Displaying publications 1 - 20 of 65 in total

Abstract:
Sort:
  1. Mohd Zin NB, Mohamad Yusof B, Oslan SN, Wasoh H, Tan JS, Ariff AB, et al.
    AMB Express, 2017 Dec;7(1):131.
    PMID: 28651380 DOI: 10.1186/s13568-017-0433-y
    In recent years, many efforts have been directed to explore the methods to reduce the production costs of industrial lipase by improving the yield and the use of low-cost agricultural wastes. Coconut dregs, which is a lignocellulosic by-product from coconut oil and milk processing plants, is rich in cellulose (36%) and crude fat (9%). A newly isolated Bacillus stratosphericus has been demonstrated to perform cellulose hydrolysis on coconut dregs producing fermentable sugars. The highest extracellular lipase activity of 140 U/mL has been achieved in submerged fermentation with acid pre-treated coconut dregs. The lipase was found to be active over a wide range of temperatures and pHs. The activity of lipase can be generally increased by the presence of detergent ingredients such as Tween-80, cetyltrimethylammonium bromide, hydrogen peroxide and phosphate per sulphate. The great compatibility of lipase in commercial detergents has also underlined its potential as an additive ingredient in biodetergent formulations.
    Matched MeSH terms: Polysorbates
  2. Mahmood, A.A., Sidik, K., Fouad, H.M.
    ASM Science Journal, 2007;1(1):1-6.
    MyJurnal
    Ocimum basilicum seed extracts were found to possess significant anti-ulcer activity against ethanol-induced ulceration in experimental animal models. Three groups of adult male rats were used, with each group consisting of six rats. Oral administration of absolute ethanol to rats pre-treated with 10% Tween 20® (Group 1) produced extensive haemorrhagic lesions of the gastric mucosa. Rats orally pre-treated with O. basilicum extract suspended in 10% Tween 20® (Group 2) or cimetidine in 10% Tween 20® (Group 3), 30 min before oral administration of absolute alcohol had significantly reduced (p
    Matched MeSH terms: Polysorbates
  3. Alagan A, Jantan I, Kumolosasi E, Azmi N
    Bioinformation, 2019;15(8):535-541.
    PMID: 31719762 DOI: 10.6026/97320630015535
    Phyllanthus amarus Schumach. and Thonn. is a wide spread medicinal herb with various traditional uses. It is well documented for its antioxidant, anti-inflammatory, and hepatoprotective activities. Therefore, it is of interest to evaluate the 80% ethanol extract of Phyllanthus amarus (PA) on spatial memory using the 8-radial arm maze (8-RAM) in mice after induction of neuro inflammation by lipopolysaccharide (LPS) in a 14- and 28-days treatment study. LC-MS/MS was performed to profile the chemical composition in PA extract. Mice were treated orally with 5% v/v tween 20, PA extract (100, 200 and 400 mg/kg), or ibuprofen (IBF 40 mg/kg) for 14 and 28 days. All groups were challenged with LPS (1 mg/kg) via intraperitoneal (i.p.) injection a day prior to the 8-RAM task except for the negative control group which received an i.p. injection of saline. Data obtained were analyzed with one-way ANOVA followed by post hoc Dunnett's test (comparison of all groups against vehicle control). Analysis of LC-MS/MS data revealed the presence of 16 compounds in the PA extract. Administration of PA extract at 200 and 400 mg/kg for 14 and 28 days significantly (*P<0.05) decreased the working and reference memory errors against LPS-induced spatial memory impairment. The observed protective action is possibly due to the putative antineuroinflammatory effects of PA. In conclusion, PA extract possess neuroprotective effects against spatial memory impairment mediated by LPS.
    Matched MeSH terms: Polysorbates
  4. Hadibarata T, Teh ZC
    Bioprocess Biosyst Eng, 2014 Aug;37(8):1679-84.
