vivo (P<0.01, r=0.737) and in vitro trials (P<0.05, r=0.854), which could partly explain the higher methane production from gilts fed LFD compared with those in the HFD group. Further investigation is needed to explain how the rice hull affected the methanogens and inhibited CH4 emission from gilts fed HFD.
    Matched MeSH terms: Methane/metabolism*
  5. Muraoka M, Susuki N, Yamaguchi H, Tsuji T, Yamamoto Y
    J Vis Exp, 2016 Mar 21.
    PMID: 27023374 DOI: 10.3791/53956
    Methane hydrates (MHs) are present in large amounts in the ocean floor and permafrost regions. Methane and hydrogen hydrates are being studied as future energy resources and energy storage media. To develop a method for gas production from natural MH-bearing sediments and hydrate-based technologies, it is imperative to understand the thermal properties of gas hydrates. The thermal properties' measurements of samples comprising sand, water, methane, and MH are difficult because the melting heat of MH may affect the measurements. To solve this problem, we performed thermal properties' measurements at supercooled conditions during MH formation. The measurement protocol, calculation method of the saturation change, and tips for thermal constants' analysis of the sample using transient plane source techniques are described here. The effect of the formation heat of MH on measurement is very small because the gas hydrate formation rate is very slow. This measurement method can be applied to the thermal properties of the gas hydrate-water-guest gas system, which contains hydrogen, CO2, and ozone hydrates, because the characteristic low formation rate of gas hydrate is not unique to MH. The key point of this method is the low rate of phase transition of the target material. Hence, this method may be applied to other materials having low phase-transition rates.
    Matched MeSH terms: Methane/chemistry*
  6. Daping Xia, Huaiwen Zhang, Xile Liu, Chaoyong Fu, Xianbo Su
    Sains Malaysiana, 2017;46:2083-2089.
    The development and utilization of clean energy has long been a focus of research. In the coal bed methane field, most coal bed biogenic methane experiments are small static sample tests in which the initial conditions are set and the process cannot be batch-fed elements and microbial strains, and the gas cannot be collected in batches. Although significant results have been achieved in the coal-to-biogenic methane conversion in China, findings are restricted to the laboratory scale. No successful commercialization of coal bed biogenic methane production has been achieved yet. This study used a large-capacity fermentation tank (5 L) to conduct biogenic methane experiments. Results were compared to those from the traditional laboratory test. The gas production rate and gas concentration were higher when the 250 mL methane test volume was increased to a 5 L fermentation volume, increasing by 20.9% and 2.3%, respectively. The inhibition effect of the liquid phase products was reduced in the large fermentation tank, and the microbial activity was extended by batch feeding trace elements (iron and nickel) and methane strains and by semi-continuous collection of the gas. However, the gas conversion rate can be increased by retaining the H2 and CO2 in the intermediate gas products in the fermentation tank. The gas production rate was increased from 17.9 to 24.6 mL/g, increasing by 37.4%. The simulation pilot test can lay a foundation for the transition from a coal bed biogenic methane laboratory static small sample test to a dynamic pilot test, optimizing the process parameters to improve the reaction efficiency and move forward to commercialization test.
    Matched MeSH terms: Methane
  7. Huang L, Wen X, Wang Y, Zou Y, Ma B, Liao X, et al.
    J Environ Sci (China), 2014 Oct 1;26(10):2001-6.
