Displaying publications 1 - 20 of 33 in total

Abstract:
Sort:
  1. Beh YH, Halim MS, Ariffin Z
    PeerJ, 2023;11:e16469.
    PMID: 38025677 DOI: 10.7717/peerj.16469
    BACKGROUND: This study aimed to evaluate the load capacity of maxillary central incisors with simulated flared root canal restored with different fiber-reinforced composite (FRC) post cemented with either self-adhesive or self-etch resin cement and its mode of fracture.

    METHODS: Sixty-five extracted maxillary incisors were decoronated, its canal was artificially flared and randomly categorized into group tFRC (tapered FRC post) (n = 22), mFRC (multi-FRC post) (n = 21), and DIS-FRC (direct individually shaped-FRC (DIS-FRC) post) (n = 22), which were further subdivided based on cementation resin. The posts were cemented and a standardized resin core was constructed. After thermocycling, the samples were loaded statically and the maximum load was recorded.

    RESULTS: The load capacity of the maxillary central incisor was influenced by the different FRC post system and not the resin cement (p = 0.289), and no significant interaction was found between them. Group mFRC (522.9N) yielded a significantly higher load capacity compared to DIS-FRC (421.1N). Overall, a 55% favorable fracture pattern was observed, and this was not statistically significant.

    CONCLUSION: Within the limitation of the study, it can be concluded that prefabricated FRC posts outperform DIS-FRC posts in terms of the load capacity of a maxillary central incisor with a simulated flared root canal. The cementation methods whether a self-adhesive or self-etch resin cement, was not demonstrated to influence the load capacity of a maxillary central incisor with a flared root canal. There were no significant differences between the favorable and non-favorable fracture when FRC post systems were used to restored a maxillary central incisor with a flared root canal.

    Matched MeSH terms: Resins, Plant
  2. Zainuddin NAMN, Razak NAA, Karim MSA, Osman NAA
    Sci Rep, 2023 Feb 15;13(1):2664.
    PMID: 36792914 DOI: 10.1038/s41598-022-21990-y
    Acrylic and epoxy are common types of resin used in fabricating sockets. Different types of resin will affect the internal surface of a laminated socket. This paper is to determine the best combination of ratio for epoxy and acrylic resin for a laminated prosthesis socket and to evaluate the surface profile analysis of different combinations of laminated prosthetic sockets for surface roughness. Transfemoral sockets were created using various resin-to-hardener ratios of 2:1, 3:1, 3:2, 2:3, and 1:3 for epoxy resin and 100:1, 100:2, 100:3, 100:4, and 100:5 for acrylic resin. Eight layers of stockinette consisting of four elastic stockinette and four Perlon stockinette were used. A sample with a size of 4 cm × 6 cm was cut out from the socket on the lateral side below the Greater Trochanter area. The Mitutoyo Sj-210 Surface Tester stylus was run through the sample and gave the Average Surface Roughness value (Ra), Root Mean Square Roughness value (Rq), and Ten-Point Mean Roughness value (Rz). Epoxy resin shows a smoother surface compared to acrylic resin with Ra values of is 0.766 µm, 0.9716 µm, 0.9847 µm and 1.5461 µm with 3:2, 3:1, 2:1 and 2:3 ratio respectively. However, for epoxy resin with ratio 1:3, the resin does not cure with the hardener. As for acrylic resin the Ra values are 1.0086 µm, 2.362 µm, 3.372 µm, 4.762 µm and 6.074 µm with 100: 1, 100:2, 100:5, 100:4 and 100:3 ratios, respectively. Epoxy resin is a better choice in fabricating a laminated socket considering the surface produced is smoother.
    Matched MeSH terms: Resins, Plant
  3. Md Jamil M, Jones F, Muhamad N, Makenan S
    Sains Malaysiana, 2015;44:843-852.
    A clear understanding on the fundamental mechanism in solid state self-healing resin system might significantly improve the optimization of healing performance. The focus of this study was to prove the diffusion (through thermal inter-diffusion) of a linear healing agent within the network matrix resin. The results had demonstrated that 45 to 21 percentage recoveries in fracture toughness (K1C) were observed within the third healing cycles of the healable resin. Based on the optical microscopy, scanning electron microscopy (SEM) and time-of-flight secondary ion mass spectrometry (ToF-SIM) analyst; the diffusion of healing agent was also demonstrated by the change in the morphology and chemical images of the healing agent on the fracture surface specimen, before and after healing process.