    PMID: 24554082 DOI: 10.1007/s00449-014-1140-6
    Pleurotus pulmonarius F043, a fungus collected from tropical rain forest, was used to degrade pyrene, a four-rings polycyclic aromatic hydrocarbons (PAHs), in a mineral medium broth. A maximum degradation rate of pyrene (90 %) was occurred at pH 3 and the lowest degradation rate was found in the culture at pH 10 (2 %). More than 90 % pyrene degradation was achieved at pH ranged from 3 to 5, whereas the degradation rate significantly declined when the pH was >5. The degradation of pyrene increased from 2 to 96 % when the temperature rose from 4 to 25 °C. When the temperature was increased to 60 °C resulting the lowest degradation rate into 7 %. Among the agitation rates tested, 120 rpm was the best with 95 % degradation, followed by 100 rpm (90 %). The optimum agitation range for pyrene degradation by P. pulmonarius F043 was 100-120 rpm. Among all the concentrations tested, 0.5 % Tween 80 was the best with 98 % degradation, followed by 1 % Tween 80 (90 %). The optimum concentration of Tween 80 for pyrene degradation by P. pulmonarius F043 was 0.5-1 %. The degradation rate decreased, while the concentration of Tween 80 was increased. The metabolic product was found during degradation process through the identification of gentisic acid by TLC, UV-Spectrophotometer, and GC-MS.
    Matched MeSH terms: Polysorbates/pharmacology
  5. Lazim ZM, Hadibarata T
    Braz J Microbiol, 2016 Jul-Sep;47(3):610-6.
    PMID: 27287336 DOI: 10.1016/j.bjm.2016.04.015
    This study aimed to investigate the impact of nonionic surfactants on the efficacy of fluorine degradation by Polyporus sp. S133 in a liquid culture. Fluorene was observed to be degraded in its entirety by Polyporus sp. S133 subsequent to a 23-day incubation period. The fastest cell growth rate was observed in the initial 7 days in the culture that was supplemented with Tween 80. The degradation process was primarily modulated by the activity of two ligninolytic enzymes, laccase and MnP. The highest laccase activity was stimulated by the addition of Tween 80 (2443U/L) followed by mixed surfactant (1766U/L) and Brij 35 (1655U/L). UV-vis spectroscopy, TLC analysis and mass spectrum analysis of samples subsequent to the degradation process in the culture medium confirmed the biotransformation of fluorene. Two metabolites, 9-fluorenol (λmax 270, tR 8.0min and m/z 254) and protocatechuic acid (λmax 260, tR 11.3min and m/z 370), were identified in the treated medium.
    Matched MeSH terms: Polysorbates
  6. Kumar BS, Saraswathi R, Kumar KV, Jha SK, Venkates DP, Dhanaraj SA
    Drug Deliv, 2014 May;21(3):173-84.
    PMID: 24102185 DOI: 10.3109/10717544.2013.840690
    Novel LNCs (lipid nanocrystals) were developed with an aim to improve the solubility, stability and targeting efficiency of the model drug glibenclamide (GLB). PEG 20000, Tween 80 and soybean lecithin were used as polymer, surfactant and complexing agent, respectively. GLB nanocrystals (NCs) were prepared by precipitation process and complexed using hot and cold melt technique. The LNCs were evaluated by drug loading, saturation solubility (SL), optical clarity, in vitro dissolution, solid state characterization, in vivo and stability analysis. LNCs exhibited a threefold increase in SL and a higher dissolution rate than GLB. The percentage dissolution efficiency was found to decrease with increase in PEG 20000. The average particle size was in the range of 155-842 nm and zeta potential values tend to increase after complexation. X-ray powder diffractometry and differential scanning calorimetry results proved the crystallinity prevailed in the samples. Spherical shaped particles (<1000 nm) with a lipid coat on the surface were observed in scanning electron microscopy analysis. Fourier transform infrared results proved the absence of interaction between drug and polymer and stability study findings proved that LNCs were stable. In vivo study findings showed a decrease in drug concentration to pancreas in male Wistar rats. It can be concluded that LNCs are could offer enhanced solubility, dissolution rate and stability for poorly water soluble drugs. The targeting efficiency of LNCs was decreased and further membrane permeability studies ought to be carried out.
    Matched MeSH terms: Polysorbates/chemistry
  7. Asmawi AA, Salim N, Ngan CL, Ahmad H, Abdulmalek E, Masarudin MJ, et al.
    Drug Deliv Transl Res, 2019 04;9(2):543-554.
