Displaying publications 1 - 20 of 33 in total

Abstract:
Sort:
  1. Yunus J, Salman M, Lintin GBR, Muchtar M, Sari DCR, Arfian N, et al.
    Med J Malaysia, 2020 05;75(Suppl 1):5-9.
    PMID: 32471962
    BACKGROUND: Kidney fibrosis, characterised by tubulointerstitial fibrosis, is a histological landmark of chronic kidney disease. The body attempts to compensate for progressive detrimental process of kidney fibrosis by producing antifibrotic substances, such as bone morphogenetic protein-7 (BMP-7) and hepatocyte growth factor (HGF). Chlorogenic acid is known to have renoprotective and antifibrotic properties. This study aims to evaluate the effect of chlorogenic acid on unilateral ureteral obstruction (UUO)-induced kidney fibrosis mice model.

    METHODS: This study was a quasi-experimental with posttestonly control group design. Twenty-five adult male Swiss Webster mice were randomly divided into five groups: shamoperated group (SO), UUO-control day-7 (U7), UUO-control day-14 (U14), UUO-chlorogenic acid day-7 (UC7), and UUOchlorogenic acid day 14 (UC14). Myofibroblasts were identified by immunohistochemical staining of alphasmooth muscle actin (α-SMA) while collagen fibers were identified by Sirius Red staining. Both data were presented as area fraction. BMP-7 and HGF mRNA expressions were assessed by reverse transcription PCR (RT-PCR). Data were quantified using ImageJ software.

    RESULTS: UUO-control groups (U7 and U14) showed higher α- SMA-immunopositive (6.52±1.33, 18.24±1.39 vs. 0.22±0.01; p<0.05) and Sirius Red-positive area fractions (6.61±0.8, 12.98±2.31 vs. 0.62±0.10; p<0.05), lower BMP-7 (1.02±0.47, 1.18±0.65 vs. 2.09±0.87; p<0.05) and HGF mRNA expressions (1.06±0.31, 0.89±0.14 vs. 1.88±0.81; p<0.05) compared to SO group. UUO-chlorogenic acid groups (UC7 and UC14) showed lower α-SMA-immunopositive (1.24±0.37, 4.58±0.61; p<0.05) and Sirius Red-positive area fractions (4.76±1.03, 3.72±0.54; p<0.05), higher BMP-7 (1.84±0.49, 2.19±0.43; p<0.05) and HGF (1.58±0.38; p>0.05, 1.84±0.42; p<0.05) mRNA expressions compared to UUO-control groups. UUOchlorogenic acid groups showed BMP-7 and HGF mRNA expressions that were not significantly different from the SO group.

    CONCLUSION: Chlorogenic acid administration prevents kidney fibrosis in UUO mice model through modulating antifibrotic pathway.

    Matched MeSH terms: Chlorogenic Acid/administration & dosage; Chlorogenic Acid/pharmacology*
  2. You W, Wang C, Zhang J, Ru X, Xu F, Wu Z, et al.
    Food Chem, 2024 Jul 15;446:138866.
    PMID: 38430769 DOI: 10.1016/j.foodchem.2024.138866
    Fresh-cut potatoes are prone to surface browning and physiological degradation. Chlorogenic acid (CGA), a natural phenolic antioxidant, has demonstrated preservative properties in various postharvest products. However, the underlying mechanisms of its application on maintaining quality remain unclear. Therefore, the effect of exogenous CGA treatment on quality deterioration of potato slices and the mechanisms involved were investigated. Results revealed CGA treatment retarded the browning coloration, suppressed microbial growth and inhibited the declines in starch, and ascorbic acid contents in potato slices. Meanwhile, the treatment activated the phenylpropanoid pathway but decreased the activities of phenolic decomposition-related enzymes such as polyphenol oxidase (PPO) and tyrosinase and downregulated StPPO expression. Moreover, the treated slices exhibited reduced accumulation of reactive oxygen species and increased activity of antioxidant enzymes. Additionally, they displayed enhanced 2,2-diphenyl-1-picrylhydrazyl radicals scavenging capacity and higher ATP levels. Therefore, these findings indicated that CGA treatment was effective for quality maintenance and antioxidant capacity enhancement in fresh-cut potatoes, thereby providing potential strategies for the preservation and processing of fresh-cut produce.