    Matched MeSH terms: Resins, Plant
  4. Chong, Saw Peng, Norellia Bahari, Mustapha Akil, Norazlina Noordin
    MyJurnal
    There are many methods to separate or purify the rebaudioside A compound from Stevia rebaudiana extract. However, the ion-exchange chromatography using macroporous resin is still the most popular among those methods. The separation of rebaudioside A from stevia crude extract by macroporous resin AB-8 was optimised in this adsorption separation study. This approach was applied to evaluate the influence of four factors such as the adsorption temperature, desorption time, elution solution ratio, and adsorption volume on rebaudioside A yield of the purified stevia extract. The results showed that the low polarity resin AB-8 is able to separate rebaudioside A from stevia extract with 0.601 in yield compared to the high polarity resin HPD 600 with 0.204 in yield used in Anvari and Khayati study. The best conditions for rebaudioside A separation by macroporous resin AB-8 were at 35°C of adsorption temperature, 30 min of desorption time, elution solution ratio 2:1, and 50 mL of adsorption volume.
    Matched MeSH terms: Resins, Plant
  5. Hashim YZ, Phirdaous A, Azura A
    Pharmacognosy Res, 2014 Jul;6(3):191-4.
    PMID: 25002797 DOI: 10.4103/0974-8490.132593
    Agarwood is a priceless non-timber forest product from Aquilaria species belonging to the Thymelaeaceae family. As a result of a defence mechanism to fend off pathogens, Aquilaria species develop agarwood or resin which can be used for incense, perfumery, and traditional medicines. Evidences from ethnopharmacological practices showed that Aquilaria spp. have been traditionally used in the Ayurvedic practice and Chinese medicine to treat various diseases particularly the inflammatory-associated diseases. There have been no reports on traditional use of agarwood towards cancer treatment. However, this is most probably due to the fact that cancer nomenclature is used in modern medicine to describe the diseases associated with unregulated cell growth in which inflammation and body pain are involved.
    Matched MeSH terms: Resins, Plant
  6. Haron MJ, Yunus WM
    PMID: 11460327
    A cerium-loaded poly(hydroxamic acid) chelating ion exchanger was used for fluoride ion removal from aqueous solution. The resin was effective in decreasing the fluoride concentration from 5 mM down to 0.001 mM in acidic pH between 3 and 6. The sorption followed a Langmuir model with a maximum capacity of 0.5 mmol/g. The removal is accomplished by an anion exchange mechanism. The rate constant for the sorption was found to be 9.6 x 10(-2) min-1. A column test shows that the fluoride ion was retained on the column until breakthrough point and the fluoride sorbed in the column can be eluted with 0.1 M NaOH. The column can be reused after being condition with hydrochloric acid at pH 4. The resin was tested and found to be effective for removal of fluoride from actual industrial wastewater.
    Matched MeSH terms: Resins, Plant/chemistry
  7. Chai, L.C., Fatimah, C.A., Norhisyam, M.S., Rozila, A., Nadzirah, A.S., Natasha, L.H.Y.
    MyJurnal
    The objective of the present study was to develop a rapid, reliable and yet inexpensive protocol for genomic DNA extraction from frozen and ethanol-preserved Asian green-lipped mussels for random amplified microsatelite (RAM) analysis. The procedure comprised of three major steps: (1) Tissue degradation by boiling in 6% Chelex 100 resin in TE buffer; (2) Protein digestion by Proteinase K; and (3) DNA precipitation by adding 2 volumes of cold absolute ethanol. The entire procedure can be completed within two hours. The resulting RAM profiles were clear and reproducible. Our results demonstrate that the combined protocol of Chelex 100-Proteinase K-ethanol precipitation is a powerful yet economical DNA isolation method for population genetic studies involving a large sample size.
    Matched MeSH terms: Resins, Plant
  8. Gonzalez, M.A.G., Razak, A.A.A., Khokhar, N.H.
    Ann Dent, 2010;17(1):25-34.