    PMID: 29691812 DOI: 10.1007/s13346-018-0526-4
    Docetaxel has demonstrated extraordinary anticancer effects on lung cancer. However, lack of optimal bioavailability due to poor solubility and high toxicity at its therapeutic dose has hampered the clinical use of this anticancer drug. Development of nanoemulsion formulation along with biocompatible excipients aimed for pulmonary delivery is a potential strategy to deliver this poorly aqueous soluble drug with improved bioavailability and biocompatibility. In this work, screening and selection of pharmaceutically acceptable excipients at their minimal optimal concentration have been conducted. The selected nanoemulsion formulations were prepared using high-energy emulsification technique and subjected to physicochemical and aerodynamic characterizations. The formulated nanoemulsion had mean particle size and ζ-potential in the range of 90 to 110 nm and - 30 to - 40 mV respectively, indicating high colloidal stability. The pH, osmolality, and viscosity of the systems met the ideal requirement for pulmonary application. The DNE4 formulation exhibited slow drug release and excellent stability even under the influence of extreme environmental conditions. This was further confirmed by transmission electron microscopy as uniform spherical droplets in nanometer range were observed after storage at 45 ± 1 °C for 3 months indicating high thermal stability. The nebulized DNE4 exhibited desirable aerosolization properties for pulmonary delivery application and found to be more selective on human lung carcinoma cell (A549) than normal cell (MRC-5). Hence, these characteristics make the formulation a great candidate for the potential use as a carrier system for docetaxel in targeting lung cancer via pulmonary delivery.
    Matched MeSH terms: Polysorbates/administration & dosage; Polysorbates/chemistry
  8. Mahdi ES, Sakeena MH, Abdulkarim MF, Abdullah GZ, Sattar MA, Noor AM
    Drug Des Devel Ther, 2011;5:311-23.
    PMID: 21792294 DOI: 10.2147/DDDT.S15698
    The purpose of this study was to select appropriate surfactants or blends of surfactants to study the ternary phase diagram behavior of newly introduced palm kernel oil esters.
    Matched MeSH terms: Polysorbates/chemistry*
  9. Gurmeet K, Rosnah I, Normadiah MK, Das S, Mustafa AM
    EXCLI J, 2014;13:151-60.
    PMID: 26417249
    Bisphenol A (BPA) is widely used in manufacturing industries. It is commonly detected in the environment and was reported to exert oestrogenic effects which may be harmful to the reproductive system. The present study was carried out to observe the effects of oral administration of BPA on the development of the reproductive organs and plasma sex hormone levels in prepubertal male Sprague-Dawley (SD) rats. Prepubertal male SD rats (n=8 in each group) were administered BPA in the doses of 1, 5, 10 and 100 mg/kg BW (body weight) via oral gavage for a period of 6 weeks. The control animals received the vehicle for BPA (Tween 80 in distilled water). Following 6 weeks of BPA exposure, the rats exhibited less evidence of spermatogenesis. There was seminiferous epithelial damage which included disruption of intercellular junctions and sloughing of germ cells into the seminiferous tubular lumen. Furthermore, the lumina of the seminiferous tubules and the epididymis of these animals were filled with immature germ cells and cellular debris. This damage may lead to the significant reduction in the seminiferous tubular diameter in BPA-treated animals. These findings were associated with the significant lower plasma testosterone and 17β-oestradiol levels. There was no significant difference between the body weight gain, the absolute as well as relative testis weight or epididymal weight of BPA-treated animals when compared to the control animals. The findings provided further evidence of the detrimental effects of BPA on the male reproductive system.
    Matched MeSH terms: Polysorbates
  10. Almaimani G, Jabbar AAJ, Ibrahim IAA, Alzahrani AR, Bamagous GA, Almaimani RA, et al.
    Environ Sci Pollut Res Int, 2024 Jan;31(3):4439-4452.
