Displaying publications 1 - 20 of 82 in total

Abstract:
Sort:
  1. Liu X, Lai X, Zhang S, Huang X, Lan Q, Li Y, et al.
    J Agric Food Chem, 2012 Dec 26;60(51):12477-81.
    PMID: 23214475 DOI: 10.1021/jf303533p
    Edible bird's nest (EBN) is made of the swiftlets' saliva, which has attracted rather more attention owing to its nutritious and medical properties. Although protein constitutes the main composition and plays an important role in EBN, few studies have focused on the proteomic profile of EBN. The purpose of this study was to produce a proteomic map and clarify common EBN proteins. Liquid-phase isoelectric focusing (LIEF) was combined with two-dimensional electrophoresis (2-DE) for comprehensive analysis of EBN proteins. From 20 to 100 protein spots were detected on 2-DE maps of EBN samples from 15 different sources. The proteins were mainly distributed in four taxa (A, B, C, and D) according to their molecular mass. Taxa A and D both contained common proteins and proteins that may be considered another characteristic of EBN. Taxon A was identified using MALDI-TOF-TOF/MS and found to be homologous to acidic mammalian chitinase-like ( Meleagris gallopavo ), which is in glycosyl hydrolase family 18.
    Matched MeSH terms: Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
  2. Rahman RN, Salleh AB, Basri M, Wong CF
    Int J Mol Sci, 2011;12(9):5797-814.
    PMID: 22016627 DOI: 10.3390/ijms12095797
    Recombinant elastase strain K overexpressed from E. coli KRX/pCon2(3) was purified to homogeneity by a combination of hydrophobic interaction chromatography and ion exchange chromatography, with a final yield of 48% and a 25-fold increase in specific activity. The purified protein had exhibited a first ever reported homodimer size of 65 kDa by SDS-PAGE and MALDI-TOF, a size which is totally distinct from that of typically reported 33 kDa monomer from P. aeruginosa. The organic solvent stability experiment had demonstrated a stability pattern which completely opposed the rules laid out in previous reports in which activity stability and enhancement were observed in hydrophilic organic solvents such as DMSO, methanol, ethanol and 1-propanol. The high stability and enhancement of the enzyme in hydrophilic solvents were explained from the view of alteration in secondary structures. Elastinolytic activation and stability were observed in 25 and 50% of methanol, respectively, despite slight reduction in α-helical structure caused upon the addition of the solvent. Further characterization experiments had postulated great stability and enhancement of elastase strain K in broad range of temperatures, pHs, metal ions, surfactants, denaturing agents and substrate specificity, indicating its potential application in detergent formulation.
    Matched MeSH terms: Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
  3. Heng EC, Karsani SA, Abdul Rahman M, Abdul Hamid NA, Hamid Z, Wan Ngah WZ
    Eur J Nutr, 2013 Oct;52(7):1811-20.
    PMID: 23287846 DOI: 10.1007/s00394-012-0485-3
    PURPOSE: Tocotrienol possess beneficial effects not exhibited by tocopherol. In vitro studies using animal models have suggested that these effects are caused via modulation of gene and protein expression. However, human supplementation studies using tocotrienol-rich isomers are limited. This study aims to identify plasma proteins that changed in expression following tocotrienol-rich fraction (TRF) supplementation within two different age groups.

    METHODS: Subjects were divided into two age groups-32 ± 2 (young) and 52 ± 2 (old) years old. Four subjects from each group were assigned with TRF (78% tocotrienol and 22% tocopherol, 150 mg/day) or placebo capsules for 6 months. Fasting plasma were obtained at 0, 3, and 6 months. Plasma tocopherol and tocotrienol levels were determined. Plasma proteome was resolved by 2DE, and differentially expressed proteins identified by MS. The expressions of three proteins were validated by Western blotting.

    RESULTS: Six months of TRF supplementation significantly increased plasma levels of tocopherols and tocotrienols. Proteins identified as being differentially expressed were related to cholesterol homeostasis, acute-phase response, protease inhibitor, and immune response. The expressions of Apolipoprotein A-I precursor, Apolipoprotein E precursor, and C-reactive protein precursor were validated. The old groups showed more proteins changing in expression.

    CONCLUSIONS: TRF appears to not only affect plasma levels of tocopherols and tocotrienols, but also the levels of plasma proteins. The identity of these proteins may provide insights into how TRF exerts its beneficial effects. They may also be potentially developed into biomarkers for the study of the effects and effectiveness of TRF supplementation.