    Matched MeSH terms: Chlorogenic Acid/metabolism; Chlorogenic Acid/pharmacology
  3. Wong SK, Lim YY, Ling SK, Chan EW
    Pharmacognosy Res, 2014 Jan;6(1):67-72.
    PMID: 24497746 DOI: 10.4103/0974-8490.122921
    Three compounds isolated from the methanol (MeOH) leaf extract of Vallaris glabra (Apocynaceae) were those of caffeoylquinic acids (CQAs). This prompted a quantitative analysis of their contents in leaves of V. glabra in comparison with those of five other Apocynaceae species (Alstonia angustiloba, Dyera costulata, Kopsia fruticosa, Nerium oleander, and Plumeria obtusa), including flowers of Lonicera japonica (Japanese honeysuckle), the commercial source of chlorogenic acid (CGA).
    Matched MeSH terms: Chlorogenic Acid
  4. Vongsak B, Gritsanapan W, Wongkrajang Y, Jantan I
    Nat Prod Commun, 2013 Nov;8(11):1559-61.
    PMID: 24427941
    The ethanol extract of Moringa oleifera Lam. leaves and its major constituents, crypto-chlorogenic acid, quercetin 3-O-glucoside and kaempferol 3-O-glucoside, were investigated on the respiratory burst of human whole blood and isolated human polymorphonuclear leukocytes (PMNs) using a luminol-based chemiluminescence assay. The chemotactic migration of PMNs was also investigated using the Boyden chamber technique. The ethanol extract demonstrated inhibitory activities on the oxidative burst and the chemotactic migration of PMNs. Quercetin 3-O-glucoside, crypto-chlorogenic acid, and kaempferol 3-O-glucoside, isolated from the extract, expressed relatively strong inhibitory activity on the oxidative burst of PMNs with IC50 values of 4.1, 6.7 and 7.0 microM, respectively, comparable with that of aspirin. They also demonstrated strong inhibition of chemotatic migration of PMNs with IC50 values of 9.5, 15.9 and 18.2 microM, respectively. The results suggest that M. oleifera leaves could modulate the immune response of human phagocytes, linking to its ethnopharmacological use as an anti-inflammatory agent. The immunomodulating activity of the plant was mainly due to its major components.
    Matched MeSH terms: Chlorogenic Acid/pharmacology
  5. Usman MS, Hussein MZ, Fakurazi S, Masarudin MJ, Ahmad Saad FF
    PLoS One, 2018;13(7):e0200760.
    PMID: 30044841 DOI: 10.1371/journal.pone.0200760
    We have synthesized a bimodal theranostic nanodelivery system (BIT) that is based on graphene oxide (GO) and composed of a natural chemotherapeutic agent, chlorogenic acid (CA) used as the anticancer agent, while gadolinium (Gd) and gold nanoparticles (AuNPs) were used as contrast agents for magnetic resonance imaging (MRI) modality. The CA and Gd guest agents were simultaneously loaded on the GO nanolayers using chemical interactions, such as hydrogen bonding and π-π non-covalent interactions to form GOGCA nanocomposite. Subsequently, the AuNPs were doped on the surface of the GOGCA by means of electrostatic interactions, which resulted in the BIT. The physico-chemical studies of the BIT affirmed its successful development. The X-ray diffractograms (XRD) collected of the various stages of BIT synthesis showed the successive development of the hybrid system, while 90% of the chlorogenic acid was released in phosphate buffer solution (PBS) at pH 4.8. This was further reaffirmed by the in vitro evaluations, which showed stunted HepG2 cancer cells growth against the above 90% cell growth in the control cells. A reverse case was recorded for the 3T3 normal cells. Further, the acquired T1-weighted image of the BIT doped samples obtained from the MRI indicated contrast enhancement in comparison with the plain Gd and water references. The abovementioned results portray our BIT as a promising future chemotherapeutic for anticancer treatment with diagnostic modalities.
    Matched MeSH terms: Chlorogenic Acid/chemistry
  6. Teoh WY, Tan HP, Ling SK, Abdul Wahab N, Sim KS
    Nat Prod Res, 2016;30(4):448-51.