    MyJurnal
    The widespread use of aesthetic fillings has highlighted their advantages and disadvantages. One
    of the most troublesome features of earlier aesthetic materials was the difficulty of finishing the restoration surface to decrease adherence of food debris. The rougher the finished surface, the greater the possibility of bacterial accumulation and discolouration of restoration along the restoration margin with secondary caries formation. Aside from these clinical implications, patients are highly discerning and could detect roughness of 0.30 μm with their tongue. The aesthetic restoration should mimic the appearance of natural dentition and should have an enamel-like appearance. An increased demand for superior aesthetics from composite resin has increased the
    demand for more eff icient and simple polishing techniques. The development of nanocomposites has given a new perspective to the polishing of composite resins. Nanocomposites claim the advantage of improved gloss, optical characteristics and reduced wear. To date, results of in vitro studies have been equivocal regarding the most efficient and effective polishing system. There is variation in the effects of different finishing and polishing instruments on the surface roughness due to great diversity in size, shape, composition and distribution of the filler particles of composite resins, type of resin and a wide variety of finishing and polishing instruments. This paper will
    review the different factors that affect polishing techniques used in achieving the desired polish on
    composite resin restorations.
    Matched MeSH terms: Resins, Plant
  9. Abd Ghani Aizat, Paiman, Bawon, Lee, Seng Hua, Ashaari Zaidon
    MyJurnal
    In this study, the effects of addition of ammonium and aluminium-based hardeners into
    urea formaldehyde resin (UF) on the physico-mechanical properties and formaldehyde
    emission of the rubberwood particleboard were investigated. Four types of hardeners,
    namely ammonium chloride (AC), ammonium sulphate (AS), aluminium chloride (AlC)
    and aluminium sulphate (AlS), were added into UF resin. The acidity, gelation time,
    viscosity and free formaldehyde content of the UF/hardener mixtures were determined.
    Particleboard made with the UF/hardener mixtures were tested for physico-mechanical
    properties and formaldehyde emission. The pH values of the resin after addition of
    aluminium-based hardeners were higher and resulted in higher viscosity and shorter
    gelation time. Consequently, despite lower formaldehyde emission was recorded, the
    physico-mechanical properties of the resulted particleboard were inferior compared to
    that of ammonium-based hardeners. The best quality particleboard in terms of mechanical,
    physical and formaldehyde emission were obtained from the particleboard made with AS,
    followed by AC.
    Matched MeSH terms: Resins, Plant
  10. Khairul Nizam Mohd Ramli, Che Abd. Rahim Mohamed, Zaharuddin Ahmad
    Sains Malaysiana, 2007;36:9-13.
    Kajian ini dijalankan bagi mengenalpasti kepelbagaian nisbah 234U/238U yang wujud di dalam jumlah pepejal terampai (TSS) pada lapan stesen yang berbeza di Kuala Selangor, Selangor. Prosedur kajian ini melibatkan proses persampelan, pemendakan, resin penukaran anion, pemendakan elektrik dan teknik pengiraaan spektrometer alfa. Nisbah 234U/238U adalah paling tinggi di Stesen 8 (234U/238U = 2.98) dan Stesen 2 (234U/238U = 3.34) pada persampelan pertama. Manakala pada persampelan kedua julat nisbah 234U/238U adalah lebih luas iaitu antara 1.29 (Stesen 4) hingga 11.57 (Stesen 6). Ini disebabkan oleh berlakunya pergerakan 234U bersama-sama mikroorganisme di dalam fasa terampai dan berlaku proses penurunan U(VI) kepada U(IV) yang akan memendakkan uranium daripada air ke dalam sedimen.
    Matched MeSH terms: Resins, Plant
  11. Se YEN, Sahrim Armad, Rozaidi Rasid, Yew CH, Lee YS, Tarawneh MA
    Sains Malaysiana, 2014;43:1231-1237.
    Komposit epoksi berpengisi hibrid OMMT (organ-monmorilonit) dan getah asli terepoksida (ENR) telah dihasilkan dengan menggunakan kaedah penyemperitan berskru kembar pusingan searah. Ujian regangan ke atas sistem epoksi yang dihasilkan menunjukkan modulus Young bagi komposit hibrid epoksi adalah lebih tinggi daripada resin tanpa pengisi dan nilai modulus didapati meningkat dengan peningkatan komposisi OMMT dalam matriks (setinggi 40% peningkatan). Hal ini dipercayai adalah disebabkan oleh sifat tegar lapisan MMT. Sementara itu, peningkatan luas permukaan kawasan antara fasa ekoran kehadiran fasa penambah didapati telah mengurangkan tegasan alah dan terikan akhir komposit hibrid yang dihasilkan. Pemeriksaan mikrostruktur komposit hibrid epoksi melalui TEM dan xRD mendedahkan taburan OMMT dalam matriks epoksi dengan susunan interkalasi dan pengelupasan. Analisis DSC ke atas sampel yang termatang menunjukkan bahawa T g sistem komposit hibrid adalah rendah berbanding dengan sistem perduaan (ESB dan ESLE). Pengurangan ketumpatan taut silang disyaki merupakan punca penyusutan T g ini.