    Matched MeSH terms: Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
  4. Abdul Rahman Sazli F, Jubri Z, Abdul Rahman M, Karsani SA, Md Top AG, Wan Ngah WZ
    PMID: 25886747 DOI: 10.1186/s12906-015-0590-y
    To determine the antiproliferative effect of gamma-tocotrienol (GTT) treatment on differential protein expression in HepG2 cells.
    Matched MeSH terms: Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
  5. Vellasamy KM, Mariappan V, Hashim OH, Vadivelu J
    Electrophoresis, 2011 Jan;32(2):310-20.
    PMID: 21254130 DOI: 10.1002/elps.201000355
    Bacterial secreted proteins are known to be involved in virulence and may mediate important host-pathogen interactions. In this study, when the stationary phase culture supernatant of Burkholderia pseudomallei was subjected to 2-DE, 113 protein spots were detected. Fifty-four of the secreted proteins, which included metabolic enzymes, transcription/translation regulators, potential virulence factors, chaperones, transport regulators, and hypothetical proteins, were identified using MS and database search. Twelve of these proteins were apparently reactive to antisera of mice that were immunised with B. pseudomallei secreted proteins. These proteins might be excellent candidates to be used as diagnostic markers or putative candidate vaccines against B. pseudomallei infections.
    Matched MeSH terms: Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
  6. Mariappan V, Vellasamy KM, Vadivelu J
    Sci Rep, 2017 08 21;7(1):9015.
    PMID: 28827633 DOI: 10.1038/s41598-017-09373-0
    Little is known about the evolution, adaptation and pathogenesis of Burkholderia pseudomallei within host during acute melioidosis infection. Melioidosis is a potential life threatening disease contracted through inhalation, ingestion, inoculation or direct entry of the organism into the blood stream via wounds or skin abrasions from contaminated soil and water. Environmental B. pseudomallei strain (Bp MARAN ), isolated during a melioidosis outbreak in Pahang, Malaysia was injected intra-peritoneally into a mouse and passaged strain was recovered from spleen (Bpmouse-adapted). A gel-based comparative proteomics profiling approach was used, to map and identify differentially expressed proteins (fold-change ≥ 2; p-value ≤ 0.05) between the strains. A total of 730 and 685 spots were visualised in the Bp MARAN and Bpmouse-adapted strains, respectively. Of the 730 spots (Bp MARAN as reference gel), 87 spots were differentially regulated (44 up- and 43 down-regulated). The identified proteins were classified as proteins related to metabolism, stress response, virulence, signal transduction, or adhesion. In comparison, it was found that those proteins related to adhesins, virulence factors and stress- response were up-regulated and could possibly explain the adaptation of the bacteria in the host. Investigating the differentially expressed proteins may provide better perspective of bacterial factors which aid survivability of B. pseudomallei in host.
    Matched MeSH terms: Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
  7. Tang KF, Abdullah MP, Yusoff K, Tan WS
    J Med Chem, 2007 Nov 15;50(23):5620-6.
    PMID: 17918821
    The core protein (HBcAg) of hepatitis B virus (HBV) has been shown to interact with the large surface antigen during HBV morphogenesis, and these interactions can be blocked by small peptides selected from either linear or constrained phage display peptide libraries. The association of HBcAg with peptide inhibitors was quantitatively evaluated by isothermal titration calorimetry. The thermodynamic data show that the interaction between HBcAg and peptide MHRSLLGRMKGA is enthalpy-driven and occurs at a 3:1 stoichiometry and dissociation constant (Kd) value of 79.4 muM. However, peptide WSFFSNI displays a higher binding affinity for HBcAg with a Kd value of 18.5 muM when compared to peptide MHRSLLGRMKGA. A combinatorial approach using chemical cross-linking and surface-enhanced laser desorption/ionization-time-of-flight-mass spectrometry shows that the Lys of peptide MHRSLLGRMKGA interacted either with D64, E77, or D78 of HBcAg.
    Matched MeSH terms: Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
  8. Yap HY, Fung SY, Ng ST, Tan CS, Tan NH
    Int J Med Sci, 2015;12(1):23-31.