    PMID: 25738869 DOI: 10.1080/14786419.2015.1017726
    Gynura bicolor (Compositae) is a popular vegetable in Asia and believed to confer a wide range of benefits including anti-cancer. Our previous findings showed that the ethyl acetate extract of G. bicolor possessed cytotoxicity and induced apoptotic and necrotic cell death in human colon carcinoma cells (HCT 116). A combination of column chromatography had been used to purify chemical constituents from the ethyl acetate and water extract of G. bicolor leaves. Eight chemical constituents 5-p-trans-coumaroylquinic acid (I), 4-hydroxybenzoic acid (II), rutin (III), kampferol-3-O-rutinoside (IV), 3,5-dicaffeoylquinic acid (V), kampferol-3-O-glucoside (VI), guanosine (VII) and chlorogenic acid (VIII) were isolated from G. bicolor grown in Malaysia. To our best knowledge, all chemical constituents were isolated for the first time from G. bicolor leaves except rutin (III). 3,5-dicaffeoylquinic acid (V), guanosine (VII) and chlorogenic acid (VIII) demonstrated selective cytotoxicity (selective index>3) against HCT 116 cancer cells compared to CCD-18Co human normal colon cells.
    Matched MeSH terms: Chlorogenic Acid/analogs & derivatives; Chlorogenic Acid/isolation & purification
  7. Sulaiman SF, Moon JK, Shibamoto T
    J Diet Suppl, 2011 Sep;8(3):293-310.
    PMID: 22432728 DOI: 10.3109/19390211.2011.593618
    In order to investigate the role of roasting conditions in antioxidant formation, methanol and hot water extracts from Robusta coffee beans roasted for various lengths of time and at various temperatures were analyzed for total phenolic acid, chlorogenic acid, and caffeine content, as well as for their antioxidant activities using 1,1-diphenyl-2-picryhydrazyl (DPPH), thiobarbituric acid (TBA), and malonaldehyde/gas chromatography (MA/GC) assays. The amount of total phenolics in methanol extracts decreased linearly over the roasting temperature from 63.51 ± 0.77 mg chlorogenic acid equivalent (CAE)/g coffee beans (roasted at 200°C) to 42.56 ± 0.33 mg CAE/g coffee beans (roasted at 240°C). The total chlorogenic acid content decreased when the roasting time was increased from 78.33 ± 1.41 mg/g (green coffee beans) to 4.31 ± 0.23 mg/g (roasted for 16 min at 250°C). All methanol extracts from roasted coffee beans possessed over 90% antioxidant activities in the DPPH assay. The antioxidant activity of methanol extracts ranged from 41.38 ± 1.77% (roasted at 250°C for 10 min) to 98.20 ± 1.49% (roasted at 230°C for 16 min) as tested by the TBA assay. The antioxidant activity of methanol extracts of green coffee beans and roasted coffee beans ranged from 93.01% (green coffee beans) to 98.62 ± 1.32% (roasted at 250°C for 14 min) in the MA/GC assays. All hot water extracts exhibited moderate pro-oxidant activities in TBA and MA/GC assays. The results indicated that roasting conditions of coffee beans play an important role in the formation of antioxidants in brewed coffee, which can be dietary supplements having beneficial effect to human health.
    Matched MeSH terms: Chlorogenic Acid/analysis; Chlorogenic Acid/pharmacology
  8. Shah NN, Rahman RA, Shamsuddin R, Adzahan NM
    J Food Sci Technol, 2015 Aug;52(8):5057-65.
    PMID: 26243926 DOI: 10.1007/s13197-014-1554-9
    The purpose of this study is to investigate the changes occured on phenolic compounds between two Malaysian varieties of pummelo fruit juice: Ledang (PO55) and Tambun (PO52) post-enzymatic clarification. The changes in polyphenols composition were monitored using High Performance Liquid Chromatography Diode Array Detection and Folin Ciocalteu's method. Clarification treatment of pummelo fruit juice with a commercial pectinase was optimized based on incubation temperature, time and enzyme concentration. Both varieties of pummelo fruit juice were treated with different optimized variables which produced the highest clarities with the least effect to the juice physical quality. Tambun variety was found to have significantly more total phenolic compounds (p <0.05) in comparison to Ledang variety, possibly due to the amount of naringin. Three types of hydroxycinnamic acids (chlorogenic, caffeic and coumaric acid) and three compounds of flavanones (naringin, hesperidin and narirutin) were found in both fruit juices, where naringin and chlorogenic acid were the major contributor to the total phenolic content. Naringin, which gave out bitter aftertaste to the juice, was found to decrease, 1.6 and 0.59 % reduction in Ledang and Tambun respectively, post-enzymatic treatment. The decrease in naringin, albeit nominal, could be a potential benefit to the juice production in reducing the bitterness of the juice. Post-enzymatic analysis furthermore resulted in no significance differences (p <0.05) on the total phenolic compounds of both varieties. This study in summary provides a compositional database for Malaysian pummelo fruit juice of various phenolic compounds, which can provide useful information for evaluating the authenticity and the health benefits from the juice.
