Displaying publications 201 - 220 of 899 in total

Abstract:
Sort:
  1. de Mendonça IC, Porto IC, do Nascimento TG, de Souza NS, Oliveira JM, Arruda RE, et al.
    BMC Complement Altern Med, 2015 Oct 14;15:357.
    PMID: 26467757 DOI: 10.1186/s12906-015-0888-9
    BACKGROUND: The implementation of new public healthcare models that stimulate the use of natural products from traditional medicine, as a so-called integrated medicine, refers to an approach that use best of both conventional medicine and traditional medicine. Propolis is a widely used natural product by different ancient cultures and known to exhibit biological activities beneficial for health. The large number of studies conducted with propolis had shown that its chemical composition differs as a function of the climate, plant diversity and bee species and plays an important role on its therapeutic properties. The aim of this study was to analyse the phytochemical profile of the ethanolic extract of red propolis (EEP) and its fractionation, antioxidant action of EEP and its fractions hexane, cloroform and ethyl acetate and cytotoxic activity of EEP on human tumour cell lines SF-295 (glioblastoma), OVCAR-8 (ovary) and HCT-116 (colon).

    METHODS: EEP was obtained by maceration with absolute ethanol, then it was concentrated in rotaevaporator up to complete evaporation of the solvent. The crude extract was fractionated with hexane, ethyl acetate, chloroform and methanol and they were subjected to phytochemical screening and total phenolic compounds. Antioxidant activity of EEP and fractions was done by means of the 2,2-diphenyl-1-picryhydrazyl (DPPH) method. Biomarkers of red propolis were identified by LC-Orbitrap-FTMS. To assess cytotoxic activity of the extract, cells were exposed to EEP over 72 h. Cell viability was assessed by means of MTT assay. The percentage of cell growth inhibition (IC50) was analysed by means of non-linear regression, and the absorbance values of the various investigated concentrations were subjected to one-factor analysis of variance (ANOVA) followed by Tukey's or Tamhane's tests (α = 0.05).

    RESULTS: The results obtained using phytochemical screening and LC-Orbitrap-FTMS indicated the presence of phlobaphene tannins, catechins, chalcones, aurones, flavonones, flavonols, xanthones, pentacyclic triterpenoids and guttiferones in Brazilian red propolis. EEP and its hexane, chloroform and ethyl acetate fractions obtained by liquid-liquid partitioning exhibited satisfactory antioxidant percentages. EEP (IC50 

    Matched MeSH terms: Plant Extracts/chemistry
  2. Yuan Y, Wang YB, Jiang Y, Prasad KN, Yang J, Qu H, et al.
    Int J Biol Macromol, 2016 Jan;82:696-701.
    PMID: 26505952 DOI: 10.1016/j.ijbiomac.2015.10.069
    The water-soluble bioactive polysaccharides can contribute to the health benefits of Lycium barbarium fruit. However, the structure characteristics of these polysaccharides remain unclear yet. An important polysaccharide (LBPA) was isolated and purified from L. barbarium in this work. It was identified by chemical and spectroscopic methods as arabinogalactan with β-d-(1→6)-galactan as backbone, which was different to any reported polysaccharides from this species before. This arabinogalactan was comprised of Araf, Galp, GlcpA and Rhap with a molar ratio of 9.2:6.6:1.0:0.9. The side chains, including α-l-Araf-(1→, α-l-Araf-(1→5)-α-l-Araf-(1→, β-l-Araf-(1→5)-α-l-Araf-(1→ and α-l-Rhap-(1→4)-β-d-GlcpA-(1→6)-β-d-Galp-(1→, were linked to β-d-(1→6)-galactan at O-3. The putative structure was drawn as below. The molecular weight was determined to be 470,000g/mol by gel permeation chromatography.
    Matched MeSH terms: Plant Extracts/chemistry*
  3. Abdul Karim A, Azlan A, Ismail A, Hashim P, Abd Gani SS, Zainudin BH, et al.
    J Cosmet Dermatol, 2016 Sep;15(3):283-95.
    PMID: 27041391 DOI: 10.1111/jocd.12218
    OBJECTIVE: Cocoa pods are abundant waste materials of cocoa plantation, which are usually discarded onto plantation floors. However, due to poor plantation management, the discarded cocoa pods can create suitable breeding ground for Phytophthora palmivora, which is regarded as the causal agent of the black pod disease. On the other hand, cocoa pods potentially contain antioxidant compounds. Antioxidant compounds are related to the protection of skin from wrinkles and can be used as functional cosmetic ingredients. Therefore, in this study, cocoa pods were extracted and to be used as active ingredients for antiwrinkles.