    PMID: 25552915 DOI: 10.7150/ijms.10019
    Lignosus rhinocerotis (Cooke) Ryvarden (Polyporales, Basidiomycota), also known as the tiger milk mushroom, has received much interest in recent years owing to its wide-range ethnobotanical uses and the recent success in its domestication. The sclerotium is the part with medicinal value. Using two-dimensional gel electrophoresis coupled with mass spectrometry analysis, a total of 16 non-redundant, major proteins were identified with high confidence level in L. rhinocerotis sclerotium based on its genome as custom mapping database. Some of these proteins, such as the putative lectins, immunomodulatory proteins, superoxide dismutase, and aegerolysin may have pharmaceutical potential; while others are involved in nutrient mobilization and the protective antioxidant mechanism in the sclerotium. The findings from this study provide a molecular basis for future research on potential pharmacologically active proteins of L. rhinocerotis.
    Matched MeSH terms: Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
  9. Mu AK, Lim BK, Hashim OH, Shuib AS
    Int J Mol Sci, 2012;13(8):9489-501.
    PMID: 22949810 DOI: 10.3390/ijms13089489
    Cancers can cause some proteins to be aberrantly excreted or released in the urine, which can be used as biomarkers. To screen for potential biomarkers for endometrial cancer (ECa), the urinary proteins from patients who were newly diagnosed with early stage ECa and untreated controls were separated using two-dimensional gel electrophoresis (2-DE) and followed by image analysis. The altered levels of zinc alpha-2 glycoprotein, alpha 1-acid glycoprotein, and CD59 were detected in the patients compared to the controls. In addition, the urine of the ECa patients was also found to contain relatively lower levels of a fragment of nebulin when the 2-DE separated urinary proteins were probed using champedak galactose binding (CGB) lectin. The different levels of the nebulin fragment were further validated by subjecting the urinary protein samples to CGB lectin affinity chromatography and analysis of the bound fractions by LC-MS/MS. Our data is suggestive of the potential use of the differentially expressed urinary proteins as biomarkers for ECa although this requires further extensive validation on clinically representative populations.
    Matched MeSH terms: Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
  10. Mu AK, Lim BK, Aminudin N, Hashim OH, Shuib AS
    Arch Physiol Biochem, 2016 Jul;122(3):111-6.
    PMID: 26849673 DOI: 10.3109/13813455.2016.1151441
    Endometrial (ECa), ovarian (OCa) and cervical (CCa) cancers are among 10 of the most common cancers affecting women worldwide. Cancers are known to cause some proteins to be differentially glycosylated or aberrantly excreted in the urine, which can be used as biomarkers. Since ECa, OCa and CCa are difficult to diagnose at the early stage, the aim of the present study was to identify a panel of new biomarkers for early detection of the cancers using surface-enhanced laser desorption/ionization-time-of-flight (SELDI-TOF) technology. Identification of early biomarkers that are specific and efficient can increase the survival rate of the patients.
    Matched MeSH terms: Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
  11. Ibadallah BX, Abdullah N, Shuib AS
    Planta Med, 2015 Jan;81(2):123-9.
    PMID: 25590365 DOI: 10.1055/s-0034-1383409
    Pleurotus pulmonarius (grey oyster mushroom) has been acknowledged as a recuperative agent for many diseases in addition to its recognition as a nutritious provision. We performed a study on P. pulmonarius mycelium for an antihypertensive effect via the angiotensin-converting enzyme inhibitory activity. The preliminary assay on the mycelial water extract demonstrated that the angiotensin-converting enzyme inhibitory activity had an IC50 value of 720 µg/mL. Further protein purifications via ammonium sulphate precipitation and RP-HPLC resulted in 60× stronger angiotensin-converting enzyme inhibitory activity than that of the mycelial water extract (IC50 = 12 µg/mL). Protein identification and characterisation by MALDI-TOF/TOF, later corroborated by LC-MS/MS, indicated three proteins that are responsible for the blood pressure lowering effects via different mechanisms: serine proteinase inhibitor-like protein, nitrite reductase-like protein, and DEAD/DEAH box RNA helicase-like protein.
    Matched MeSH terms: Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
  12. Tan WC, Jaganath IB, Manikam R, Sekaran SD
    Int J Med Sci, 2013;10(13):1817-29.
    PMID: 24324358 DOI: 10.7150/ijms.6902
    Nucleoside analogues such as acyclovir are effective antiviral drugs against herpes simplex virus infections since its introduction. However, with the emergence of acyclovir-resistant HSV strains particularly in immunocompromised patients, there is a need to develop an alternative antiherpetic drug and plants could be the potential lead. In this study, the antiviral activity of the aqueous extract of four Phyllanthus species were evaluated against herpes simplex virus type-1 (HSV-1) and HSV-2 in Vero cells by quantitative PCR. The protein expressions of untreated and treated infected Vero cells were studied by 2D-gel electrophoresis and Western blot. This is the first study that reported the antiviral activity of P. watsonii. P. urinaria was shown to demonstrate the strongest antiviral activity against HSV-1 and HSV-2, with SI >33.6. Time-of-addition studies suggested that the extract may act against the early infection stage and the replication stage. Protein expression studies indicated that cellular proteins that are involved in maintaining cytoskeletal structure could be potential target for development of antiviral drugs. Preliminary findings indicated that P. urinaria demonstrated potent inhibitory activity against HSV. Hence, further studies such as in vivo evaluation are required for the development of effective antiherpetic drug.