    Matched MeSH terms: Chlorogenic Acid
  9. Sethiya NK, Nahata A, Singh PK, Mishra SH
    J Ayurveda Integr Med, 2018 03 09;10(1):25-31.
    PMID: 29530454 DOI: 10.1016/j.jaim.2017.08.012
    BACKGROUND: Shankhpushpi is an Ayurvedic drug, widely used for its actions on the central nervous system, especially to improve intellect and boost memory. Four botanicals viz. Canscora decussata Schult. (CD), Clitorea ternatea Linn. (CT), Convolvulus pluricaulis Choisy. (CP) and Evolvulus alsinoides Linn. (EA) are considered as sources of Shankhpushpi by Indian practitioners on the basis of their morphological descriptions given in ancient texts.

    OBJECTIVE: The present study was undertaken to evaluate the neuropharmacological effect of four herbs commonly identified as source of Shankhpushpi.

    MATERIALS AND METHODS: Methanol extracts of all four varieties were tested and evaluated in vitro and in vivo for their neuropharmacological effects. Experiments such as protection against β-amyloid induced neurotoxicity on brain cell line (Neuro 2A), antioxidant potential, AchE (acetylcholinesterase enzyme) inhibition, and 5-LOX (lipoxygenase) enzyme inhibition were conducted for in vitro evaluation. For in vivo evaluation, scopolamine (0.3 mg/kg i.p.) induced memory retrieval using pole climbing apparatus and Morris water maze were performed in rat models.

    RESULTS: It was found that protective effects of EA and CD against β-amyloid induced neurotoxicity in Neuro 2A cells were significantly higher than CT and CP. EA proved to be superior than other varieties on the basis of antioxidant activity, AchE inhibitory and LOX inhibitory activities. The preventive activity of EA on scopolamine induced memory retrieval in pole climbing and Morris water maze task in rats was found to be higher than that of CD, CT and CP.

    CONCLUSION: EA has remarkable neuropharmacological effect as compared to other three varieties of Shankhpushpi. This effect may be attributed due to the presence of steroids (stigmasterol and betulinic acid), coumarins (scopoletin) and flavonoids (β-carotene and chlorogenic acid). Hence it can be used as a promising lead in development and management of neuronal disorders including Alzheimer's disease.

    Matched MeSH terms: Chlorogenic Acid
  10. Salem MA, Michel HE, Ezzat MI, Okba MM, El-Desoky AM, Mohamed SO, et al.
    Molecules, 2020 May 14;25(10).
    PMID: 32422967 DOI: 10.3390/molecules25102307
    Hibiscus species (Malvaceae) have been long used as an antihypertensive folk remedy. The aim of our study was to specify the optimum solvent for extraction of the angiotensin-converting enzyme inhibiting (ACEI) constituents from Hibiscus sabdariffa L. The 80% methanol extract (H2) showed the highest ACEI activity, which exceeds that of the standard captopril (IC50 0.01255 ± 0.00343 and 0.210 ± 0.005 µg/mL, respectively). Additionally, in a comprehensive metabolomics approach, an ultra-performance liquid chromatography (UPLC) coupled to the high resolution tandem mass spectrometry (HRMS) method was used to trace the metabolites from each extraction method. Interestingly, our comprehensive analysis showed that the 80% methanol extract was predominated with secondary metabolites from all classes including flavonoids, anthocyanins, phenolic and organic acids. Among the detected metabolites, phenolic acids such as ferulic and chlorogenic acids, organic acids such as citrate derivatives and flavonoids such as kaempferol have been positively correlated to the antihypertensive potential. These results indicates that these compounds may significantly contribute synergistically to the ACE inhibitory activity of the 80% methanol extract.
    Matched MeSH terms: Chlorogenic Acid/isolation & purification; Chlorogenic Acid/chemistry
  11. Saleem H, Zengin G, Locatelli M, Abidin SAZ, Ahemad N
    Nat Prod Res, 2021 Feb 08.