    METHODS: The active compounds in cocoa pod extracts (CPE) were screened using liquid chromatography-mass spectrometry (LC-MS). Fibroblast cells were used to determine the effective concentration of CPE to maintain the viability for at least 50% of the cells (EC50 ). The gel was tested by 12 panelists to determine the efficacy of CPE in gel form using Visioscan to reduce skin wrinkles and improve skin condition.

    RESULTS: CPE was detected to contain malic acid, procyanidin B1, rosmarinic acid, procyanidin C1, apigenin, and ellagic acid, all of which may contribute to functional cosmetic properties of CPE. The EC50 value of cocoa pod extracts was used to calculate the amount of CPE to be incorporated into gel so that the formulated product could reach an effective concentration of extract while being nonintoxicant to the skin cell. The results showed that CPE is potential ingredient to reduce wrinkles. Skin wrinkles reduced at 6.38 ± 1.23% with the application of the CPE gel within 3 weeks and significantly improved further (12.39 ± 1.59%) after 5 weeks. The skin hydration increased (3.181 ± 1.06%) after 3 weeks of the CPE gel application.

    CONCLUSION: Flavonoid compounds in CPE contributed to the functional cosmetic properties of CPE. The CPE which is nontoxic to skin cells help to reduce wrinkles on skin after 3 weeks of application. CPE can be used as the active ingredients in antiwrinkle products, and prolonged application may result in significant visual changes to the naked eyes.

    Matched MeSH terms: Plant Extracts/chemistry*
  4. Kuppusamy P, Ichwan SJ, Al-Zikri PN, Suriyah WH, Soundharrajan I, Govindan N, et al.
    Biol Trace Elem Res, 2016 Oct;173(2):297-305.
    PMID: 26961292 DOI: 10.1007/s12011-016-0666-7
    Recently, metal nanoparticles have been getting great medical and social interests due to their potential physico-chemical properties such as higher affinity, low molecular weight, and larger surface area. The biosynthesized gold and silver nanoparticles are spherical, triangular in shape with an average size of 24-150 nm as reported in our earlier studies. The biological properties of synthesized gold and silver nanoparticles are demonstrated in this paper. The different in vitro assays such as MTT, flow cytometry, and reverse transcription polymerase chain reaction (RT-qPCR) techniques were used to evaluate the in vitro anticancer properties of synthesized metal nanoparticles. The biosynthesized gold and silver nanoparticles have shown reduced cell viability and increased cytotoxicity in HCT-116 colon cancer cells with IC50 concentration of 200 and 100 μg/ml, respectively. The flow cytometry experiments revealed that the IC50 concentrations of gold and silver nanoparticle-treated cells that have significant changes were observed in the sub-G1 cell cycle phase compared with the positive control. Additionally, the relative messenger RNA (mRNA) gene expressions of HCT-116 cells were studied by RT-qPCR techniques. The pro-apoptotic genes such as PUMA (++), Caspase-3 (+), Caspase-8 (++), and Caspase-9 (++) were upregulated in the treated HCT-116 cells compared with cisplatin. Overall, these findings have proved that the synthesized gold and silver nanoparticles could be potent anti-colon cancer drugs.
    Matched MeSH terms: Plant Extracts/chemistry*
  5. Kazemipoor M, Hamzah S, Hajifaraji M, Radzi CW, Cordell GA
    Phytother Res, 2016 Jun;30(6):981-7.
    PMID: 26988309 DOI: 10.1002/ptr.5603
    Following the current 'Globesity' trend, there is an increasing demand for alternative natural therapies for weight management. Numerous phytoconstituents reduce body weight through suppressing appetite and reducing food intake. Caraway (Carum carvi L.) is one of the medicinal plants that is traditionally used for weight loss. In this study, the appetite-suppressing effects of caraway aqueous extract (CAE) on 70 aerobically trained, overweight, and obese women were examined in a triple-blind, placebo-controlled, clinical study. Subjects were randomly allocated into placebo and experimental groups and consumed either 30 mL/day of CAE or placebo without changing their diet or physical activity over a period of 90 days. Calorie and macronutrient intake and anthropometric indices were measured before and after the intervention. In addition, appetite changes were assessed through a visual analog scale and an ad libitum pizza test. After the intervention, the results showed a significant reduction in appetite levels and carbohydrate intake of the experimental group compared with the placebo group. All of the anthropometric indices were reduced significantly in CAE compared with placebo group (p 
    Matched MeSH terms: Plant Extracts/chemistry*
  6. Bello I, Shehu MW, Musa M, Zaini Asmawi M, Mahmud R
    J Ethnopharmacol, 2016 Aug 02;189:253-76.
    PMID: 27220655 DOI: 10.1016/j.jep.2016.05.049
    ETHNOPHARMACOLOGICAL RELEVANCE: Kigelia africana is a quintessential African herbal medicinal plant with a pan-African distribution and immense indigenous medicinal and non-medicinal applications. The plant is use traditionally as a remedy for numerous disease such as use wounds healing, rheumatism, psoriasis, diarrhea and stomach ailments. It is also use as an aphrodisiac and for skin care.