    PMID: 38103135 DOI: 10.1007/s11356-023-31349-z
    Herbal medicine is one of the most common fields explored for combating colon cancers, and Pimpinella anisum L. seeds (PAS) have been utilized widely as medicinal agents because of their increased essential oil (trans-anethole) contents. In this essence, our study investigates the toxic effect and chemoprotective potentials of PAS against azoxymethane (AOM)-induced colon cancer in rats. The toxicity trial for PAS conducted by clustering fifteen rats into three groups (five rats each): A, normal control had 10% Tween 20; B, ingested with 2 g/kg PAS; and C, supplemented with 4 g/kg PAS. The in vivo cancer trial was performed by using 30 rats (Sprague-Dawley) that were randomly adapted in five steel cages (six rats each): group A, normal controls received two subcutaneous injections of normal saline 0.09% and ingested orally 10% Tween 20; groups B-E, rats received two injections of 15 mg/kg of azoxymethane (AOM) subcutaneously in 2 weeks and treated orally with 10% Tween 20 (group B) or intraperitoneal injection of 5-fluorouracil (35 mg/kg) (group C), or orally given 200 mg/kg PAS (group D) and 400 mg/kg PAS (group E) for 8 weeks. After the scarification of rats, the colon tissues were dissected for gross and histopathological evaluations. The acute toxicity trial showed the absence of any toxic signs in rats even after 14 days of ingesting 4 g/kg of PAS. The chemoprotective experiment revealed significant inhibitory potentials (65.93%) of PAS (400 mg/kg) against aberrant crypto foci incidence that could be correlated with its positive modulation of the immunohistochemically proteins represented by a significant up-regulation of the Bax protein and a decrease of the Bcl-2 protein expressions in colon tissues. Furthermore, PAS-treated rats had notably lower oxidative stress in colon tissues evidenced by decreased MDA levels and increased antiradical defense enzymes (SOD, CAT, and GPx). The outcomes suggest 400 mg/kg PAS as a viable additive for the development of potential pharmaceuticals against colorectal cancer.
    Matched MeSH terms: Polysorbates
  11. Puvanesuaran VR, Ibrahim N, Noordin R, Balakrishnan V
    Eur Rev Med Pharmacol Sci, 2012 Sep;16(9):1179-83.
    PMID: 23047500
    AIM: A method was developed to separate contaminant-free viable Toxoplasma gondii cysts from brain samples of infected mice for molecular biology studies and reinfection.
    MATERIALS AND METHODS: The mice brains were homogenized and washed with phosphate buffered saline (PBS) Tween 80 prior to fractionation using 19-22% dextran solution. Finally, the supernatant was purified by two-step membrane filtration (100-160 microm and < 10 microm) to obtain pure T. gondii cyst. The isolates were analyzed through microscopic observation, qPCR and by reinfection of new batch of mice.
    RESULTS: T. gondii cysts were best isolated with 21% dextran solution and two step filtration.
    CONCLUSIONS: The method was observed not to disrupt the integrity of the cysts containing bradyzoites. In addition, the isolated cysts in the filtrate were found to be contaminant-free, viable and able to infect healthy mice when introduced orally; which, mimics the natural infectivity pathway.
    Matched MeSH terms: Polysorbates/pharmacology
  12. Wong WT, Ismail M, Tohit ER, Abdullah R, Zhang YD
    PMID: 27800004
    Background. Vascular occlusion or thrombosis was often attributed to uncontrolled platelet activation. Influence of sugarcane policosanol extract on platelet was reported but little was known of rice bran policosanol, particularly its mechanisms of actions on platelet activities. Objective. Antiplatelet mechanisms of rice bran policosanol extract (RBE) were studied using hyperlipidemic Sprague Dawley rats. Ex vivo platelet aggregation, platelet count (PC), bleeding time (BT), and coagulation time were assayed. Serum eicosanoids and other aggregation-related metabolites levels were quantified. Design. Rats were divided into 6 groups for comparisons (vehicle control Tween 20/H2O, high dose policosanol 500 mg/kg, middle dose policosanol 250 mg/kg, low dose policosanol 100 mg/kg, and positive control aspirin 30 mg/kg). Results. Low dose 100 mg/kg of RBE inhibited aggregation by 42.32 ± 4.31% and this was comparable with the effect of 30 mg/kg aspirin, 43.91 ± 5.27%. Results showed that there were no significant differences in PC, BT, and coagulation time among various groups after RBE treatment. Serum thromboxane A2 was attenuated while prostacyclin level increased upon RBE treatment. Conclusions. RBE reduced ex vivo ADP-induced platelet aggregation without giving adverse effects. No changes in full blood count suggested that rice bran policosanol did not disturb biological blood cell production and destruction yet it reduced aggregation through different mechanisms.