    PMID: 25288543 DOI: 10.1016/j.jes.2014.07.012
    Effects of antibiotic residues on methane production in anaerobic digestion are commonly studied using the following two antibiotic addition methods: (1) adding manure from animals that consume a diet containing antibiotics, and (2) adding antibiotic-free animal manure spiked with antibiotics. This study used chlortetracycline (CTC) as a model antibiotic to examine the effects of the antibiotic addition method on methane production in anaerobic digestion under two different swine wastewater concentrations (0.55 and 0.22mg CTC/g dry manure). The results showed that CTC degradation rate in which manure was directly added at 0.55mg CTC/g (HSPIKE treatment) was lower than the control values and the rest of the treatment groups. Methane production from the HSPIKE treatment was reduced (p<0.05) by 12% during the whole experimental period and 15% during the first 7days. The treatments had no significant effect on the pH and chemical oxygen demand value of the digesters, and the total nitrogen of the 0.55mg CTC/kg manure collected from mediated swine was significantly higher than the other values. Therefore, different methane production under different antibiotic addition methods might be explained by the microbial activity and the concentrations of antibiotic intermediate products and metabolites. Because the primary entry route of veterinary antibiotics into an anaerobic digester is by contaminated animal manure, the most appropriate method for studying antibiotic residue effects on methane production may be using manure from animals that are given a particular antibiotic, rather than adding the antibiotic directly to the anaerobic digester.
    Matched MeSH terms: Methane/chemical synthesis*
  8. Isa MH, Bashir MJK, Wong LP
    Environ Sci Pollut Res Int, 2022 Jun;29(29):44779-44793.
    PMID: 35138542 DOI: 10.1007/s11356-022-19022-3
    In this study, palm oil mill effluent (POME) treated by ultrasonication at optimum conditions (sonication power: 0.88 W/mL, sonication duration: 16.2 min and total solids: 6% w/v) obtained from a previous study was anaerobically digested at different hydraulic retention times (HRTs). The reactor biomass was subjected to metagenomic study to investigate the impact on the anaerobic community dynamics. Experiments were conducted in two 5 L continuously stirred fill-and-draw reactors R1 and R2 operated at 30 ± 2 °C. Reactor R1 serving as control reactor was fed with unsonicated POME with HRT of 15 and 20 days (R1-15 and R1-20), whereas reactor R2 was fed with sonicated POME with the same HRTs (R2-15 and R2-20). The most distinct archaea community shift was observed among Methanosaeta (R1-15: 26.6%, R2-15: 34.4%) and Methanobacterium (R1-15: 7.4%, R2-15: 3.2%). The genus Methanosaeta was identified from all reactors with the highest abundance from the reactors R2. Mean daily biogas production was 6.79 L from R2-15 and 4.5 L from R1-15, with relative methane gas abundance of 85% and 73%, respectively. Knowledge of anaerobic community dynamics allows process optimization for maximum biogas production.
    Matched MeSH terms: Methane
  9. Baker AK, Sauvage C, Thorenz UR, van Velthoven P, Oram DE, Zahn A, et al.
    Sci Rep, 2016 11 15;6:36821.
    PMID: 27845366 DOI: 10.1038/srep36821
    The chlorine radical is a potent atmospheric oxidant, capable of perturbing tropospheric oxidative cycles normally controlled by the hydroxyl radical. Significantly faster reaction rates allow chlorine radicals to expedite oxidation of hydrocarbons, including methane, and in polluted environments, to enhance ozone production. Here we present evidence, from the CARIBIC airborne dataset, for extensive chlorine radical chemistry associated with Asian pollution outflow, from airborne observations made over the Malaysian Peninsula in winter. This region is known for persistent convection that regularly delivers surface air to higher altitudes and serves as a major transport pathway into the stratosphere. Oxidant ratios inferred from hydrocarbon relationships show that chlorine radicals were regionally more important than hydroxyl radicals for alkane oxidation and were also important for methane and alkene oxidation (>10%). Our observations reveal pollution-related chlorine chemistry that is both widespread and recurrent, and has implications for tropospheric oxidizing capacity, stratospheric composition and ozone chemistry.
    Matched MeSH terms: Methane
  10. Yamamoto T, Tsunematsu Y, Noguchi H, Hotta K, Watanabe K
    Org. Lett., 2015 Oct 16;17(20):4992-5.
