Displaying publications 1 - 20 of 63 in total

Abstract:
Sort:
  1. Choo YM
    Sains Malaysiana, 2017;46:1581-1586.
    Crotalaria pallida Aiton is an herbaceous legume from the family Fabaceae. In the present study, one new cyclopentyliene, crotolidene (1) and seven known compounds, i.e. hydroxydihydrobovolide (2), octacosane (3), trans-phytyl palmitate (4), linoleic acid (5), methyl oleate (6), ethyl palmitate (7), and palmitic acid (8) were isolated from the C. pallida collected from Perak, Malaysia. These compounds were isolated and characterized using extensive chromatographic and spectroscopic methods.
    Matched MeSH terms: Palmitic Acids; Palmitic Acid
  2. Bong, S.C., Loh, S. P.
    MyJurnal
    This study was conducted to investigate and compare the fatty acids and tocopherols of lipid extracted from marine microalgae, Nannochloropsis oculata (NO) and Tetraselmis suecica (TS) using solvent extraction and supercritical fluid extraction (SFE). Fatty acids and tocopherols were determined in the extracted lipid as functions of the temperature (40, 80oC) and pressure (3000, 5000, 7000, 9000psi). Dichloromethane/methanol and hexane were the chosen conventional solvent for fatty acids and tocopherols extraction respectively. The results obtained showed that there were differences in the fatty acid composition of various lipid extracts of NO and TS. Extracts of NO were high in myristic acid (C14:0) (17-35%), palmitic acid (C16:0) (14-47%) and palmitoleic acid (C16:1) (11-42%) whereas extracts of TS were high in C14:0 (21-34%) and C16:0 (29-49%). Eicosapentaenoic acid (EPA) was detected only under certain SFE conditions in NO but was not detected in TS. α-, β- and γ-tocopherol were detected in various SFE extracts of NO but only α- and β-tocopherol were detected in TS. Hexane extraction of both NO and TS resulted in the detection of only α-tocopherol. In conclusion, the use of different extraction methods resulted in different compositions and concentrations of fatty acids and tocopherols in the microalgae studied.
    Matched MeSH terms: Palmitic Acid
  3. Lee ZS, Chin SY, Cheng CK
    Heliyon, 2019 Jun;5(6):e01792.
    PMID: 31245637 DOI: 10.1016/j.heliyon.2019.e01792
    This study evaluates the effects of subcritical hydrothermal treatment on palm oil mill effluent (POME) and its concomitant formations of solid hydrochar, liquid product and gaseous product. The reactions were carried out at temperatures ranged 493 K-533 K for 2 h. The highest reduction of chemical oxygen demand (COD) and biochemical oxygen demand (BOD) were 58.8% and 62.5%, respectively, at 533 K. In addition, the removal of total suspended solids (TSS) achieved up to 99%, with the pH of POME reaching 6 from the initial pH 4. The gas chromatography coupled with mass spectroscopy (GC-MS) analysis showed that the fresh POME contained n-Hexadecanoic acid as the dominant component, which gradually reduced in the liquid product in the reaction with increased temperature, in addition to the attenuation of carboxyl compounds and elevation of phenolic components. The gaseous products contained CO2, CO, H2, and C3 - C6 hydrocarbons. Traces of CH4 were only found at 533 K. CO2 is the dominant species, where the highest of 3.99 vol% per 500 mL working volume of POME recorded at 533 K. The solid hydrochars showed negligible morphological changes across the reaction temperature. The O/C atomic ratio of the hydrochar range from 0.157 to 0.379, while the H/C atomic ratio was in the range from 0.930 to 1.506. With the increase of treatment temperature, the higher heating value (HHV) of the hydrochar improved from 24.624 to 27.513 MJ kg-1. The characteristics of hydrochar make it a fuel source with immense potential. POME decomposed into water-soluble compounds, followed by deoxygenation (dehydration and decarboxylation) in producing hydrochar with lower oxygen content and higher aromatic compounds in the liquid product. Little gaseous hydrocarbons were produced due to subcritical hydrothermal gasification at low temperature.