    Matched MeSH terms: Polysorbates
  13. Kamsani NE, Zakaria ZA, Md Nasir NL, Mohtarrudin N, Mohamad Alitheen NB
    PMID: 31885651 DOI: 10.1155/2019/5207958
    Methanol extract of Melastoma malabathricum (MEMM) has been traditionally used by the Malay to treat various ailments. In an attempt to develop the plant as an herbal product, MEMM was subjected to the subacute and subchronic toxicity and cytotoxicity studies. On the one hand, the subacute study was performed on three groups of male and three groups of female rats (n = 6), which were orally administered with 8% Tween 80 (vehicle control group) or MEMM (500 and 1000 mg/kg) daily for 28 days, respectively. On the other hand, the subchronic study was performed on four groups of rats (n = 6), which were orally administered with 8% Tween 80 (vehicle control group) or MEMM (50, 250, and 500 mg/kg) daily for 90 days, respectively. In the in vitro study, the cytotoxic effect of MEMM against the HT29 colon cancer cell line was assessed using the MTT assay. MEMM was also subjected to the UHPLC-ESI-HRMS analysis. The results demonstrated that MEMM administration did not cause any mortality, irregularity of behaviour, modification in body weight, as well as food and water intake following the subacute and subchronic oral treatment. There were no significant differences observed in haematological parameters between treatment and control groups in both studies, respectively. The in vitro study demonstrated that MEMM exerts a cytotoxic effect against the HT29 colon cancer cell line when observed under the inverted and phase-contrast microscope and confirmed by the acridine orange/propidium iodide (AOPI) staining. The UHPLC-ESI-HRMS analysis of MEMM demonstrated the occurrence of several compounds including quercetin, p-coumaric acid, procyanidin A, and epigallocatechin. In conclusion, M. malabathricum leaves are safe for oral consumption either at the subacute or subchronic levels and possess cytotoxic action against the HT29 colon cancer cells possibly due to the synergistic action of several flavonoid-based compounds.
    Matched MeSH terms: Polysorbates
  14. Salama SM, Bilgen M, Al Rashdi AS, Abdulla MA
    PMID: 22988470 DOI: 10.1155/2012/137083
    Background. Experimental research in hepatology has focused on developing traditional medicines into potential pharmacological solutions aimed at protecting liver from cirrhosis. Along the same line, this study investigated the effects of ethanol-based extract from a traditional medicine plant Boesenbergia rotunda (BR) on liver cirrhosis. Methodology/Results. The BR extract was tested for toxicity on 3 groups of rats subjected to vehicle (10% Tween 20, 5 mL/kg) and 2g/kg and 5g/kg doses of the extract, respectively. Next, experiments were conducted on a rat model of cirrhosis induced by thioacetamide injection. The rats were divided into five groups and, respectively, administered orally with 10% Tween-20 (5 mL/kg) (normal control group), 10% Tween-20 (5 mL/kg) (cirrhosis control group), 50 mg/kg of silymarin (reference control group), and 250 mg/kg and 500 mg/kg of BR extract (experimental groups) daily for 8 weeks. The rats in normal group were intraperitoneally injected with sterile distilled water (1 mL/kg) 3 times/week, and those in the remaining groups were injected intraperitoneally with thioacetamide (200 mg/kg) thrice weekly. At the end of the 8 weeks, the animals were sacrificed and samples were collected for comprehensive histopathological, coagulation profile and biochemical evaluations. Also, the antioxidant activity of the BR extract was determined and compared with that of silymarin. Data from the acute toxicity tests showed that the extract was safe to use. Histological analysis of the livers of the rats in cirrhosis control group revealed uniform coarse granules on their surfaces, hepatocytic necrosis, and lymphocytes infiltration. But, the surfaces morphologically looked much smoother and the cell damage was much lesser in those livers from the normal control, silymarin and BR-treated groups. In the high-dose BR treatment group, the livers of the rats exhibited nearly normal looking lobular architecture, minimal inflammation, and minimal hepatocyte damage, the levels of the serum biomarkers and liver enzymes read nearly normal, and these results were all comparable to those observed or quantified from the normal and silymarin-treated groups. The BR extract had the antioxidant activity about half of what was recorded for silymarin. Conclusion. The progression of the liver cirrhosis can be intervened using the ethanol-based BR extract, and the liver's status quo of property, structure, and function can be preserved. This capability of the extract warrants further studies exploring the significance of its pharmacologic potential in successfully treating the liver cirrhosis in humans.
    Matched MeSH terms: Polysorbates
  15. Tan TB, Yussof NS, Abas F, Mirhosseini H, Nehdi IA, Tan CP
    Food Chem, 2016 Mar 1;194:416-23.