    Matched MeSH terms: Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
  13. Huq, N.L., DeAngelis, A., Rahim, Z.H.A., Ung, M., Lucas, J., Cross, K.J., et al.
    Ann Dent, 2004;11(1):-.
    MyJurnal
    The aim was to examine the protein profiles of whole and parotid saliva using Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE) and MALDI-TOF mass spectrometry. The banding patterns of proteins exhibited by the unstimulated whole saliva samples on the gel remained quite constant but the intensity of the protein bands were slightly different from one sample to another. Comparison of the protein profiles of unstimulated whole saliva and stimulated parotid saliva showed almost similar banding pattern. The exception is the presence of a pink protein band in the 65-67 kD region in the stimulated parotid saliva samples which was also observed in the unstimulated whole saliva sample contributed by a cerebral palsy patient. Analysis of the saliva samples using MALDI-TOF mass spectrometry also revealed that the stimulated parotid saliva samples exhibited some peaks that were in the same region as those for the unstimulated whole saliva sample of the cerebral palsy subject. This may imply that there is ineffective control of the parotid secretion in cerebral palsy subject under unstimulated condition. The SDS-PAGE and MALDI-TOF analyses may provide more information on the profiles of the salivary proteins which could be beneficial in the diagnosis of salivary gland dysfunction.
    Matched MeSH terms: Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
  14. Tan WM, Lau SF, Ajat M, Mansor R, Abd Rani PAM, Rahmad NB
    Top Companion Anim Med, 2017 Mar;32(1):24-27.
    PMID: 28750786 DOI: 10.1053/j.tcam.2017.05.002
    This case study is to report the proteins detected by proteomic analysis of synovial fluid from a dog diagnosed with idiopathic immune-mediated polyarthritis, and to compare it with healthy dogs. Synovial fluid was collected via arthrocentesis from a dog diagnosed with immune-mediated polyarthritis. Protein precipitation was performed on the synovial fluid, followed by isoelectric focusing and 2-dimensional gel electrophoresis. The spots on the 2-dimensional gels were analyzed using MALDI-TOF/MS. The results were then analyzed against the MASCOT database. The results from the proteomic analysis revealed an abundance of several types of immunoglobulins together with the presence of complement C4b-binding protein alpha chain. Actin and keratin were also among the proteins detected. Proteomic studies, facilitate a better understanding of the different levels of proteins expressed during disease activity. Potential disease biomarkers can aid in the diagnosis of disease, as well as help in monitoring treatment efficacy and providing prognosis for the patient.
    Matched MeSH terms: Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/veterinary
  15. Wayah SB, Philip K
    Front Microbiol, 2018;9:564.
    PMID: 29636737 DOI: 10.3389/fmicb.2018.00564
    Micrococcus luteus, Listeria monocytogenes, and Bacillus cereus are major food-borne pathogenic and spoilage bacteria. Emergence of antibiotic resistance and consumer demand for foods containing less of chemical preservatives led to a search for natural antimicrobials. A study aimed at characterizing, investigating the mechanism of action and regulation of biosynthesis and evaluating the biopreservative potential of pentocin from Lactobacillus pentosus CS2 was conducted. Pentocin MQ1 is a novel bacteriocin isolated from L. pentosus CS2 of coconut shake origin. The purification strategy involved adsorption-desorption of bacteriocin followed by RP-HPLC. It has a molecular weight of 2110.672 Da as determined by MALDI-TOF mass spectrometry and a molar extinction value of 298.82 M-1 cm-1. Pentocin MQ1 is not plasmid-borne and its biosynthesis is regulated by a quorum sensing mechanism. It has a broad spectrum of antibacterial activity, exhibited high chemical, thermal and pH stability but proved sensitive to proteolytic enzymes. It is potent against M. luteus, B. cereus, and L. monocytogenes at micromolar concentrations. It is quick-acting and exhibited a bactericidal mode of action against its targets. Target killing was mediated by pore formation. We report for the first time membrane permeabilization as a mechanism of action of the pentocin from the study against Gram-positive bacteria. Pentocin MQ1 is a cell wall-associated bacteriocin. Application of pentocin MQ1 improved the microbiological quality and extended the shelf life of fresh banana. This is the first report on the biopreservation of banana using bacteriocin. These findings place pentocin MQ1 as a potential biopreservative for further evaluation in food and medical applications.