    PMID: 26414728 DOI: 10.1021/acs.orglett.5b02435
    Successful activation of the pyranonigrin biosynthetic gene cluster and gene knockout in Aspergillus niger plus in vivo and in vitro assays led to isolation of six new products, including a spiro cyclobutane-containing dimeric compound, which served as the basis for the proposed comprehensive pyranonigrin biosynthetic pathway. Two redox enzymes are key to forming the characteristic fused γ-pyrone core, and a protease homologue performs the exo-methylene formation.
    Matched MeSH terms: Methane/analogs & derivatives
  11. Sangok FE, Maie N, Melling L, Watanabe A
    Sci Total Environ, 2017 Jun 01;587-588:381-388.
    PMID: 28242223 DOI: 10.1016/j.scitotenv.2017.02.165
    To understand the variations in the decomposability of tropical peat soil following deforestation for an oil palm plantation, a field incubation experiment was conducted in Sarawak, Malaysia. Peat soils collected from three types of primary forest, namely Mixed Peat Swamp (MPS; Gonystylus-Dactylocladus-Neoscrotechinia association), Alan Batu (ABt; Shorea albida-Gonstylus-Strenonurus association), and Alan Bunga (ABg; Shorea albida association), were packed in polyvinyl chloride pipes and installed in an oil palm plantation. Carbon dioxide (CO2) and methane (CH4) fluxes from soil were monthly measured for 3years. Environmental variables including soil temperature, soil moisture content, and groundwater table were also monitored. The pH, loss on ignition, and total carbon (C) content were similar among the three soils, while total N content was larger in the MPS than in the ABg soils. Based on13C nuclear magnetic resonance (NMR) spectroscopy, C composition of the MPS and ABg soils was characterized by the largest proportion of C present as alkyl C and O-alkyl C, respectively. The C composition of the ABt soil was intermediate between the MPS and ABg soils. The CO2fluxes from the three soils ranged from 78 to 625mgCm-2h-1with a negative correlation to groundwater level. The CH4fluxes ranged from -67 to 653μgCm-2h-1. Both total CO2and CH4fluxes were larger in the order ABg>ABt>MPS (P<0.05). Annual rate of peat decomposition as was estimated from cumulative C loss differed up to 2 times, and the rate constant in exponential decay model was 0.033y-1for the MPS soil and 0.066y-1for the ABg soil. The field incubation results of the three forest peat soils seem to reflect the difference in the labile organic matter content, represented by polysaccharides.
    Matched MeSH terms: Methane
  12. Busman NA, Melling L, Goh KJ, Imran Y, Sangok FE, Watanabe A
    Sci Total Environ, 2023 Feb 01;858(Pt 2):159973.
    PMID: 36347298 DOI: 10.1016/j.scitotenv.2022.159973
    Information on temporal and spatial variations in soil greenhouse gas (GHG) fluxes from tropical peat forests is essential to predict the influence of climate change and estimate the effects of land use on global warming and the carbon (C) cycle. To obtain such basic information, soil carbon dioxide (CO2) and methane (CH4) fluxes, together with soil physicochemical properties and environmental variables, were measured at three major forest types in the Maludam National Park, Sarawak, Malaysia, for eight years, and their relationships were analyzed. Annual soil CO2 fluxes ranged from 860 to 1450 g C m⁻2 yr⁻1 without overall significant differences between the three forest sites, while soil CH4 fluxes, 1.2-10.8 g C m⁻2 yr⁻1, differed. Differences in GHG fluxes between dry and rainy seasons were not necessarily significant, corresponding to the extent of seasonal variation in groundwater level (GWL). The lack of significant differences in soil CO2 fluxes between the three sites could be attributed to set-off between the negative and positive effects of the decomposability of soil organic matter as estimated by pyrophosphate solubility index (PSI) and GWL. The impact of El-Niño on annual CO2 flux also varied between the sites. The variation in soil CH4 fluxes from the three sites was enhanced by variations in temperature, GWL, PSI, and soil iron (Fe) content. A positive correlation was observed between the annual CH4 flux and GWL at only one site, and the influence of soil properties was more pronounced at the site with the lowest GWL and the highest PSI. Variation in annual CH4 fluxes was controlled more strongly by temperature where GWL was the highest and GWL and plant growth fluctuations were the least. Inter-annual variations in soil CO2 and CH4 fluxes confirmed the importance of long-term monitoring of these at multiple sites supporting different forest types.