    Matched MeSH terms: Palmitic Acid
  4. Yoochatchaval W, Kumakura S, Tanikawa D, Yamaguchi T, Yunus MF, Chen SS, et al.
    Water Sci Technol, 2011;64(10):2001-8.
    PMID: 22105121 DOI: 10.2166/wst.2011.782
    The biodegradation characteristics of palm oil mill effluent (POME) and the related microbial community were studied in both actual sequential anaerobic ponds in Malaysia and enrichment cultures. The significant degradation of the POME was observed in the second pond, in which the temperature was 35-37 °C. In this pond, biodegradation of major long chain fatty acids (LCFA), such as palmitic acid (C16:0) and oleic acid (C18:1), was also confirmed. The enrichment culture experiment was conducted with different feeding substrates, i.e. POME, C16:0 and C18:1, at 35 °C. Good recovery of methane indicated biodegradation of feeds in the POME and C16:0 enrichments. The methane production rate of the C18:1 enrichment was slower than other substrates and inhibition of methanogenesis was frequently observed. Denaturing gradient gel electrophoresis (DGGE) analyses indicated the existence of LCFA-degrading bacteria, such as the genus Syntrophus and Syntorophomonas, in all enrichment cultures operated at 35 °C. Anaerobic degradation of the POME under mesophilic conditions was stably processed as compared with thermophilic conditions.
    Matched MeSH terms: Palmitic Acid/analysis
  5. Ismail NZ, Md Toha Z, Muhamad M, Nik Mohamed Kamal NNS, Mohamad Zain NN, Arsad H
    Molecules, 2020 Apr 29;25(9).
    PMID: 32365508 DOI: 10.3390/molecules25092067
    Clinacanthus nutans is a well-known herb that has been used as an alternative and therapeutic medicine, however more selective C. nutans extracts are needed. In this study, leaves were extracted with 80% methanol and further fractionated with n-hexane, dichloromethane, chloroform, n-butanol, and aqueous residue. Subsequently, the total phenolic content (TPC), total flavonoid content (TFC), antioxidant scavenging activity, and antiproliferative effects on breast cancer (Michigan Cancer Foundation-7 [MCF7]) and normal breast (Michigan Cancer Foundation-10A [MCF 10A]) cells of the extracts were measured. Additionally, molecular docking simulation of the major compounds from C. nutans extracts was conducted. The aqueous residue had the highest TPC and TFC, whereas the crude extract had the highest scavenging activity. Among the extracts, dichloromethane extract (CN-Dcm) was selected as it had the highest selectivity index (SI) (1.48). Then, the chosen extract (CN-Dcm) was proceed for further analysis. The compounds from CN-Dcm were identified using gas chromatography-mass spectrometry (GC-MS). The major compounds from CN-Dcm were further investigated through molecular docking studies. Palmitic acid and linolenyl alcohol were the compounds found in the CN-Dcm extract that exhibited the highest binding affinities with p53-binding protein Mdm-2. These results highlight the potential of C. nutans as a source of anticancer activities.
    Matched MeSH terms: Palmitic Acid
  6. Solati Z, Baharin BS
    J Food Sci Technol, 2015 Jun;52(6):3475-84.