    Matched MeSH terms: Resins, Plant
  12. Nor Rabbi’atul ‘Adawiyah Norzali, Khairiah Badri, Mohd Zaki Nuawi
    Sains Malaysiana, 2011;40:1179-1186.
    Effects of aluminium hydroxide (ATH) addition on the properties of palm-based polyurethane composites were investigated. The hybrid composites were prepared by mixing 10 wt% of oil palm empty fruit bunch fiber (EFB) with ATH at varying amount of 2, 4 and 6 wt% of the overall mass of the resin. The compression stress and modulus gave the highest values of 575 and 2301 kPa, respectively at 2 wt% loading of ATH. The compression stress and modulus decreased drastically at 4 wt% (431 kPa and 1659 kPa, respectively) and further decreased at 6 wt% ATH (339 and 1468 kPa, respectively). However, the burning rate is inversely proportional to the loading percentage where the highest burning rate was observed at 2 wt% ATH. Sound absorption analysis indicated a large absorption coefficient at high frequency (4000 Hz) for all samples. The highest absorption coefficient was obtained from PU-EFB/ATH with 4 wt% ATH.
    Matched MeSH terms: Resins, Plant
  13. Pang AL, Azhar Abu Bakar, Hanafi Ismail
    Sains Malaysiana, 2018;47:571-580.
    The development of natural fiber polymer composites is increasing worldwide and in some applications, these composites
    are used at outdoor rendering them exposed to ultra-violet (UV) radiation. The paper investigates the degradation behavior
    of linear low density polyethylene/poly (vinyl alcohol)/kenaf (LLDPE/PVOH/KNF) composites after exposure to different
    natural weathering durations. The composites with KNF loadings of 10, 20 and 40 parts per hundred resin (phr) were
    exposed to natural weathering for 3 months and 6 months, respectively. The weathered composites were characterized by
    Fourier transform infrared (FTIR) spectroscopy, universal testing machine, field emission scanning electron microscopy
    (FESEM) and differential scanning calorimetry (DSC). The FTIR analysis showed an obvious carbonyl peak in composites
    after weathering as an evidence of oxidation. The weight loss percentage of composites increased with respect to exposure
    duration due to higher absorption of UV irradiation. The tensile properties of weathered composites were lower than
    that of control composites and these properties also decreased with increasing exposure duration. FESEM micrographs
    illustrated that composites with longer exposure duration suffered more surface damaged. The crystallinity percentage
    was found to increase with increasing exposure duration.
    Matched MeSH terms: Resins, Plant
  14. Sharifah Nabihah Syed Jaafar, Sarani Zakaria, Rozaidi Rasid, Nurul Ain Zulkifli, Ali Ahmadzadeh
    Proses pencecairan lignin soda telah dilakukan dengan menggunakan fenol dengan nisbah 1:3. Proses dilakukan selama 90 minit pada suhu 130oC dalam keadaan refluk. Hasil pencecairan iaitu pemfenolan lignin (PL) telah dianalisis dengan Spektrometer Inframerah Transformasi Fourier (FTIR), reometer dan analisis termogravimetri (TGA). Sampel yang disintesis dengan menggunakan asid hidroklorik sebagai mangkin memberikan keputusan yang terbaik. Analisis FTIR menunjukkan kehadiran kumpulan berfungsi yang signifikan seperti gelang aromatik, alkohol dan karbonil. Kesemua sampel PL mematuhi persamaan Arhenius dan bersifat pseudo-plastik. Peratus kehilangan berat sampel dan kadar penguraian sampel PL dipengaruhi oleh jenis mangkin yang digunakan. Sampel PL yang disintesis dikelaskan sebagai biopolimer resin fenolik.
    Matched MeSH terms: Resins, Plant
  15. Mohamed AM, Wong KH, Lee WJ, Marizan Nor M, Mohd Hussaini H, Rosli TI
    Saudi Dent J, 2018 Apr;30(2):142-150.
    PMID: 29628737 DOI: 10.1016/j.sdentj.2017.12.001
    Aim: The aim of the study was to evaluate the effect of resin infiltration on colour changes and surface roughness of artificial white spot lesions (WSLs) on maxillary and mandibular premolar.