    Matched MeSH terms: Methane/analysis
  13. Asekunowo PO, Haque RA, Razali MR, Avicor SW, Wajidi MFF
    Eur J Med Chem, 2018 Apr 25;150:601-615.
    PMID: 29550733 DOI: 10.1016/j.ejmech.2018.03.029
    A series of four benzimidazolium based nitrile-functionalized mononuclear-Ag(I)-N-heterocyclic carbene and binuclear-Ag(I)-N-heterocyclic carbene (Ag(I)-NHC) hexafluorophosphate complexes (5b-8b) were synthesized by reacting the corresponding hexafluorophosphate salts (1b-4b) with Ag2O in acetonitrile, respectively. These compounds were characterized by 1H NMR, 13C NMR, IR, UV-visible spectroscopic techniques, elemental analyses and molar conductivity. Additionally, 8b was structurally characterized by single crystal X-ray diffraction technique. Preliminary in vitro antibacterial evaluation was conducted for all the compounds against two standard bacteria; gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacterial strains. Most of the Ag(I)-NHC complexes (5b-8b) showed moderate to good antibacterial activity with MIC values in the range of 12.5-100 μg/mL. Especially, compound 8b exhibited promising anti-Staphylococcus aureus activity with a low MIC value (12.5 μg/mL). However, all the hexafluorophosphate salts (1b-4b) were inactive against the bacteria strains. The preliminary interactive investigation revealed that the most active compound, 8b, could effectively intercalate into DNA to form 8b-DNA complex which shows a better binding ability for DNA (Kb = 3.627 × 106) than the complexes 5b-7b (2.177 × 106, 8.672 × 105 and 6.665 × 105, respectively). Nuclease activity of the complexes on plasmid DNA and Aedes albopictus genomic DNA was time-dependent, although minimal. The complexes were larvicidal to the mosquito, with 5b, 6b and 8b being highly active. Developmental progression from the larval to the adult stage was affected by the complexes, progressively being toxic to the insect's development with increasing concentration. These indicate the potential use of these complexes as control agents against bacteria and the dengue mosquito Ae. albopictus.
    Matched MeSH terms: Methane/analogs & derivatives; Methane/pharmacology; Methane/chemistry
  14. Abadi MH, Hamidon MN, Shaari AH, Abdullah N, Misron N, Wagiran R
    Sensors (Basel), 2010;10(5):5074-89.
    PMID: 22399925 DOI: 10.3390/s100505074
    Microstructural, topology, inner morphology, and gas-sensitivity of mixed xWO(3)(1-x)Y(2)O(3) nanoparticles (x = 1, 0.95, 0.9, 0.85, 0.8) thick-film semiconductor gas sensors were studied. The surface topography and inner morphological properties of the mixed powder and sensing film were characterized with X-ray diffraction (XRD), atomic force microscopy (AFM), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Also, gas sensitivity properties of the printed films were evaluated in the presence of methane (CH(4)) and butane (C(4)H(10)) at up to 500 °C operating temperature of the sensor. The results show that the doping agent can modify some structural properties and gas sensitivity of the mixed powder.
    Matched MeSH terms: Methane
  15. Qureshi F, Yusuf M, Ibrahim H, Kamyab H, Chelliapan S, Pham CQ, et al.
    Environ Res, 2023 Jul 15;229:115963.
