AIM OF THE STUDY: Phytochemical investigation and assessment of pharmacological mechanism(s) involved in anti-ulcer effect of methanolic extract of the seeds of E. conferta.
MATERIALS AND METHODS: Bioactive phytoconstituents were isolated by column chromatography. These were identified by spectroscopic techniques including infrared (IR) spectroscopy, nuclear magnetic resonance (NMR) and mass spectrometry. Methanolic extract (MEC) of the seeds was prepared by cold maceration and its anti-ulcerogenic potential was evaluated using indomethacin (50 mg/kg) and water immersion stress models in male rats. The animals were pre-treated with different doses of MEC (400 and 800 mg/kg) and the therapeutic effect was compared with standard drug i.e. ranitidine (RANT; 50 mg/kg). The ameliorative effects of MEC were investigated on gastric juice pH, total acidity, free acidity and ulcer index. The assays of malionaldehyde (MDA), catalase (CAT), superoxide dismutase (SOD), glutathione (GSH) and pro-inflammatory cytokines i.e. interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) were carried out to find out the possible mechanism(s) of protection. Further, histopathological changes were also studied.
RESULTS: Chromatography studies and further confirmation by spectroscopic techniques revealed the presence of four different compounds in MEC i.e oleic acid (1), stearic acid (2), ascorbic acid (3) and quercetin (4). MEC exhibited anti-ulcerogenic effect in dose dependent manner which may be attributed to suppression of pro-inflammatory cytokines (IL-6, TNF-α) and MDA (112.7%), and up-regulation of protective factors such as CAT (90.48%), SOD (92.77%) and GSH (90.01%). Ulcer inhibition, reduction in total and free acidity and increase in gastric juice pH were observed in MEC treated rats as compared to disease control animals. Histopathological findings confirmed decreased cell infiltration, less epithelial cell damage and regeneration of gastric mucosa in dose dependent manner.
CONCLUSIONS: The anti-ulcer effect of MEC may be attributed to its ability to scavenge free radicals and anti-inflammatory property via suppression of TNF-α and IL-6, thus offers a complete and holistic approach for management of peptic ulcer.
METHOD: Neonatal streptozotocin-induced non-obese type 2 diabetic rats were treated with a methanolic extract of EO (250 or 500 mg/kg) for 28 days, and blood glucose, serum insulin, and plasma antioxidant status were measured. Insulin and glucagon immunostaining and morphometry were performed in pancreatic section, and liver TBARS and GSH levels were measured. Additionally, EA was tested for glucose-stimulated insulin secretion and glucose tolerance test.
RESULTS: Treatment with EO extract resulted in a significant decrease in the fasting blood glucose in a dose- and time-dependent manner in the diabetic rats. It significantly increased serum insulin in the diabetic rats in a dose-dependent manner. Insulin-to-glucose ratio was also increased by EO treatment. Immunostaining of pancreas showed that EO250 increased β-cell size, but EO500 increased β-cells number in diabetic rats. EO significantly increased plasma total antioxidants and liver GSH and decreased liver TBARS. EA stimulated glucose-stimulated insulin secretion from isolated islets and decreased glucose intolerance in diabetic rats.
CONCLUSION: Ellagic acid in EO exerts anti-diabetic activity through the action on β-cells of pancreas that stimulates insulin secretion and decreases glucose intolerance.