    PMID: 26028729 DOI: 10.1007/s13197-014-1409-4
    Effect of supercritical CO2 extracted Nigella sativa L. seed extract (NE) on frying performance of sunflower oil and refined, bleached and deodorized (RBD) palm olein was investigated at concentrations of 1.2 % and 1.0 % respectively. Two frying systems containing 0 % N. sativa L. extract (Control) and 0.02 % butylated hydroxytoluene (BHT) were used for comparison. Physicochemical properties such as fatty acid composition (FAC), Peroxide Value (PV), Anisidine Value (AV), Totox Value (TV), Total Polar Content (TPC), C18:2/C16:0 ratio and viscosity of frying oils were determined during five consecutive days of frying. Results have shown that N. sativa L. extract was able to improve the oxidative stability of both frying oils during the frying process compared to control. The stabilizing effect of antioxidants were in the order of BHT > NE. RBD palm olein was found to be more stable than sunflower oil based on the ratio of linoleic acid (C18:2) to palmitic acid (C16:0) and fatty acid composition.
    Matched MeSH terms: Palmitic Acid
  7. Andriani Y, Syamsumir DF, Yee TC, Harisson FS, Herng GM, Abdullah SA, et al.
    Nat Prod Commun, 2016 Aug;11(8):1117-1120.
    PMID: 30725572
    Gracilaria species are red marine macroalgae that are found abundantly in Malaysia. Gracilaria changii from Morib, Selangor, G. nanilaensis and Gracilaria sp. from Gelang Patah, Johor were used in this study. Five compounds were successfully isolated and identified as hexadecanoic acid (1), cholest-5-en-3-ol (2), 2-hydroxymyristic acid (3), cholesteryl myristate (4) and 1-(4'-methoxyphenyl)-3-(2",4",6"-trihydroxyphenyl)-3-hydroxypropanone (5) based on spectral data analysis (IR, UV, GC-MS, 'H NMR, "C NMR, HMQC and HMBC). All compounds isolated were tested for cytotoxicity (MTT assay for HL-60 and MCF-7 cell lines), and antibacterial (disc diffusion method), antioxidant (DPPH free radical scavenging assay and xanthine oxidase inhibitory assay) and acetylcholinesterase inhibitory (AChE) activity (TLC bioautographic method). Compounds I and 3 exhibited strong cytotoxic activity against HL-60 and MCF-7 cell lines. Compound 5 showed high antioxidant activity in both the DPPH free radical scavenging and xanthine oxidase inhibition assays. Compound I showed positive activity for AChE inhibitory with a minimum inhibition dose of 0.625 tg sample. All compounds demonstrated antibacterial activity producing 8 to 14 mm inhibition zones. A positive control was applied to all bioassays and experiments were performed with three replicates. Results demonstrated that three edible red seaweeds are rich sources of bioactive compounds with potential application for pharmaceutical purposes.
    Matched MeSH terms: Palmitic Acid
  8. Ichimizu S, Watanabe H, Maeda H, Hamasaki K, Ikegami K, Chuang VTG, et al.
    J Control Release, 2019 06 28;304:156-163.
    PMID: 31082432 DOI: 10.1016/j.jconrel.2019.05.015
    We recently developed a cell-penetrating drug carrier composed of albumin (HSA) combined with palmitoyl-cyclic-(D-Arg)12. While it is possible that the palmitoyl-cyclic-(D-Arg)12/HSA enters the cell mainly via macropinocytosis, the mechanism responsible for the induction of macropinocytosis and endosomal escape remain unknown. We report herein that palmitoyl-cyclic-(D-Arg)12/HSA might interact with heparan sulfate proteoglycan and the chemokine receptor CXCR4 followed by multiple activations of the PKC/PI3K/JNK/mTOR signaling pathways to induce macropinocytosis. This result was further confirmed by a co-treatment with 70 kDa dextran, a macropinocytosis marker. Using liposomes that mimic endosomes, the leakage of 5,6-carboxyfluorescein from liposome was observed in the presence of palmitoyl-cyclic-(D-Arg)12/HSA only in the case of the anionic late endosome-like liposomes but not the neutral early endosome-like liposomes. Heparin largely inhibited this leakage, suggesting the importance of electrostatic interactions between palmitoyl-cyclic-(D-Arg)12/HSA and the late-endosomal membrane. Immunofluorescence staining and Western blotting data indicated that the intact HSA could be transferred from endosomes to the cytosol. These collective data suggest that the palmitoyl-cyclic-(D-Arg)12/HSA is internalized via macropinocytosis and intact HSA is released from the late endosomes to the cytoplasm before the endosomes fuse with lysosomes. Palmitoyl-cyclic-(D-Arg)12/HSA not only functions as an intracellular drug delivery carrier but also as an inducer of macropinocytosis.