    PMID: 26471574 DOI: 10.1016/j.foodchem.2015.08.045
    A solvent displacement method was used to prepare lutein nanodispersions. The effects of processing parameters (addition method, addition rate, stirring time and stirring speed) and emulsifiers with different stabilizing mechanisms (steric, electrostatic, electrosteric and combined electrostatic-steric) on the particle size and particle size distribution (PSD) of the nanodispersions were investigated. Among the processing parameters, only the addition method and stirring time had significant effects (p<0.05) on the particle size and PSD. For steric emulsifiers, Tween 20, 40, 60 and 80 were used to produce nanodispersions successfully with particle sizes below 100nm. Tween 80 (steric) was then chosen for further comparison against sodium dodecyl sulfate (SDS) (electrostatic), sodium caseinate (electrosteric) and SDS-Tween 80 (combined electrostatic-steric) emulsifiers. At the lowest emulsifier concentration of 0.1%, all the emulsifiers invariably produced stable nanodispersions with small particle sizes (72.88-142.85nm) and narrow PSDs (polydispersity index<0.40).
    Matched MeSH terms: Polysorbates/chemistry
  16. Wan Mohamad WAF, McNaughton D, Augustin MA, Buckow R
    Food Chem, 2018 Aug 15;257:361-367.
    PMID: 29622223 DOI: 10.1016/j.foodchem.2018.03.027
    Understanding the bioactive partitioning between the phases of an emulsion system underpins strategies for improving the efficiency of bioactive protection against degradation. We analysed partitioning of β-carotene in emulsions with various formulations in-situ using confocal Raman microscopy (CRM). The partitioning of β-carotene into the aqueous phase of emulsions increased when whey protein isolate (WPI) was heat or high pressure-treated prior to emulsion formation. However, increasing the concentration of high pressure-treated WPI reduced the β-carotene partitioning into the aqueous phase. Increasing the solid fat content in the carrier oil favoured the migration of β-carotene into the aqueous phase. The use of WPI as the emulsifier resulted in a greater partitioning of β-carotene into the aqueous phase compared to when Tween 40 was the emulsifier. This study demonstrates that partitioning of β-carotene between the aqueous and oil phase is dependent on the characteristics of the oil phase, emulsifier type and processing.
    Matched MeSH terms: Polysorbates/chemistry
  17. MohdMaidin N, Oruna-Concha MJ, Jauregi P
    Food Chem, 2019 Jan 15;271:224-231.
    PMID: 30236671 DOI: 10.1016/j.foodchem.2018.07.083
    Red grape pomace, a wine-making by-product is rich in anthocyanins and has many applications in food and pharmaceutical industry. However, anthocyanins are unstable during processing and storage. This study aimed to investigate the stability of anthocyanins obtained by hydroalcoholic extraction (with and without sorbic acid) and colloidal gas aphrons (CGA) separation; a surfactant (TWEEN20) based separation. Anthocyanins in CGA samples showed higher stability (half-life = 55 d) than in the crude extract (half-life = 43 d) and their stability increased with the concentration of TWEEN20 in the CGA fraction (6.07-8.58 mM). The anthocyanins loss in the CGA sample (with the maximum content of surfactant, 8.58 mM) was 34.90%, comparable to that in the crude ethanolic extract with sorbic acid (EE-SA) (31.53%) and lower than in the crude extract (44%). Colour stabilisation was also observed which correlated well with the stability of individual anthocyanins in the EE and CGA samples. Malvidin-3-o-glucoside was the most stable anthocyanin over time.
    Matched MeSH terms: Polysorbates/pharmacology*
  18. Shariffa YN, Tan TB, Uthumporn U, Abas F, Mirhosseini H, Nehdi IA, et al.
    Food Res Int, 2017 11;101:165-172.
    PMID: 28941679 DOI: 10.1016/j.foodres.2017.09.005
    The aim of this study was to develop formulations to produce lycopene nanodispersions and to investigate the effects of the homogenization pressure on the physicochemical properties of the lycopene nanodispersion. The samples were prepared by using emulsification-evaporation technique. The best formulation was achieved by dispersing an organic phase (0.3% w/v lycopene dissolved in dichloromethane) in an aqueous phase (0.3% w/v Tween 20 dissolved in deionized water) at a ratio of 1:9 by using homogenization process. The increased level of homogenization pressure to 500bar reduced the particle size and lycopene concentration significantly (p<0.05). Excessive homogenization pressure (700-900bar) resulted in large particle sizes with high dispersibility. The zeta potential and turbidity of the lycopene nanodispersion were significantly influenced by the homogenization pressure. The results from this study provided useful information for producing small-sized lycopene nanodispersions with a narrow PDI and good stability for application in beverage products.