    AIM OF THE REVIEW: The present review aims to compile an up-to-date review of the progress made in the continuous pharmacological and phytochemistry investigation of K. africana and the corresponding commercial and pharmaceutical application of these findings with the ultimate objective of providing a guide for future research on this plant.

    METHOD: The scholarly information needed for this paper were predominantly sourced from the electronic search engines such as Google, Google scholar; publishing sites such as Elsevier, scienceDirect, BMC, PubMed; other scientific database sites for chemicals such as ChemSpider, PubChem, and also from online books.

    RESULTS: Pharmacological investigations conducted confirm the anti-inflammatory, analgesic, antioxidant and anticancer activity of the extract of different parts of the plant. Bioactive constituents are found to be present in all parts of the plant. So far, approximately 150 compounds have been characterized from different part of the plant. Iridoids, naphthoquinones, flavonoids, terpenes and phenylethanoglycosides are the major class of compounds isolated. Novel compounds with potent antioxidant, antimicrobial and anticancer effect such as verbascoside, verminoside and pinnatal among others, have been identified. Commercial trade of K. africana has boosted in the las few decades. Its effect in the maintenance of skin has been recognized resulting in a handful of skin formulations in the market.

    CONCLUSIONS: The pharmaceutical potentials of K. africana has been recognized and have witness a surge in research interest. However, till date, many of its traditional medicinal uses has not been investigated scientifically. Further probing of the existential researches on its pharmacological activity is recommended with the end-goal of unravelling the pharmacodynamics, pharmacokinetics, clinical relevance and possible toxicity and side effects of both the extract and the active ingredients isolated.