    Matched MeSH terms: Palmitic Acid/chemistry
  9. Nehdi IA, Sbihi HM, Tan CP, Al-Resayes SI, Rashid U, Al-Misned FA, et al.
    J Oleo Sci, 2020 May 02;69(5):413-421.
    PMID: 32281562 DOI: 10.5650/jos.ess19298
    Allium ampeloprasum L., commonly known as wild leek, is an edible vegetable that has been cultivated for centuries. However, no detailed studies have been undertaken to valorize A. ampeloprasum seed oil. This study aims to evaluate the physicochemical properties, chemical composition, and antioxidant activity of A. ampeloprasum seed oil. The seed oil content was found to be 18.20%. Gas chromatographymass spectrometry (GC-MS) showed that linoleic acid (71.65%) was the dominant acid, followed by oleic acid (14.11%) and palmitic acid (7.11%). A. ampeloprasum seed oil exhibited an oxidative stability of 5.22 h. Moreover, γ- and δ-tocotrienols were the major tocols present (79.56 and 52.08 mg/100 g oil, respectively). The total flavonoid content (16.64 µg CE /g oil) and total phenolic content (62.96 µg GAE /g oil) of the seed oil were also determined. The antioxidant capacity of the oil, as evaluated using the ABTS assay (136.30 µM TEAC/g oil), was found to be significant. These findings indicate that A. ampeloprasum seeds can be regarded as a new source of edible oil having health benefits and nutritional properties.
    Matched MeSH terms: Palmitic Acid/analysis
  10. Tan WN, Lim JQ, Afiqah F, Nik Mohamed Kamal NNS, Abdul Aziz FA, Tong WY, et al.
    Nat Prod Res, 2018 Apr;32(7):854-858.
    PMID: 28782393 DOI: 10.1080/14786419.2017.1361951
    Garcinia atroviridis Griff. ex T. Anders. is used as a medication agent in folkloric medicine. The present study was to examine the chemical composition of the stem bark and leaf of G. atroviridis as well as their cytotoxic effects against MCF-7 cells. The constituents obtained by hydrodistillation were identified using GC-MS. The stem bark oil (EO-SB) composed mainly the palmitoleic acid (51.9%) and palmitic acid (21.9%), while the leaf oil (EO-L) was dominated by (E)-β-farnesene (58.5%) and β-caryophyllene (16.9%). Treatment of MCF-7 cells using EO-L (100 μg/mL) caused more than 50% cell death while EO-SB did not induce cytotoxic effect. EO-L has stimulated the growth of BEAS-2B normal cells, but not in MCF-7 cancerous cells. The IC50 of EO-L in MCF-7 and BEAS-2B cells were 71 and 95 μg/mL, respectively. A combination treatment of EO-L and tamoxifen induced more cell death than the treatment with drug alone at lower doses.
    Matched MeSH terms: Palmitic Acid
  11. Amid BT, Mirhosseini H, Kostadinović S
    Chem Cent J, 2012 Oct 14;6(1):117.
    PMID: 23062269 DOI: 10.1186/1752-153X-6-117
    BACKGROUND: The biological functions of natural biopolymers from plant sources depend on their chemical composition and molecular structure. In addition, the extraction and further processing conditions significantly influence the chemical and molecular structure of the plant biopolymer. The main objective of the present study was to characterize the chemical and molecular structure of a natural biopolymer from Durio zibethinus seed. A size-exclusion chromatography coupled to multi angle laser light-scattering (SEC-MALS) was applied to analyze the molecular weight (Mw), number average molecular weight (Mn), and polydispersity index (Mw/Mn).