    Matched MeSH terms: Polysorbates
  19. Alagan A, Jantan I, Kumolosasi E, Ogawa S, Abdullah MA, Azmi N
    Front Pharmacol, 2019;10:632.
    PMID: 31231221 DOI: 10.3389/fphar.2019.00632
    Background:Phyllanthus amarus (PA) is widely studied for its hepatoprotective properties but has recently received increasing attention due to its diverse anti-inflammatory effects. However, the effects of PA in modulating immune responses in the central nervous system leading to protection against functional changes remain unexplored. Therefore, we sought to examine the protective effects of 80% v/v ethanol extract of PA on lipopolysaccharide (LPS)-induced non-spatial memory impairment and neuroinflammation. Methods: Selected major phytoconstituents of PA extract were identified and quantified using high-performance liquid chromatography. Subchronic neurotoxicity was performed in male Wistar rats given daily oral administration of 100, 200, and 400 mg/kg of the PA extract. Their neurobehavioral activities (functional observation battery and locomotor activity) were scored, and the extracted brains were examined for neuropathological changes. Rats were treated orally with vehicle (5% Tween 20), PA extract (100, 200, and 400 mg/kg), or ibuprofen (IBF; 40 mg/kg) for 14 and 28 days before being subjected to novel object discrimination test. All groups were challenged with LPS (1 mg/kg) given intraperitoneally a day prior to the behavioral tests except for the negative control group. At the end of the behavioral tests, the levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, nitric oxide (NO), inducible nitric oxide synthase (iNOS), CD11b/c integrin expression, and synaptophysin immunoreactivity were determined in the brain tissues. Results: Gallic acid, ellagic acid, corilagin, geraniin, niranthin, phyllanthin, hypophyllanthin, phyltetralin, and isonirtetralin were identified in the PA extract. Subchronic administration of PA extract (100, 200, and 400 mg/kg) showed no abnormalities in neurobehavior and brain histology. PA extract administered at 200 and 400 mg/kg for 14 and 28 days effectively protected the rodents from LPS-induced memory impairment. Similar doses significantly (p < 0.05) decreased the release of proteins like TNF-α, IL-1β, and iNOS in the brain tissue. NO levels, CD11b/c integrin expression, and synaptophysin immunoreactivity were also reduced as compared with those in the LPS-challenged group. Conclusion: Pre-treatment with PA extract for 14 and 28 days was comparable with pre-treatment with IBF in prevention of memory impairment and alleviation of neuroinflammatory responses induced by LPS. Further studies are essential to identify the bioactive phytochemicals and the precise underlying mechanisms.
    Matched MeSH terms: Polysorbates
  20. How CW, Rasedee A, Abbasalipourkabir R
    IEEE Trans Nanobioscience, 2013 Jun;12(2):72-8.
    PMID: 23268387 DOI: 10.1109/TNB.2012.2232937
    Nanostructured lipid carriers (NLC) composed of solid and liquid lipids, and surfactants are potentially good colloidal drug carriers. Before NLC can be used as drug carriers, the cytotoxicity of their components must be ascertained. The cytotoxicity of solid lipids (trilaurin, palmitin, docosanoid acid, and hydrogenated palm oil [HPO]) and surfactants (Polysorbate 20, 80, and 85) were determined on BALB/c 3T3 cells. The HPO and Polysorbate 80 were least cytotoxic and used with olive oil in the formulation of NLC. The particle size, polydispersity index, zeta potential, specific surface area, and crystallinity index of the NLC were 61.14 nm, 0.461, -25.4 mV, and 49.07 m(2) and 27.12% respectively, while the melting point was 4.3 °C lower than of HPO. Unlike in serum-free, NLC incubated in fetal bovine serum-supplemented medium did not show particle growth, suggesting that serum proteins in medium inhibit nanoparticles aggregation. The study also showed that NLC was less toxic to BALB/c 3T3 cells than Polysorbate 80. Thus, NLC with olive oil, HPO, and Polysorbate 80 as components are potentially good drug carriers with minimal cytotoxicity on normal cells.
    Matched MeSH terms: Polysorbates/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links