    Matched MeSH terms: Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
  16. Heskes AM, Sundram TCM, Boughton BA, Jensen NB, Hansen NL, Crocoll C, et al.
    Plant J, 2018 03;93(5):943-958.
    PMID: 29315936 DOI: 10.1111/tpj.13822
    Vitex agnus-castus L. (Lamiaceae) is a medicinal plant historically used throughout the Mediterranean region to treat menstrual cycle disorders, and is still used today as a clinically effective treatment for premenstrual syndrome. The pharmaceutical activity of the plant extract is linked to its ability to lower prolactin levels. This feature has been attributed to the presence of dopaminergic diterpenoids that can bind to dopamine receptors in the pituitary gland. Phytochemical analyses of V. agnus-castus show that it contains an enormous array of structurally related diterpenoids and, as such, holds potential as a rich source of new dopaminergic drugs. The present work investigated the localisation and biosynthesis of diterpenoids in V. agnus-castus. With the assistance of matrix-assisted laser desorption ionisation-mass spectrometry imaging (MALDI-MSI), diterpenoids were localised to trichomes on the surface of fruit and leaves. Analysis of a trichome-specific transcriptome database, coupled with expression studies, identified seven candidate genes involved in diterpenoid biosynthesis: three class II diterpene synthases (diTPSs); three class I diTPSs; and a cytochrome P450 (CYP). Combinatorial assays of the diTPSs resulted in the formation of a range of different diterpenes that can account for several of the backbones of bioactive diterpenoids observed in V. agnus-castus. The identified CYP, VacCYP76BK1, was found to catalyse 16-hydroxylation of the diol-diterpene, peregrinol, to labd-13Z-ene-9,15,16-triol when expressed in Saccharomyces cerevisiae. Notably, this product is a potential intermediate in the biosynthetic pathway towards bioactive furan- and lactone-containing diterpenoids that are present in this species.
    Matched MeSH terms: Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
  17. Lim FT, Ogawa S, Smith AI, Parhar IS
    Zebrafish, 2017 Feb;14(1):10-22.
    PMID: 27797681 DOI: 10.1089/zeb.2016.1319
    The central nervous system (CNS) of the non-mammalian vertebrates has better neuroregenerative capability as compared with the mammalian CNS. Regeneration of habenula was observed 40 days after damage in zebrafish. During the early stage of regeneration, we found a significant increase of apoptotic cells on day-1 post-damage and of proliferative cells on day-3 post-damage. To identify the molecular factor(s) involved in the early stages of neuroregeneration, differentially expressed proteins during sham, 20- and 40-h post-habenula damage were investigated by proteomic approach by using two-dimensional differential gel electrophoresis (2D-DIGE) coupled with Matrix-Assisted Laser Desorption/Ionization-Time-of-Flight (MALDI-ToF) and tandem mass spectrometry. Protein profiles revealed 17 differentially (>1.5-fold) expressed proteins: 10 upregulated, 4 downregulated, 2 proteins were found to be downregulated at the early stage but upregulated at a later stage, and 1 protein was found to be upregulated at 2 different time points. All proteins identified can be summarized under few molecular processes involved in the early stages of neuroregeneration in zebrafish CNS: apoptosis regulation (Wnt inhibitory factor 1 [WIF1]), neuroprotection (metallothionein), cell proliferation (Spred2, ependymin, Lhx1, and Wnts), differentiation (Spred2, Lhx9, and Wnts), and morphogenesis (cytoplasmic actins and draculin). These protein profiling results suggest that drastic molecular changes occur in the neuroregenerative process during this period, which includes cell proliferation, differentiation, and protection.
    Matched MeSH terms: Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
  18. Everest-Dass AV, Briggs MT, Kaur G, Oehler MK, Hoffmann P, Packer NH
    Mol Cell Proteomics, 2016 09;15(9):3003-16.