    PMID: 37105287 DOI: 10.1016/j.envres.2023.115963
    Hydrogen (H2) is a possible energy transporter and feedstock for energy decarbonization, transportation, and chemical sectors while reducing global warming's consequences. The predominant commercial method for producing H2 today is steam methane reforming (SMR). However, there is still room for development in process intensification, energy optimization, and environmental concerns related to CO2 emissions. Reactors using metallic membranes (MRs) can handle both problems. Compared to traditional reactors, MRs operates at substantially lower pressures and temperatures. As a result, capital and operational costs may be significantly cheaper than traditional reactors. Furthermore, metallic membranes (MMs), particularly Pd and its alloys, naturally permit only H2 permeability, enabling the production of a stream with a purity of up to 99.999%. This review describes several methods for H2 production based on the energy sources utilized. SRM with CO2 capture and storage (CCUS), pyrolysis of methane, and water electrolysis are all investigated as process technologies. A debate based on a color code was also created to classify the purity of H2 generation. Although producing H2 using fossil fuels is presently the least expensive method, green H2 generation has the potential to become an affordable alternative in the future. From 2030 onward, green H2 is anticipated to be less costly than blue hydrogen. Green H2 is more expensive than fossil-based H2 since it uses more energy. Blue H2 has several tempting qualities, but the CCUS technology is pricey, and blue H2 contains carbon. At this time, almost 80-95% of CO2 can be stored and captured by the CCUS technology. Nanomaterials are becoming more significant in solving problems with H2 generation and storage. Sustainable nanoparticles, such as photocatalysts and bio-derived particles, have been emphasized for H2 synthesis. New directions in H2 synthesis and nanomaterials for H2 storage have also been discussed. Further, an overview of the H2 value chain is provided at the end, emphasizing the financial implications and outlook for 2050, i.e., carbon-free H2 and zero-emission H2.
    Matched MeSH terms: Methane
  16. Kawai M, Nagao N, Tajima N, Niwa C, Matsuyama T, Toda T
    Bioresour Technol, 2014 Apr;157:174-80.
    PMID: 24556370 DOI: 10.1016/j.biortech.2014.01.018
    Influence of the labile organic fraction (LOF) on anaerobic digestion of food waste was investigated in different S/I ratio of 0.33, 0.5, 1.0, 2.0 and 4.0g-VSsubstrate/g-VSinoculum. Two types of substrate, standard food waste (Substrate 1) and standard food waste with the supernatant (containing LOF) removed (Substrate 2) were used. Highest methane yield of 435ml-CH4g-VS(-1) in Substrate 1 was observed in the lowest S/I ratio, while the methane yield of the other S/I ratios were 38-73% lower than the highest yield due to acidification. The methane yields in Substrate 2 were relatively stable in all S/I conditions, although the maximum methane yield was low compared with Substrate 1. These results showed that LOF in food waste causes acidification, but also contributes to high methane yields, suggesting that low S/I ratio (<0.33) is required to obtain a reliable methane yield from food waste compared to other organic substrates.
    Matched MeSH terms: Methane/metabolism*
  17. Omar SA, Chah CK, Ravoof TBSA, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2018 Feb 01;74(Pt 2):261-266.
    PMID: 29850067 DOI: 10.1107/S2056989018001330
    In the title di-thio-carbazate ester, C16H17N3S2 (systematic name: (Z)-{[(benzyl-sulfan-yl)methane-thio-yl]amino}[1-(6-methyl-pyridin-2-yl)ethyl-idene]amine), the central methyl-idenehydrazinecarbodi-thio-ate (C2N2S2) core is almost planar (r.m.s. deviation = 0.0111 Å) and forms dihedral angles of 71.67 (3)° with the approximately orthogonally inclined thio-ester phenyl ring, and 7.16 (7)° with the approximately coplanar substituted pyridyl ring. The latter arrangement and the Z configuration about the imine-C=N bond allows for the formation of an intra-molecular hydrazine-N-H⋯N(pyrid-yl) hydrogen bond that closes an S(6) loop. In the crystal, phenyl-C-H⋯S(thione), methyl-ene-C-H⋯π(pyrid-yl), methyl-ene- and phenyl-C-H⋯π(phen-yl) contacts connect mol-ecules into supra-molecular layers propagating in the bc plane; the layers stack along the a axis with no directional inter-actions between them. The analysis of the Hirshfeld surface indicates the relative importance of an intra-layer phenyl-H⋯H(pyrid-yl) contact upon the mol-ecular packing.
