Purpose: To evaluate the effect of interbody distraction by OLIF for the treatment of adult spinal deformity.
Overview of Literature: Adult spinal deformity with symptomatic stenosis has been addressed conventionally using a direct posterior decompression approach with fusion. However, stenotic symptoms can also be alleviated indirectly through restoration of intervertebral and foraminal heights and correction of spinal alignment.
Methods: Twenty-eight patients with adult spinal deformity underwent OLIF combined with modified cortical bone trajectory screws at 94 lumbar levels with neuromonitoring. The patients were divided into three groups based on their preoperative lumbar lordosis: group A, <0°; group B, 0°-20°; and group C, >20°. The cross-sectional area (CSA) of the thecal sac was measured preoperatively and postoperatively on axial magnetic resonance images. Differences in CSA were evaluated, and the relationship between the CSA extension ratio and preoperative CSA was assessed. Changes in disc height and segmental disc angle were measured from plain radiographs.
Results: OLIFs were performed successfully without neural complications. In group A, the mean CSA increased from 120.6 mm2 preoperatively to 148.5 mm2 postoperatively (p <0.001). The mean CSA for group B increased from 120.1 mm2 preoperatively to 154.4 mm2 postoperatively (p <0.001). Group C had an increase in mean CSA from 114.7 mm2 preoperatively to 160.7 mm2 postoperatively (p <0.001). The mean CSA enlargement ratio was 27.5%, 32.1%, and 60.4% in groups A, B, and C, respectively. The mean CSA extension ratio was inversely correlated with preoperative CSA.
Conclusions: The effect of indirect neural decompression in adult spinal deformity with OLIF varies with the degree of preoperative lumbar lordosis.
FINDINGS: The inhibition efficiencies were estimated based on weight loss method. Moreover, scanning electron microscopy was used to investigate the inhibition mechanism. The synthesized Schiff bases were characterized by Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy and micro-elemental analysis. The inhibition efficiency depends on three factors: the amount of nitrogen in the inhibitor, the inhibitor concentration and the inhibitor molecular weight.
CONCLUSIONS: Inhibition efficiencies of 96 and 92% were achieved with BZ4 and BZ3, respectively, at the maximum tested concentration. Density functional theory calculations of BZ3 and BZ4 were performed to compare the effects of hydroxyl and N,N-dimethylamino substituents on the inhibition efficiency, providing insight for designing new molecular structures that exhibit enhanced inhibition efficiencies.
OBJECTIVES: Here, we explored the phytochemical diversity of the seven varieties from Peninsular Malaysia using Nuclear Magnetic Resonance (NMR) and Liquid Chromatography-Mass Spectrometry (LC-MS) analyses and correlated it with the α-glucosidase inhibitory activity.
METHODOLOGY: The Nuclear Overhauser Effect Spectroscopy (NOESY) One-Dimensional (1D)-NMR and LC-MS data were processed, annotated, and correlated with in vitro α-glucosidase inhibitory using multivariate data analysis.
RESULTS: The α-glucosidase results demonstrated that different varieties have varying inhibitory effects, with the highest inhibition rate being F. deltoidea var. trengganuensis and var. kunstleri. Furthermore, diverse habitats and plant ages could also influence the inhibitory rate. The heat map from NMR and LC-MS profiles showed unique patterns according to varying levels of α-glucosidase inhibition rate. The Partial Least Squares (PLS) model constructed from both NMR and LC-MS further confirmed the correlation between the α-glucosidase inhibition rate of F. deltoidea varieties and its metabolite profiles. The Variable Influence on Projection (VIP) and correlation coefficient (p(corr)) values values were used to determine the highly relevant metabolites for explaining the anticipated inhibitory action.
CONCLUSION: NMR and LC-MS annotations allow the identification of flavan-3-ols and proanthocyanidins as the key bioactive factors. Our current results demonstrated the value of multivariate data analysis to predict the quality of herbal materials from both biological and chemical aspects.
METHODS: We analysed plasma and urine samples of 50 stable CAD patients and 50 healthy controls using 1H NMR. Orthogonal partial least square discriminant analysis (OPLS-DA) followed by multivariate logistic regression (MVLR) models were developed to indicate the discriminating metabotypes. Metabolic pathway analysis was performed to identify the implicated pathways.
RESULTS: Both plasma and urine OPLS-DA models had specificity, sensitivity and accuracy of 100%, 96% and 98%, respectively. Plasma MVLR model had specificity, sensitivity, accuracy and AUROC of 92%, 86%, 89% and 0.96, respectively. The MVLR model of urine had specificity, sensitivity, accuracy and AUROC of 90%, 80%, 85% and 0.92, respectively. 35 and 12 metabolites were identified in plasma and urine metabotypes, respectively. Metabolic pathway analysis revealed that urea cycle, aminoacyl-tRNA biosynthesis and synthesis and degradation of ketone bodies pathways were significantly disturbed in plasma, while methylhistidine metabolism and galactose metabolism pathways were significantly disturbed in urine. The enrichment over representation analysis against SNPs-associated-metabolite sets library revealed that 85 SNPs were significantly enriched in plasma metabotype.
CONCLUSIONS: Cardiometabolic diseases, dysbiotic gut-microbiota and genetic variabilities are largely implicated in the pathogenesis of CAD.
RESULTS: A clear separation was only observed between non-organic G and organic Z, which were then selected for further investigation in the fermentation of soybeans (GF and ZF). All four groups (G, Z, GF, ZF) were analyzed using nuclear magnetic resonance (NMR) spectroscopy along with liquid chromatography-tandem mass spectrometry (LC-MS/MS). In this way a total of 41 and 47 metabolites were identified respectively, with 12 in common. A clear variation (|log1.5 FC| > 2 and P