    PMID: 33550873 DOI: 10.1080/14786419.2021.1880404
    Anagallis arvensis L. commonly known as 'Scarlet Pimpernel' has been used in folklore as natural remedy for treating common ailments. The present research is aimed to explore the phytochemical composition and enzyme inhibition potential of methanol and dichloromethane (DCM) extracts of A. arvensis aerial and root parts. The phytochemical composition was established via HPLC-PDA polyphenolic quantification and UHPLC-MS analysis, while the inhibition potential against amylase and tyrosinase enzymes were assessed using standard in vitro protocols. The HPLC-PDA polyphenolic quantification revealed the presence of important compounds including catechin, gallic acid, chlorogenic acid, and ferulic acid, whereas 34 different secondary metabolites were tentatively identified by UHPLC-MS of both the DCM extracts. All the extracts showed moderate tyrosinase and a weak amylase inhibition activity. The aerial-DCM extract showed comparatively higher tyrosinase and amylase enzyme inhibition potential, which may be due to the presence of secondary metabolites as tentatively identified by its UHPLC-MS profiling.
    Matched MeSH terms: Chlorogenic Acid
  12. Radhakrishnan, N., Lam, K. W., Norhaizan, M. E.
    MyJurnal
    Carica papaya (papaya) fruits are available throughout the world and it is well accepted as food or as a quasi-drug. Aqueous papaya leaves extract have been used as treatment for dengue fever. This prompted us to carry out the docking study on these nine selected ligands (phyto-constituents of papaya) which are carpaine, dehydrocarpaine I and II, cardenolide, p-coumaric acid, chlorogenic acid, caricaxanthin, violaxanthin and zeaxanthin. These phytoconstituents were evaluated on the docking behaviour of dengue serotype 3 RNA-dependent RNA polymerase (RdRp); influenza A (H1N9) virus neuraminidase (NA); chikungunya virus glycoprotein (E3-E2-E1) and chikungunya virus non-structural protein2 (nsP2) protease using Discovery Studio Version 3.1. In addition, molecular physicochemical, drug-likeness, ADMET (Absorption, Distribution, Metabolism, Excretion and Toxicity) and TOPKAT (Toxicity Prediction by Komputer Assisted Technology) analyses were done. The molecular physicochemical analysis revealed that cardenolide and p-coumaric acid (2 ligands) complied with Lipinski’s rule of five. Dehydrocarpaine II, cardenolide, caricaxanthin, violaxanthin and zeaxanthin all the five ligands were predicted to have plasma protein binding (PPB) effect. Docking studies and binding free energy calculations revealed that p-coumaric acid exhibited very least binding energy irrespective of its target protein. Hence, the results of this present study exhibited the potential of these nine ligands as antiviral agent.
    Matched MeSH terms: Chlorogenic Acid
  13. Prasad N, Yang B, Kong KW, Khoo HE, Sun J, Azlan A, et al.
    PMID: 23710209 DOI: 10.1155/2013/154606
    Nypa fruticans Wurmb. is one of the important underutilized fruit of Malaysia, which lacks scientific attention. Total phenolics, flavonoid content, and antioxidant capacities from endosperm extracts of Nypa fruticans (unripe and ripe fruits) were evaluated. Endosperm extract of unripe fruits (EEU) exhibited the highest phenolics (135.6 ± 4.5 mg GAE/g), flavonoid content (68.6 ± 3.1 RE/g), and antioxidant capacity. Free radical scavenging capacity of EEU as assessed by 2-2'-azino-bis (3-ethylbenz-thiazoline-6-sulfonic acid (ABTS) and 1,1-diphenyl-2-picryl hydrazyl (DPPH) radicals showed inhibitory activity of 78 ± 1.2% and 85 ± 2.6%, respectively. Beta carotene bleaching coefficient of EEU was higher (2550 ± 123), when compared to endosperm extract of ripe fruits (1729 ± 172). Additionally, EEU exhibited high antioxidant capacity by phosphomolybdenum method and ferric reducing antioxidant power values. Eight phenolic compounds from Nypa fruticans endosperm extracts were identified and quantified by ultra-high-performance liquid chromatography. Chlorogenic acid, protocatechuic acid, and kaempferol were the major phenolic compounds. Thus this fruit could be used as a potential source of natural antioxidant.