    PMID: 27412689 DOI: 10.1074/mcp.M116.059816
    Ovarian cancer is a fatal gynaecological malignancy in adult women with a five-year overall survival rate of only 30%. Glycomic and glycoproteomic profiling studies have reported extensive protein glycosylation pattern alterations in ovarian cancer. Therefore, spatio-temporal investigation of these glycosylation changes may unearth tissue-specific changes that occur in the development and progression of ovarian cancer. A novel method for investigating tissue-specific N-linked glycans is using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) on formalin-fixed paraffin-embedded (FFPE) tissue sections that can spatially profile N-glycan compositions released from proteins in tissue-specific regions. In this study, tissue regions of interest (e.g. tumor, stroma, adipose tissue and necrotic areas) were isolated from FFPE tissue sections of advanced serous ovarian cancers (n = 3). PGC-LC-ESI-MS/MS and MALDI-MSI were used as complementary techniques to firstly generate structural information on the tissue-specific glycans in order to then obtain high resolution images of the glycan structure distribution in ovarian cancer tissue. The N-linked glycan repertoires carried by the proteins in these tissue regions were structurally characterized for the first time in FFPE ovarian cancer tissue regions, using enzymatic peptide-N-glycosidase F (PNGase F) release of N-glycans. The released glycans were analyzed by porous graphitized carbon liquid chromatography (PGC-LC) and collision induced electrospray negative mode MS fragmentation analysis. The N-glycan profiles identified by this analysis were then used to determine the location and distribution of each N-glycan on FFPE ovarian cancer sections that were treated with PNGase F using high resolution MALDI-MSI. A tissue-specific distribution of N-glycan structures identified particular regions of the ovarian cancer sections. For example, high mannose glycans were predominantly expressed in the tumor tissue region whereas complex/hybrid N-glycans were significantly abundant in the intervening stroma. Therefore, tumor and non-tumor tissue regions were clearly demarcated solely on their N-glycan structure distributions.
    Matched MeSH terms: Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods*
  19. Ng YL, Olivos-García A, Lim TK, Noordin R, Lin Q, Othman N
    Am J Trop Med Hyg, 2018 12;99(6):1518-1529.
    PMID: 30298805 DOI: 10.4269/ajtmh.18-0415
    Entamoeba histolytica is a protozoan parasite that causes amebiasis and poses a significant health risk for populations in endemic areas. The molecular mechanisms involved in the pathogenesis and regulation of the parasite are not well characterized. We aimed to identify and quantify the differentially abundant membrane proteins by comparing the membrane proteins of virulent and avirulent variants of E. histolytica HM-1:IMSS, and to investigate the potential associations among the differentially abundant membrane proteins. We performed quantitative proteomics analysis using isobaric tags for relative and absolute quantitation labeling, in combination with two mass spectrometry instruments, that is, nano-liquid chromatography (nanoLC)-matrix-assisted laser desorption/ionization-mass spectrometry/mass spectrometry and nanoLC-electrospray ionization tandem mass spectrometry. Overall, 37 membrane proteins were found to be differentially abundant, whereby 19 and 18 membrane proteins of the virulent variant of E. histolytica increased and decreased in abundance, respectively. Proteins that were differentially abundant include Rho family GTPase, calreticulin, a 70-kDa heat shock protein, and hypothetical proteins. Analysis by Protein ANalysis THrough Evolutionary Relationships database revealed that the differentially abundant membrane proteins were mainly involved in catalytic activities (29.7%) and metabolic processes (32.4%). Differentially abundant membrane proteins that were found to be involved mainly in the catalytic activities and the metabolic processes were highlighted together with their putative roles in relation to the virulence. Further investigations should be performed to elucidate the roles of these proteins in E. histolytica pathogenesis.
    Matched MeSH terms: Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
  20. Noordin R, Othman N
    Malays J Med Sci, 2013 Mar;20(2):1-2.
    PMID: 23983570
    "Proteomics" refers to the systematic analysis of proteins. It complements other "omics" technologies such as genomics and transcriptomics in elucidating the identity of proteins of an organism, and understanding their functions. Proteomics is used in many areas of research such as discovery of markers for diagnosis and vaccine candidates, understanding pathogenic mechanisms, in the study of expression patterns at different time points and in response to different stimuli, and in elucidating functional protein networks. Proteomics analysis involves sample preparation, protein separation, and protein identification. The 'heart' of current proteomics is mass-spectrometry, with LC-MS/MS and MALDI-TOF/TOF being commonly used equipment. However, the high costs of the equipment, software, databases, and the need for skilled personnel limit the wide utilization of this technology in the less developed countries. Therefore, there need to be sharing of facilities, better networking and collaborations among our scientists and laboratories to take advantage of this powerful technology.
    Matched MeSH terms: Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links