    Matched MeSH terms: Methane
  18. Ramli SB, Ravoof TB, Tahir MI, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2015 Jul 1;71(Pt 7):o475-6.
    PMID: 26279916 DOI: 10.1107/S205698901501107X
    In the title compound, C15H16N2S3 {systematic name: [({[(4-methyl-phen-yl)meth-yl]sulfan-yl}methane-thio-yl)amino][1-(thio-phen-2-yl)ethyl-idene]amine}, the central CN2S2 residue is almost planar (r.m.s. deviation = 0.0061 Å) and forms dihedral angles of 7.39 (10) and 64.91 (5)° with the thienyl and p-tolyl rings, respectively; the dihedral angle between these rings is 57.52 (6)°. The non-thione S atoms are syn, and with respect to the thione S atom, the benzyl group is anti. In the crystal, centrosymmetrically related mol-ecules self-associate via eight-membered {⋯HNCS}2 synthons. The dimeric aggregates stack along the a axis and are are consolidated into a three-dimensional architecture via methyl-C-H⋯π(benzene) and benzene-C-H⋯π(thien-yl) inter-actions.
    Matched MeSH terms: Methane
  19. Ghosh P, Kumar M, Kapoor R, Kumar SS, Singh L, Vijay V, et al.
    Bioresour Technol, 2020 Jan;296:122275.
    PMID: 31683109 DOI: 10.1016/j.biortech.2019.122275
    The present study intends to evaluate the potential of co-digestion for utilizing Organic fraction of Municipal Solid Waste (OFMSW) and sewage sludge (SS) for enhanced biogas production. Metagenomic analysis was performed to identify the dominant bacteria, archaea and fungi, changes in their communities with time and their functional roles during the course of anaerobic digestion (AD). The cumulative biogas yield of 586.2 mL biogas/gVS with the highest methane concentration of 69.5% was observed under an optimum ratio of OFMSW:SS (40:60 w/w). Bacteria and fungi were found to be majorly involved in hydrolysis and initial stages of AD. Probably, the most common archaea Methanosarsina sp. primarily followed the acetoclastic pathway. The hydrogenotrophic pathway was less followed as indicated by the reduction in abundance of syntrophic acetate oxidizers. An adequate understanding of microbial communities is important to manipulate and inoculate the specific microbial consortia to maximize CH4 production through AD.
    Matched MeSH terms: Methane
  20. Al-Doghachi FA, Islam A, Zainal Z, Saiman MI, Embong Z, Taufiq-Yap YH
    PLoS One, 2016;11(1):e0145862.
    PMID: 26745623 DOI: 10.1371/journal.pone.0145862
    A highly active and stable nano structured Pt/Mg1-xNixO catalysts was developed by a simple co-precipitation method. The obtained Pt/Mg1-xNixO catalyst exhibited cubic structure nanocatalyst with a size of 50-80 nm and realized CH4 and CO2 conversions as high as 98% at 900°C with excellent stability in the dry reforming of methane. The characterization of catalyst was performed using various kinds of analytical techniques including XRD, BET, XRF, TPR-H2, TGA, TEM, FESEM, FT-IR, and XPS analyses. Characterization of spent catalyst further confirms that Pt/Mg1-xNixO catalyst has high coke-resistance for dry reforming. Thus, the catalyst demonstrated in this study, offers a promising catalyst for resolving the dilemma between dispersion and reducibility of supported metal, as well as activity and stability during high temperature reactions.
    Matched MeSH terms: Methane
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links