    Matched MeSH terms: Chlorogenic Acid
  14. Ooi KL, Muhammad TS, Tan ML, Sulaiman SF
    J Ethnopharmacol, 2011 Jun 1;135(3):685-95.
    PMID: 21497647 DOI: 10.1016/j.jep.2011.04.001
    The decoction of the whole plant of Elephantopus mollis Kunth. is traditionally consumed to treat various free radical-mediated diseases including cancer and diabetes.
    Matched MeSH terms: Chlorogenic Acid/analogs & derivatives*; Chlorogenic Acid/pharmacology; Chlorogenic Acid/therapeutic use
  15. Nor Hafiza Sayuti, ‘Ammar Akram Kamarudin, Nor Asma Ab. Razak, Norazalina Saad, Mohd Sabri Pak Dek, Norhaizan Mohd Esa
    MyJurnal
    Introduction: There are numerous studies on the therapeutic properties of Artocarpus heterophyllus. However, stud- ies on the aqueous extraction of A. heterophyllus leaves are limited. This present study was conducted to optimize the extraction conditions of A. heterophyllus leaves to yield the highest phenolic, flavonoids and antioxidant contents. Methods: Response surface methodology (RSM) was employed to obtain a higher phenolic extraction parameter(s) of A. heterophyllus leaves using Central Composite Design (CCD). The antioxidant activity was then determined via ABTS (2,29-azinobis (3 ethylbenzothiazoline-6-sulfonic acid)) and DPPH (2,2-Diphenyl-1-picrylhydrazyl) assay and analysis of the individual phenolics was performed by high performance liquid chromatography (HPLC). Results: The optimum extraction conditions with higher phenolics content and antioxidant activity was achieved at 81°C, 100 min and 40 mL/g sample with a good desirability value of 0.87. Under these optimized parameters, total phenolics and flavonoids were 174.48 ± 4.05 mg GAE/g sample and 21.44 ± 0.05 mg RE/g sample, respectively. Meanwhile, antioxidant activity via ABTS and DPPH assays were 90.88% ± 0.09 and 87.22% ± 0.62, respectively. Finally, under optimal extraction conditions revealed 4 compounds identified as chlorogenic acid, quercetin, rutin and kaempferol. Conclusion: The optimisation are promising to improve phenolic yield and antioxidant activity in A. heterophyllus leaves. It also proved that A. heterophyllus leaves can be used as an alternative natural antioxidant especially in medicinal applications since all identified compound possess significant biological activities for human health.
    Matched MeSH terms: Chlorogenic Acid
  16. Munawaroh F, Arfian N, Saputri LAAWS, Kencana SMS, Sari DCR
    Med J Malaysia, 2023 Jul;78(4):476-483.
    PMID: 37518915
    INTRODUCTION: Diabetes Mellitus (DM) is a chronic disease with many complications, one of which is diabetic encephalopathy which is characterised by memory dysfunction. Hyperglycaemia that occurs in DM will activate inflammatory pathways in neurons, including NF-κB pathway. Activation of this pathway produce proinflammatory agents such as MCP-1 and IL-6, which activate glial cells. Activation of glial cells is characterised by Glial Fibrillary Acid Protein (GFAP). Chlorogenic acid (CGA) has been reported to have anti-inflammatory effects and can improve memory function. This research aimed to determine the effect of CGA as anti-inflammation, its effect on memory function, mRNA expression of NF-κB, MCP-1, IL- 6, and GFAP of frontal lobe.

    MATERIALS AND METHODS: A total of 24 male rats were randomly divided into six groups: control, DM 1.5 month (DM1.5), DM 2 months (DM2) and the group with three different doses of CGA 12.5 (CGA1), 25 (CGA2), and 50 (CGA3) mg/KgBW. Frontal lobe tissue is taken for analysis of mRNA expression for NF-κB, MCP-1, IL-6, and GFAP using Reverse Transcriptase PCR (RT-PCR). Samples were also taken for histopathology preparation and stained by immunohistochemistry method using anti-GFAP antibodies to observe glial cell activation in frontal lobe tissue.

    RESULTS: The group that was given CGA at all doses have statistically significant better memory function, i.e. DM2 versus CGA1 (p = 0.036), CGA2 (p = 0.040), and CGA3 (p = 0.021). The result of mRNA expression in NF-κB was lower in the group given CGA, i.e. DM2 compared to CGA2 (p = 0.007). mRNA expression of MCP-1 was significantly lower in all CGA treatment groups compared to the non-CGA group (p = 0.000). IL-6 mRNA expression was lower than the group not given CGA, DM compared to CGA2 (p = 0.028). GFAP mRNA expression was lower than the group given CGA in DM, DM2 group compared to CGA1 (p = 0.04) and CGA3 (p = 0.004).