    Matched MeSH terms: Plant Extracts/chemistry
  7. Rudiyansyaha, Panthong K, Garson MJ
    Nat Prod Commun, 2015 Nov;10(11):1853-60.
    PMID: 26749813
    Durio is well known as one of the sources of seasonal fruit production in Southeast Asia with its center of diversity in Borneo. Thailand, Indonesia, and Malaysia are the main Durio producers in the world. Besides having much information about the utilization and benefit from its timber and fruits as a food substance, traditionally some parts of this plant, such as leaves, bark and root, can also be used for medical purposes. This review deals with chemical constituents and the biological activities of Durio plants.
    Matched MeSH terms: Plant Extracts/chemistry*
  8. Sharif KM, Rahman MM, Azmir J, Khatib A, Sabina E, Shamsudin SH, et al.
    Biomed Chromatogr, 2015 Dec;29(12):1826-33.
    PMID: 26033701 DOI: 10.1002/bmc.3503
    Multivariate analysis of thin-layer chromatography (TLC) images was modeled to predict antioxidant activity of Pereskia bleo leaves and to identify the contributing compounds of the activity. TLC was developed in optimized mobile phase using the 'PRISMA' optimization method and the image was then converted to wavelet signals and imported for multivariate analysis. An orthogonal partial least square (OPLS) model was developed consisting of a wavelet-converted TLC image and 2,2-diphynyl-picrylhydrazyl free radical scavenging activity of 24 different preparations of P. bleo as the x- and y-variables, respectively. The quality of the constructed OPLS model (1 + 1 + 0) with one predictive and one orthogonal component was evaluated by internal and external validity tests. The validated model was then used to identify the contributing spot from the TLC plate that was then analyzed by GC-MS after trimethylsilyl derivatization. Glycerol and amine compounds were mainly found to contribute to the antioxidant activity of the sample. An alternative method to predict the antioxidant activity of a new sample of P. bleo leaves has been developed.
    Matched MeSH terms: Plant Extracts/chemistry
  9. Ghasemzadeh A, Jaafar HZ, Juraimi AS, Tayebi-Meigooni A
    Molecules, 2015 Jun 11;20(6):10822-38.
    PMID: 26111171 DOI: 10.3390/molecules200610822
    Secondary metabolite contents (total phenolic, flavonoid, tocopherol, and tocotrienol) and antioxidant activities of Hashemi rice bran extracts obtained by ultrasound-assisted and traditional solvent (ethanol and 50:50 (v/v) ethanol-water) extraction techniques were compared. Phenolic and, flavonoid compounds were identified using ultra-high performance liquid chromatography and method validation was performed. Significant differences (p < 0.05) were observed among the different extraction techniques upon comparison of phytochemical contents and antioxidant activities. The extracts obtained using the ethanol-water (50:50 v/v) ultrasonic technique showed the highest amounts of total phenolics (288.40 mg/100 g dry material (DM)), total flavonoids (156.20 mg/100 g DM), and total tocotrienols (56.23 mg/100 g DM), and the highest antioxidant activity (84.21% 1,1-diphenyl-2-picrylhydrazyl (DPPH), 65.27% β-carotene-linoleic bleaching and 82.20% nitric oxide scavenging activity). Secondary metabolite contents and antioxidant activities of the rice bran extracts varied depending of the extraction method used, and according to their effectiveness, these were organized in a decreasing order as follows: ethanol-water (50:50 v/v) ultrasonic, ethanol-water (50:50 v/v) maceration, ethanol ultrasonic and ethanol maceration methods. Ferulic, gallic and chlorogenic acids were the most abundant phenolic compounds in rice bran extracts. The phytochemical constituents of Hashemi rice bran and its antioxidant properties provides insights into its potential application to promote health.
    Matched MeSH terms: Plant Extracts/chemistry
  10. Girish S, Kumar S, Aminudin N
    Parasit Vectors, 2015;8:332.
    PMID: 26082155 DOI: 10.1186/s13071-015-0942-y
    In the local Malaysian context, herbal plants such as Eurycoma longifolia (Tongkat Ali), Orthosiphon stamineus (MisaiKucing), Ficus deltoidea (Mas Cotek), Zingiber officinale (Halia Bara) and Barringtonia racemosa (Putat) are known and widely used for its therapeutic properties. The first part of this study aims to screen for the anti-protozoal activity of these herbal plant extracts against Blastocystis sp. isolate subtype (ST) 3. Herbal extract with the highest efficacy was further fractionized into water and ethyl acetate fractions and tested against ST1, ST3 and ST5 Blastocystis sp. isolates. These isolates were also exposed to allopathic drugs, Metronidazole (MTZ), Tinidazole, Trimethoprim-sulfamethoxazole(TMP-SMX), Ketoconazole and Nitazoxanide for comparison purpose.
    Matched MeSH terms: Plant Extracts/chemistry
  11. Rahman MA, Abdullah N, Aminudin N
    Oxid Med Cell Longev, 2015;2015:403023.
    PMID: 26180589 DOI: 10.1155/2015/403023