    RESULTS: The most abundant monosaccharide in the carbohydrate composition of durian seed gum were galactose (48.6-59.9%), glucose (37.1-45.1%), arabinose (0.58-3.41%), and xylose (0.3-3.21%). The predominant fatty acid of the lipid fraction from the durian seed gum were palmitic acid (C16:0), palmitoleic acid (C16:1), stearic acid (C18:0), oleic acid (C18:1), linoleic acid (C18:2), and linolenic acid (C18:2). The most abundant amino acids of durian seed gum were: leucine (30.9-37.3%), lysine (6.04-8.36%), aspartic acid (6.10-7.19%), glycine (6.07-7.42%), alanine (5.24-6.14%), glutamic acid (5.57-7.09%), valine (4.5-5.50%), proline (3.87-4.81%), serine (4.39-5.18%), threonine (3.44-6.50%), isoleucine (3.30-4.07%), and phenylalanine (3.11-9.04%).

    CONCLUSION: The presence of essential amino acids in the chemical structure of durian seed gum reinforces its nutritional value.

    Matched MeSH terms: Palmitic Acid
  12. Azir M, Abbasiliasi S, Tengku Ibrahim TA, Manaf YNA, Sazili AQ, Mustafa S
    Foods, 2017 Nov 09;6(11).
    PMID: 29120362 DOI: 10.3390/foods6110098
    The present study investigates the detection of lard in cocoa butter through changes in fatty acids composition, triacylglycerols profile, and thermal characteristics. Cocoa butter was mixed with 1% to 30% (v/v) of lard and analyzed using a gas chromatography flame ionization detector, high performance liquid chromatography, and differential scanning calorimetry. The results revealed that the mixing of lard in cocoa butter showed an increased amount of oleic acid in the cocoa butter while there was a decrease in the amount of palmitic acid and stearic acids. The amount of POS, SOS, and POP also decreased with the addition of lard. A heating thermogram from the DSC analysis showed that as the concentration of lard increased from 3% to 30%, two minor peaks at -26 °C and 34.5 °C started to appear and a minor peak at 34.5 °C gradually overlapped with the neighbouring major peak. A cooling thermogram of the above adulterated cocoa butter showed a minor peak shift to a lower temperature of -36 °C to -41.5 °C. Values from this study could be used as a basis for the identification of lard from other fats in the food authentication process.
    Matched MeSH terms: Palmitic Acid
  13. Ng TK, Hayes KC, DeWitt GF, Jegathesan M, Satgunasingam N, Ong AS, et al.
    J Am Coll Nutr, 1992 Aug;11(4):383-90.
    PMID: 1506599
    To compare the effects of dietary palmitic acid (16:0) vs oleic acid (18:1) on serum lipids, lipoproteins, and plasma eicosanoids, 33 normocholesterolemic subjects (20 males, 13 females; ages 22-41 years) were challenged with a coconut oil-rich diet for 4 weeks. Subsequently they were assigned to either a palm olein-rich or olive oil-rich diet followed by a dietary crossover during two consecutive 6-week periods. Each test oil served as the sole cooking oil and contributed 23% of dietary energy or two-thirds of the total daily fat intake. Dietary myristic acid (14:0) and lauric acid (12:0) from coconut oil significantly raised all the serum lipid and lipoprotein parameters measured. Subsequent one-to-one exchange of 7% energy between 16:0 (palm olein diet) and 18:1 (olive oil diet) resulted in identical serum total cholesterol (192, 193 mg/dl), low-density lipoprotein cholesterol (LDL-C) (130, 131 mg/dl), high-density lipoprotein cholesterol (HDL-C) (41, 42 mg/dl), and triglyceride (TG) (108, 106 mg/dl) concentrations. Effects attributed to gender included higher HDL in females and higher TG in males associated with the tendency for higher LDL and LDL/HDL ratios in men. However, both sexes were equally responsive to changes in dietary fat saturation. The results indicate that in healthy, normocholesterolemic humans, dietary 16:0 can be exchanged for 18:1 within the range of these fatty acids normally present in typical diets without affecting the serum lipoprotein cholesterol concentration or distribution. In addition, replacement of 12:0 + 14:0 by 16:0 + 18:1, but especially 16:0 or some component of palm olein, appeared to have a beneficial impact on an important index of thrombogenesis, i.e., the thromboxane/prostacyclin ratio in plasma.