    CONCLUSION: Administration of CGA can improve memory function at all doses given, and can reduce brain inflammatory activity, especially in the CGA2 group.

    Matched MeSH terms: Chlorogenic Acid/pharmacology; Chlorogenic Acid/therapeutic use
  17. Muchtaridi M, Lestari D, Khairul Ikram NK, Gazzali AM, Hariono M, Wahab HA
    Molecules, 2021 Jun 04;26(11).
    PMID: 34199752 DOI: 10.3390/molecules26113402
    Coffee has been studied for its health benefits, including prevention of several chronic diseases, such as type 2 diabetes mellitus, cancer, Parkinson's, and liver diseases. Chlorogenic acid (CGA), an important component in coffee beans, was shown to possess antiviral activity against viruses. However, the presence of caffeine in coffee beans may also cause insomnia and stomach irritation, and increase heart rate and respiration rate. These unwanted effects may be reduced by decaffeination of green bean Arabica coffee (GBAC) by treatment with dichloromethane, followed by solid-phase extraction using methanol. In this study, the caffeine and chlorogenic acid (CGA) level in the coffee bean from three different areas in West Java, before and after decaffeination, was determined and validated using HPLC. The results showed that the levels of caffeine were reduced significantly, with an order as follows: Tasikmalaya (2.28% to 0.097% (97 ppm), Pangalengan (1.57% to 0.049% (495 ppm), and Garut (1.45% to 0.00002% (0.2 ppm). The CGA levels in the GBAC were also reduced as follows: Tasikmalaya (0.54% to 0.001% (118 ppm), Pangalengan (0.97% to 0.0047% (388 ppm)), and Garut (0.81% to 0.029% (282 ppm). The decaffeinated samples were then subjected to the H5N1 neuraminidase (NA) binding assay to determine its bioactivity as an anti-influenza agent. The results show that samples from Tasikmalaya, Pangalengan, and Garut possess NA inhibitory activity with IC50 of 69.70, 75.23, and 55.74 μg/mL, respectively. The low level of caffeine with a higher level of CGA correlates with their higher levels of NA inhibitory, as shown in the Garut samples. Therefore, the level of caffeine and CGA influenced the level of NA inhibitory activity. This is supported by the validation of CGA-NA binding interaction via molecular docking and pharmacophore modeling; hence, CGA could potentially serve as a bioactive compound for neuraminidase activity in GBAC.
    Matched MeSH terms: Chlorogenic Acid/analysis*; Chlorogenic Acid/pharmacology; Chlorogenic Acid/chemistry
  18. Mediani A, Abas F, Ping TC, Khatib A, Lajis NH
    Plant Foods Hum Nutr, 2012 Dec;67(4):344-50.
    PMID: 23054393 DOI: 10.1007/s11130-012-0317-x
    The impact of tropical seasons (dry and wet) and growth stages (8, 10 and 12 weeks) of Cosmos caudatus on the antioxidant activity (AA), total phenolic content (TPC) as well as the level of bioactive compounds were evaluated using high performance liquid chromatography (HPLC). The plant morphology (plant height) also showed variation between the two seasons. Samples planted from June to August (during the dry season) exhibited a remarkably higher bioactivity and height than those planted from October to December (during the wet season). The samples that were harvested at eight weeks of age during the dry season showed the highest bioactivity with values of 26.04 g GAE/100 g and 22.1 μg/ml for TPC and IC₅₀, respectively. Identification of phytochemical constituents in the C. caudatus extract was carried out by liquid chromatography coupled with diode array detection and electrospray tandem mass (LC-DAD-ESIMS/MS) technique and the confirmation of constituents was achieved by comparison with literature data and/or co-chromatography with authentic standards. Six compounds were indentified including quercetin 3-O-rhamnoside, quercetin 3-O-glucoside, rutin, quercetin 3-O-arabinofuranoside, quercetin 3-O-galactoside and chlorogenic acid. Their concentrations showed significant variance among the 8, 10 and 12-week-old herbs during both seasons.