    Dietary polyphenolic compounds mediate polynomial actions in guarding against multiple diseases. Atherosclerosis is an oxidative stress driven pathophysiological complication where free radical induced oxidative modification of low density lipoprotein (LDL) plays the ground breaking role. Mushrooms have been highly regarded for possessing an antioxidant arsenal. Polyphenolic compounds present in dietary mushrooms seem pertinent in withstanding LDL oxidation en route to controlling atherosclerosis. In this study, the antioxidative effect of five solvent fractions consisting of methanol : dichloromethane (M : DCM), hexane (HEX), dichloromethane (DCM), ethyl acetate (EA), and aqueous residue (AQ) of Flammulina velutipes was evaluated. M : DCM fraction showed the most potent 2,2-diphenyl-1-picrylhydrazyl radical scavenging effect with IC50 of 0.86 mg/mL and total phenolic content of 56.36 gallic acid equivalent/g fraction. In LDL oxidation inhibitory tests, M : DCM fraction at 1 µg/mL concentration mostly lengthened the lag time (125 mins) of conjugated diene formation and inhibited the formation of thiobarbituric acid reactive substances (48.71%, at 1 mg/mL concentration). LC-MS/MS analyses of M : DCM fraction identified the presence of polyphenolic substances protocatechuic acid, p-coumaric, and ellagic acid. These chain-breaking polyphenolics might impart the antioxidative effects of F. velutipes. Thus, mushroom-based dietary polyphenolic compounds might be implicated in slowing down the progression of atherosclerosis.
    Matched MeSH terms: Plant Extracts/chemistry
  12. Zakaria ZA, Balan T, Mamat SS, Mohtarrudin N, Kek TL, Salleh MZ
    PMID: 25927982 DOI: 10.1186/s12906-015-0638-z
    Melastoma malabathricum L. (Melastomaceae) is a small shrub with various medicinal uses. The present study was carried out to determine the gastroprotective mechanisms of methanol extract of M. malabathricum leaves (MEMM) in rats.
    Matched MeSH terms: Plant Extracts/chemistry
  13. Elendran S, Wang LW, Prankerd R, Palanisamy UD
    Pharm Biol, 2015;53(12):1719-26.
    PMID: 25853977 DOI: 10.3109/13880209.2014.1003356
    Natural products play a vital role in the discovery of leads for novel pharmacologically active drugs. Geraniin (GE) was identified as the major compound in the rind of Nephelium lappaceum L. (Sapindaceae), while ellagic and gallic acids have been shown to be its main metabolites. GE and its metabolites possess a range of bioactive properties including being an anti-infective, anticarcinogenic, antihyperglycemic, and antihypertensive.
    Matched MeSH terms: Plant Extracts/chemistry*
  14. Kuppusamy P, Ichwan SJ, Parine NR, Yusoff MM, Maniam GP, Govindan N
    J Environ Sci (China), 2015 Mar 1;29:151-7.
    PMID: 25766024 DOI: 10.1016/j.jes.2014.06.050
    In this present study, we reported broccoli (Brassica oleracea L.) as a potential candidate for the synthesis of gold and silver nanoparticles (NPs) in green chemistry method. The synthesized metal nanoparticles are evaluated their antimicrobial efficacy against different human pathogenic organisms. The physico-chemical properties of gold nanoparticles were analyzed using different analytical techniques such as a UV-Vis spectrophotometer, Field Emission Scanning Electron Microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction and a Fourier Transform Infrared spectrophotometer. In addition, gold and silver NP antimicrobial efficacy was checked by disc diffusion assay. UV-Vis color intensity of the nanoparticles was shown at 540 and 450 nm for gold and silver nanoparticles respectively. Higher magnification of the Field Emission Scanning Electron Microscopy image shows the variable morphology of the gold nanoparticles such as spherical, rod and triangular shapes and silver nanoparticles were seen in spherical shapes. The average spherical size of the particles was observed in 24-38 nm for gold and 30-45 nm for silver NPs. X-ray diffraction pattern confirmed the presence of gold nanoparticles and silver nanoparticles which were crystalline in nature. Additionally, the functional metabolites were identified by the Fourier Transform Infrared spectroscopy. IR spectra revealed phenols, alcohols, aldehydes (sugar moieties), vitamins and proteins are present in the broccoli extract which are accountable to synthesize the nanoparticles. The synthesized gold and silver NPs inhibited the growth of the tested bacterial and fungal pathogens at the concentration of 50 μg/mL respectively. In addition, broccoli mediated gold and silver nanoparticles have shown potent antimicrobial activity against human pathogens.
    Matched MeSH terms: Plant Extracts/chemistry*
  15. Kam TS, Choo YM
    Phytochemistry, 2004 Jul;65(14):2119-22.
    PMID: 15279982
    Two new venalstonine derivatives, viz., venacarpines A and B, and one new dioxokopsan derivative, kopsorinine, in addition to the kopsifolines A-F, and 11 other known alkaloids, were isolated from a Malayan Kopsia species. The structures of the new alkaloids were determined using NMR and MS analysis.
    Matched MeSH terms: Plant Extracts/chemistry
  16. Ramli I, Kamarulzaman NH, Shaari K, Ee GC