    Matched MeSH terms: Palmitic Acids/pharmacology*; Palmitic Acid
  14. Voon PT, Ng TK, Lee VK, Nesaretnam K
    Am J Clin Nutr, 2011 Dec;94(6):1451-7.
    PMID: 22030224 DOI: 10.3945/ajcn.111.020107
    BACKGROUND: Dietary fat type is known to modulate the plasma lipid profile, but its effects on plasma homocysteine and inflammatory markers are unclear.

    OBJECTIVE: We investigated the effects of high-protein Malaysian diets prepared with palm olein, coconut oil (CO), or virgin olive oil on plasma homocysteine and selected markers of inflammation and cardiovascular disease (CVD) in healthy adults.

    DESIGN: A randomized-crossover intervention with 3 dietary sequences of 5 wk each was conducted in 45 healthy subjects. The 3 test fats, namely palmitic acid (16:0)-rich palm olein (PO), lauric and myristic acid (12:0 + 14:0)-rich CO, and oleic acid (18:1)-rich virgin olive oil (OO), were incorporated at two-thirds of 30% fat calories into high-protein Malaysian diets.

    RESULTS: No significant differences were observed in the effects of the 3 diets on plasma total homocysteine (tHcy) and the inflammatory markers TNF-α, IL-1β, IL-6, and IL-8, high-sensitivity C-reactive protein, and interferon-γ. Diets prepared with PO and OO had comparable nonhypercholesterolemic effects; the postprandial total cholesterol for both diets and all fasting lipid indexes for the OO diet were significantly lower (P < 0.05) than for the CO diet. Unlike the PO and OO diets, the CO diet was shown to decrease postprandial lipoprotein(a).

    CONCLUSION: Diets that were rich in saturated fatty acids prepared with either PO or CO, and an OO diet that was high in oleic acid, did not alter postprandial or fasting plasma concentrations of tHcy and selected inflammatory markers. This trial was registered at clinicaltrials.gov as NCT00941837.

    Matched MeSH terms: Palmitic Acid/pharmacology
  15. Wan Afifudeen CL, Loh SH, Aziz A, Takahashi K, Effendy AWM, Cha TS
    Sci Rep, 2021 01 11;11(1):381.
    PMID: 33431982 DOI: 10.1038/s41598-020-79711-2
    Bioprospecting for biodiesel potential in microalgae primarily involves a few model species of microalgae and rarely on non-model microalgae species. Therefore, the present study determined changes in physiology, oil accumulation, fatty acid composition and biodiesel properties of a non-model microalga Messastrum gracile SE-MC4 in response to 12 continuous days of nitrate-starve (NS) and nitrate-replete (NR) conditions respectively. Under NS, the highest oil content (57.9%) was achieved despite reductions in chlorophyll content, biomass productivity and lipid productivity. However, under both NS and NR, palmitic acid and oleic acid remained as dominant fatty acids thus suggesting high potential of M. gracile for biodiesel feedstock consideration. Biodiesel properties analysis returned high values of cetane number (CN 61.9-64.4) and degree of unsaturation (DU 45.3-57.4) in both treatments. The current findings show the possibility of a non-model microalga to inherit superior ability over model species in oil accumulation for biodiesel development.