    Matched MeSH terms: Chlorogenic Acid/analysis; Chlorogenic Acid/isolation & purification; Chlorogenic Acid/metabolism
  19. Mediani A, Abas F, Khatib A, Tan CP, Ismail IS, Shaari K, et al.
    Plant Foods Hum Nutr, 2015 Jun;70(2):184-92.
    PMID: 25800644 DOI: 10.1007/s11130-015-0478-5
    The study investigated the changes in the metabolite, antioxidant and α-glucosidase inhibitory activities of Phyllanthus niruri after three drying treatments: air, freeze and oven dryings. Water extracts and extracts obtained using different solvent ratios of ethanol and methanol (50, 70, 80 and 100%) were compared. The relationships among the antioxidant, α-glucosidase inhibitory activity and metabolite levels of the extracts were evaluated using partial least-square analysis (PLS). The solvent selectivity was assessed based on the phytochemical constituents present in the extract and their concentrations quantitatively analyzed using high performance liquid chromatography. The freeze-dried P. niruri samples that were extracted with the mixture of ethanol or methanol with low ratio of water showed higher biological activity values compared with the other extracts. The PLS results for the ethanolic with different ratio and water extracts demonstrated that phenolic acids (chlorogenic acid and ellagic acid) and flavonoids were highly linked to strong α-glucosidase inhibitory and antioxidant activities.
    Matched MeSH terms: Chlorogenic Acid/analysis; Chlorogenic Acid/pharmacology
  20. Kavi Rajan R, Hussein MZ, Fakurazi S, Yusoff K, Masarudin MJ
    Int J Mol Sci, 2019 Sep 20;20(19).
    PMID: 31547100 DOI: 10.3390/ijms20194667
    Naturally existing Chlorogenic acid (CGA) is an antioxidant-rich compound reported to act a chemopreventive agent by scavenging free radicals and suppressing cancer-causing mechanisms. Conversely, the compound's poor thermal and pH (neutral and basic) stability, poor solubility, and low cellular permeability have been a huge hindrance for it to exhibit its efficacy as a nutraceutical compound. Supposedly, encapsulation of CGA in chitosan nanoparticles (CNP), nano-sized colloidal delivery vector, could possibly assist in enhancing its antioxidant properties, in vitro cellular accumulation, and increase chemopreventive efficacy at a lower concentration. Hence, in this study, a stable, monodispersed, non-toxic CNP synthesized via ionic gelation method at an optimum parameter (600 µL of 0.5 mg/mL of chitosan and 200 µL of 0.7 mg/mL of tripolyphosphate), denoted as CNP°, was used to encapsulate CGA. Sequence of physicochemical analyses and morphological studies were performed to discern the successful formation of the CNP°-CGA hybrid. Antioxidant property (studied via DPPH (1,1-diphenyl-2-picrylhydrazyl) assay), in vitro antiproliferative activity of CNP°-CGA, and in vitro accumulation of fluorescently labeled (FITC) CNP°-CGA in cancer cells were evaluated. Findings revealed that successful formation of CNP°-CGA hybrid was reveled through an increase in particle size 134.44 ± 18.29 nm (polydispersity index (PDI) 0.29 ± 0.03) as compared to empty CNP°, 80.89 ± 5.16 nm (PDI 0.26 ± 0.01) with a maximal of 12.04 μM CGA loaded per unit weight of CNP° using 20 µM of CGA. This result correlated with Fourier-Transform Infrared (FTIR) spectroscopic analysis, transmission Electron Microscopy (TEM) and field emission scanning (FESEM) electron microscopy, and ImageJ evaluation. The scavenging activity of CNP°-CGA (IC50 5.2 ± 0.10 µM) were conserved and slightly higher than CNP° (IC50 6.4±0.78 µM). An enhanced cellular accumulation of fluorescently labeled CNP°-CGA in the human renal cancer cells (786-O) as early as 30 min and increased time-dependently were observed through fluorescent microscopic visualization and flow cytometric assessment. A significant concentration-dependent antiproliferation activity of encapsulated CGA was achieved at IC50 of 16.20 µM as compared to CGA itself (unable to determine from the cell proliferative assay), implying that the competent delivery vector, chitosan nanoparticle, is able to enhance the intracellular accumulation, antiproliferative activity, and antioxidant properties of CGA at lower concentration as compared to CGA alone.
    Matched MeSH terms: Chlorogenic Acid
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links