    Nat Prod Res, 2004 Aug;18(4):289-94.
    PMID: 15214478
    Leaf extracts of Melicope lunu-ankenda were chemically studied and found to contain mixtures of hydrocarbons and squalene, fatty acids and esters. A geranylated coumaric acid was isolated as the major compound. The crude dichloromethane and methanol extracts of the leaves were found to be strongly larvicidal with LC50 values below 20 microg mL(-1). This is a first isolation of p-O-geranylcoumaric acid from this plant.
    Matched MeSH terms: Plant Extracts/chemistry
  17. Kam TS, Choo YM
    Phytochemistry, 2004 Mar;65(5):603-8.
    PMID: 15003424
    Six new alkaloids, viz., alstolactone, affinisine oxindole, lagumicine, N(4)-demethylalstonerine, N(4)-demethylalstonerinal, and 10-methoxycathafoline N(4)-oxide, in addition to 36 other known alkaloids, were obtained from the leaf extract of Alstonia angustifolia var. latifolia. The structures of the new alkaloids were determined using NMR and MS analysis.
    Matched MeSH terms: Plant Extracts/chemistry
  18. Rahmani M, Leng KW, Ismail HB, Hin TY, Sukari MA, Ali AM, et al.
    Nat Prod Res, 2004 Feb;18(1):85-8.
    PMID: 14974620
    A new flavonoid, dihydroglychalcone-A, was isolated from the leaves extract of Glycosmis chlorosperma in addition to two known sulphur-containing amides, dambullin and gerambullin. The structure of the new compound was assigned as 2'-hydroxy-4,6'-dimethoxy-3',4'-(2",2"-dimethylpyrano)dihydrochalcone. The extract of the leaves was also found to exhibit antimicrobial and cytotoxic activities.
    Matched MeSH terms: Plant Extracts/chemistry
  19. Ghanbariasad A, Taghizadeh SM, Show PL, Nomanbhay S, Berenjian A, Ghasemi Y, et al.
    Bioengineered, 2019 12;10(1):390-396.
    PMID: 31495263 DOI: 10.1080/21655979.2019.1661692
    FeOOH nanoparticles are commonly synthesized at very high temperature and pressure that makes the process energy consuming and non-economic. Recently, novel approaches were developed for the fabrication of these particles at room temperature. But, the main problem with these methods is that the prepared structures are aggregates of ultra-small nanoparticles where no intact separate nanoparticles are formed. In this study, for the first time, secretory compounds from Chlorella vulgaris cells were employed for the controlled synthesis of FeOOH nanoparticles at room atmosphere. Obtained particles were found to be goethite (α-FeO(OH)) crystals. Controlled synthesis of FeOOH nanoparticles resulted in uniform spherical nanoparticles ranging from 8 to 17 nm in diameter with 12.8 nm mean particle size. Fourier-transform infrared and elemental analyses were indicated that controlled synthesized nanoparticles have not functionalized with secretory compounds of C. vulgaris, and these compounds just played a controlling role over the synthesis reaction.
    Matched MeSH terms: Plant Extracts/chemistry
  20. Lee SY, Mediani A, Ismail IS, Maulidiani, Abas F
    BMC Complement Altern Med, 2019 Jan 07;19(1):7.
    PMID: 30616569 DOI: 10.1186/s12906-018-2413-4
    BACKGROUND: Neptunia oleracea is a plant cultivated as vegetable in Southeast Asia. Previous works have revealed the potential of this plant as a source of natural antioxidants and α-glucosidase inhibitors. Continuing our interest on this plant, the present work is focused in identification of the bioactive compounds from different polarity fractions of N. oleracea, namely hexane (HF), chloroform (CF), ethyl acetate (EF) and methanol (MF).

    METHODS: The N. oleracea fractions were obtained using solid phase extraction (SPE). A metabolomics approach that coupled the use of proton nuclear magnetic resonance (1H NMR) with multivariate data analysis (MVDA) was applied to distinguish the metabolite variations among the N. oleracea fractions, as well as to assess the correlation between metabolite variation and the studied bioactivities (DPPH free radical scavenging and α-glucosidase inhibitory activities). The bioactive fractions were then subjected to ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) analysis to profile and identify the potential bioactive constituents.

    RESULTS: The principal component analysis (PCA) discriminated EF and MF from the other fractions with the higher distributions of phenolics. Partial least squares (PLS) analysis revealed a strong correlation between the phenolics and the studied bioactivities in the EF and the MF. The UHPLC-MS/MS profiling of EF and MF had tentatively identified the phenolics present. Together with some non-phenolic metabolites, a total of 37 metabolites were tentatively assigned.

    CONCLUSIONS: The findings of this work supported that N. oleracea is a rich source of phenolics that can be potential antioxidants and α-glucosidase inhibitors for the management of diabetes. To our knowledge, this study is the first report on the metabolite-bioactivity correlation and UHPLC-MS/MS analysis of N. oleracea fractions.

    Matched MeSH terms: Plant Extracts/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links