    Matched MeSH terms: Palmitic Acid/metabolism*
  16. Idris CA, Sundram K
    Asia Pac J Clin Nutr, 2002;11 Suppl 7:S408-15.
    PMID: 12492627
    Nine cynomolgus monkeys were rotated randomly through four dietary treatments with each treatment lasting 6 weeks. A wash-out period of 4 weeks was maintained between each dietary rotation. The animals were fed diets containing 32% energy fat derived from palm olein (POL), lauric-myristic-rich oil blend (LM), American Heart Association (AHA) rich oil blend and hydrogenated soybean oil blend (trans). Diets were fed with (phase 1) or without (phase 2) the addition of dietary cholesterol (0.1%). In phase 1, when animals were fed without dietary cholesterol, plasma total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) was significantly raised and high-density lipoprotein cholesterol (HDL-C) was significantly depressed by the trans diets relative to all other dietary treatments. The resulting LDL-C/HDL-C ratio was also significantly increased. The LM diet increased TC significantly relative to the AHA diet while LDL-C was significantly increased compared to both POL and AHA. Apolipoprotein (apo) B was not affected significantly by these dietary treatments. Apo A1 was significantly increased by POL relative to all other dietary treatments. The trans diet reduced apo A1 and the resulting apo B/A1 ratio was increased significantly by trans relative to all other dietary treatments. Addition of 0.1% dietary cholesterol to these diets almost doubled the plasma TC and LDL-C in all dietary treatments. However, HDL-C was only marginally higher with the addition of dietary cholesterol. The LM + C (cholesterol added) diet resulted in the highest TC and LDL-C that was significant compared to all other dietary treatments. Trans + C increased TC compared to POL + C and AHA + C diets while increases in the LDL-C did not attain significance. The addition of dietary cholesterol did not affect HDL-C between treatments whereas plasma triglycerides were significantly increased by the trans + C diet relative to all other treatments. Both the trans + C and LM + C diets increased apo B and decreased apo A1 relative to the POL + C and AHA + C diets. The resulting apo B/A1 ratio was similarly altered. These results affirm that the lauric + myristic acid combination, along with trans fatty acids, increased lipoprotein-associated coronary heart disease risk factors compared to either POL or AHA.
    Matched MeSH terms: Palmitic Acid/administration & dosage; Palmitic Acid/pharmacology*
  17. Yassin AA, Mohamed IO, Ibrahim MN, Yusoff MS
    Appl Biochem Biotechnol, 2003 Jul;110(1):45-52.
    PMID: 12909731
    Immobilized PS-C 'Amano' II lipase was used to catalyze the interesterification of palm olein (POo) with 30, 50, and 70% stearic acid in n-hexane at 60 degrees C. The catalytic performance of the immobilized lipase was evaluated by determining the composition change of fatty acyl groups and triacylglycerol (TAG) by gas liquid chromatography and high-performance liquid chromatography, respectively. The interesterification process resulted in the formation of new TAGs, mainly tripalmitin and dipalmitostearin, both of which were absent in the original oil. These changes in TAG composition resulted in an increase in slip melting point, from the original 25.5 degrees C to 36.3, 37.0, and 40.0 degrees C in the modified POo with 30, 50, and 70% stearic acid, respectively. All the reactions attained steady state in about 6 h. This type of work will find great applications in food industries, such as confectionery.