    Materials and methods: Sixty (60) extracted sound Maxilla (Mx) and Mandibular (Mn) premolars were randomly divided into 2 groups (test and control). Artificial WSLs were produced on buccal surface of teeth and were immersed in artificial saliva for 8 weeks. Colour components (L∗, a∗, b∗) and surface roughness (Sa∗) were assessed on 40 teeth using colour difference meter RD-100 and Alicona® Infinite Focus profilometer respectively. The measurements were done at baseline (T1), directly after artificial WSLs (T2), after 24 hours immersed in saliva and application of resin (T3) and immersion in artificial saliva for 1 (T4), 2 (T5), 4 (T6), 6 (T7) and 8 (T8) weeks. SEM images analysis were carried out on 20 teeth in four time points.

    Results: The values of L∗ (lightness), b∗ (yellow/blue) and Sa∗ (surface roughness) are gradually reduced to the baseline value. Whereas, the value of a∗ gradually increased with distinct treatment time to achieve the baseline value. The higher value of L∗ and Sa∗, the whiter the lesion suggesting higher degree of enamel demineralization and surface roughness. Lower L∗ values suggest a masking colour effect.

    Conclusion: The material produced favorable esthetics on colour and the surface roughness of teeth at distinct treatment times. It is recommended to be used to improve WSL post orthodontic treatment.

    Matched MeSH terms: Resins, Plant
  16. Khairiah Yazid @ Khalid, Roslan Yahya, Nadira Kamarudini, Mohd. Zaid Abdullah, Mohd Ashhar Khalid, Abdul Aziz Mohamed
    MyJurnal
    Detection and analysis of resin is particularly significant since the commercial value of agarwood is related to the quantity of resins that are present. This article explores the potential of a scanning electron microscope in combination with new non-destructive 3D visualization technique, X-ray micro-computed tomography, as imaging tools to visualize micro-structure resin in agarwood. These techniques were used to compare two samples of agarwood chips: high grade and low grade. From the results, it can be concluded that a wood cell filled with resin deposit have a higher attenuation. It can be shown that the combination of scanning electron microscopy and micro-CT can offer high resolution images concerning the localization and structure of resin inside Agarwood. While the second allows the 3D investigation of internal structure of agarwood, the first technique can provide details 2D morphological information. These imaging techniques, although sophisticated can be used for standard development especially in grading of agarwoodlbr commercial activities.
    Matched MeSH terms: Resins, Plant
  17. Othman M, Ariff AB, Kapri MR, Rios-Solis L, Halim M
    Front Microbiol, 2018;9:2554.
    PMID: 30420842 DOI: 10.3389/fmicb.2018.02554
    Fermentation employing lactic acid bacteria (LAB) often suffers end-product inhibition which reduces the cell growth rate and the production of metabolite. The utility of adsorbent resins for in situ lactic acid removal to enhance the cultivation performance of probiotic, Pediococcus acidilactici was studied. Weak base anion-exchange resin, Amberlite IRA 67 gave the highest maximum uptake capacity of lactic acid based on Langmuir adsorption isotherm (0.996 g lactic acid/g wet resin) compared to the other tested anion-exchange resins (Amberlite IRA 410, Amberlite IRA 400, Duolite A7 and Bowex MSA). The application of Amberlite IRA 67 improved the growth of P. acidilactici about 67 times compared to the control fermentation without resin addition. Nevertheless, the in situ addition of dispersed resin in the culture created shear stress by resins collision and caused direct shear force to the cells. The growth of P. acidilactici in the integrated bioreactor-internal column system containing anion-exchange resin was further improved by 1.4 times over that obtained in the bioreactor containing dispersed resin. The improvement of the P. acidilactici growth indicated that extractive fermentation using solid phase is an effective approach for reducing by-product inhibition and increasing product titer.