    Matched MeSH terms: Palmitic Acid/chemistry
  18. Alireza, S., Tan, C.P., Hamed, M., Che Man, Y.B.
    MyJurnal
    The main objective of the present study was to investigate the effects of the frying media and storage time on the fatty acid composition (FAC) and iodine value (IV) of deep-fat fried potato chips. The frying experiment was conducted at 180ºC for five consecutive days. Six frying media were considered as the main treatments: refined, bleached, deodorized (RBD) palm olein (A), canola oil (C), RBD palm olein/sesame oil (AB, 1:1 w/w), RBD palm olein/canola oil (AC, 1:1, w/w), sesame oil/canola oil (BC, 1:1, w/w), and RBD palm olein/sesame oil/canola oil (ABC, 1:1:1, w/w/w). The initial degrees of unsaturation of the consumed oils, A, C, AB, AC, BC, and ABC, were 58.6, 94.0, 68.0, 72.2, 87.7, and 75.8 (g/100 g), respectively. The fatty acid analysis showed that there was a decrease in both the linolenic acid (C18:3) and linoleic acid (C18:2) contents, whereas the palmitic acid (C16:0) increased with a prolonged frying time. The chemical analysis showed that there was a significant (p < 0.05) difference in terms of the IV for each frying oil during the five consecutive days of frying (day 0 to 5). Oil C had the least stability in terms of deep-fat frying due to a high level of unsaturated fatty acids. Conversely, oil AC had the best stability due to the smallest reduction of the C18:2/C16:0 ratio and the IV.
    Matched MeSH terms: Palmitic Acid
  19. Abbas Ali M, Bamalli Nouruddeen Z, Ida I. Muhamad, Abd Latip R, Hidayu Othman N
    Sains Malaysiana, 2014;43:1189-1195.
    The aim of this study was to evaluate on how heat treatments by microwave oven may affect the oxidative degradation of sunflower oil (SFO) and its blend with palm olein (Po). The blend was prepared in the volume ratio of 40:60 (Po: SFO, PSF). The samples were exposed to microwave heating at medium power setting, for different periods. In this study, refractive index, free fatty acid content, peroxide value, p-anisidine value, total oxidation (Tomx), specific extinction, viscosity, polymer content, polar compounds and food oil sensor value of the oils all increased, whereas iodine value and C 18:21C16:0 ratio decreased as microwave heating progressed. Microwave heating temperature increased with increasing heating time and longer heating times resulted in a greater degree of oil deterioration. The percentage of linoleic acid tended to decrease, whereas the percentage of palmitic acid increased. The effect of adding PO to SFO on the formation of free fatty acids and conjugated dienes during microwave treatment was not significant (p< 0.05). No significant differences in food oil sensor value was observed between SFO and PSF. Based on the most oxidative stability criteria, it can be concluded that the microwave heating caused the formation of comparatively lower amounts of oxidation products in PSF compared to SFO, indicating a lower extent of oxidative degradation of PSF.
    Matched MeSH terms: Palmitic Acid
  20. Azhari, N. A. M., Markom, M., Ismail, I., Anuar, N.
    MyJurnal
    Polygonum minus is a plant rich with bioactive components that contribute to food, pharmaceutical, and perfume industries. However, high moisture content in fresh plants will allow
    microbial activity that leads to the degradation of plant quality. This can be prevented by
    drying the fresh plants to preserve the characteristics of their bioactive components. The
    present work was conducted to determine the effect of different drying methods such as
    air-drying, oven-drying (40 and 60°C), and freeze-drying on essential oil (EO) yield and
    chemical compounds of P. minus roots. For comparison purposes, all samples were extracted
    by maceration with n-hexane at room temperature. Then, the samples were analysed and
    identified by using gas chromatography-mass spectrometry (GC-MS). The highest EO yield
    extract was obtained from freeze-drying (4.15 ± 0.5), followed by air-drying (3.79 ± 0.19). EO
    yield from oven-drying at 40 and 60°C was 3.4 ± 0.14 and 0.86 ± 0.04, respectively. Results
    showed that by increasing the drying temperature, the EO yield would decrease and cause a
    loss of major chemical compounds in the P. minus root. Air-drying was found to be the best
    method in preserving the presence of important chemical compound in P. minus roots such as
    β-caryophyllene (1.43%), pentadecane (4.34%), hexadecanoic acid (3.91%) and oleic acid
    (3.97%).
    Matched MeSH terms: Palmitic Acid
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links