    Matched MeSH terms: Resins, Plant
  18. Rohyiza Ba’an, Zalina Laili, Mohd Abdul Wahab Yusof, Muhamat Omar
    MyJurnal
    Feasibility studies on the vitrification of spent ion exchange resins combined with glass cullet powder have been conducted using a High Temperature Test Furnace. Bottle glass cullet powder was used as matrix material to convert the ash of the spent resins into a glass. Vitrificat ion of spent ion exchange resins presents a reasonable disposal alternative, because of its inherent organic destruction capabilities, the volume reduction levels obtainable, and the durable product that it yields. In this study, the spent ion exchange resin from the PUSPATI TRIGA reactor of Nuclear Malaysia was combusted in a lab scale combustor and the resulting ash was vitrified together with glass cullet powder in a high temperature furnace to produce a stable spent resin ash embedded in glass. The factors affecting this immobilized waste, such as thermal stability, radiological stability and leachability have all been investigated. However, the outcome of these tests, which include the radionuclide activity concentration in the slag, the optimum conditioning temperature - in relation with volume reduction during vitrification - and the volume mixing ratio of matrix material were reported. It was found that the radionuclides present in spent resins were 54 Mn, 60 Co and 152Eu. The elementary chemical composition (carbon, hydrogen, nitrogen and sulphur) of spent resins was 27.6% C, 5.68% H, 2.04% N and 4.20% S, respectively. The maximum calorific value of spent resins was 1735 kJ/kg. The average activity concentrations of 54 Mn and 60Co in ash at 200oC were 9,411 ± 243 Bq/Kg and 12,637± 201 Bq/Kg. flue gases containing CO2, CO, SO2 and NO started to be emitted above 200oC. The optimum conditioning temperature was also the highest tested, i.e. 900oC in 45 minutes, and the best mixing ratio ash to matrix material was also the highest, ie 1:9. Finally, the leaching analysis of slag at 900oC in 45 minutes showed that the leaching activity of 60Co was below 0.5 Bq/mL.
    Matched MeSH terms: Resins, Plant
  19. Ho YC, Norli I, Alkarkhi AF, Morad N
    J Water Health, 2015 Jun;13(2):489-99.
    PMID: 26042980 DOI: 10.2166/wh.2014.100
    In view of green developments in water treatment, plant-based flocculants have become the focus due to their safety, degradation and renewable properties. In addition, cost and energy-saving processes are preferable. In this study, malva nut gum (MNG), a new plant-based flocculant, and its composite with Fe in water treatment using single mode mixing are demonstrated. The result presents a simplified extraction of the MNG process. MNG has a high molecular weight of 2.3 × 10⁵ kDa and a high negative charge of -58.7 mV. From the results, it is a strong anionic flocculant. Moreover, it is observed to have a branch-like surface structure. Therefore, it conforms to the surface of particles well and exhibits good performance in water treatment. In water treatment, the Fe-MNG composite treats water at pH 3.01 and requires a low concentration of Fe and MNG of 0.08 and 0.06 mg/L, respectively, when added to the system. It is concluded that for a single-stage flocculation process, physico-chemical properties such as molecular weight, charge of polymer, surface morphology, pH, concentration of cation and concentration of biopolymeric flocculant affect the flocculating performance.
    Matched MeSH terms: Resins, Plant/chemistry*
  20. Asif M, Yehya AHS, Dahham SS, Mohamed SK, Shafaei A, Ezzat MO, et al.
    Biomed Pharmacother, 2019 Jan;109:1620-1629.
    PMID: 30551416 DOI: 10.1016/j.biopha.2018.10.127
    Proven the great potential of essential oils as anticancer agents, the current study intended to explore molecular mechanisms responsible for in vitro and in vivo anti-colon cancer efficacy of essential oil containing oleo-gum resin extract (RH) of Mesua ferrea. MTT cell viability studies showed that RH had broad spectrum cytotoxic activities. However, it induced more profound growth inhibitory effects towards two human colon cancer cell lines i.e., HCT 116 and LIM1215 with an IC50 values of 17.38 ± 0.92 and 18.86 ± 0.80 μg/mL respectively. RH induced relatively less toxicity in normal human colon fibroblasts i.e., CCD-18co. Cell death studies conducted, revealed that RH induced characteristic morphological and biochemical changes in HCT 116. At protein level it down-regulated expression of multiple pro-survival proteins i.e., survivin, xIAP, HSP27, HSP60 and HSP70 and up-regulated expression of ROS, caspase-3/7 and TRAIL-R2 in HCT 116. Furthermore, significant reduction in invasion, migration and colony formation potential was observed in HCT 116 treated with RH. Chemical characterization by GC-MS and HPLC methods revealed isoledene and elemene as one the major compounds. RH showed potent antitumor activity in xenograft model. Overall, these findings suggest that RH holds a promise to be further studied for cheap anti-colon cancer naturaceutical development.
    Matched MeSH terms: Resins, Plant/isolation & purification; Resins, Plant/therapeutic use*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links