Displaying publications 241 - 260 of 9211 in total

Abstract:
Sort:
  1. Eskandari A, Nezhad NG, Leow TC, Rahman MBA, Oslan SN
    World J Microbiol Biotechnol, 2023 Dec 08;40(1):39.
    PMID: 38062216 DOI: 10.1007/s11274-023-03851-6
    Yeasts serve as exceptional hosts in the manufacturing of functional protein engineering and possess industrial or medical utilities. Considerable focus has been directed towards yeast owing to its inherent benefits and recent advancements in this particular cellular host. The Pichia pastoris expression system is widely recognized as a prominent and widely accepted instrument in molecular biology for the purpose of generating recombinant proteins. The advantages of utilizing the P. pastoris system for protein production encompass the proper folding process occurring within the endoplasmic reticulum (ER), as well as the subsequent secretion mediated by Kex2 as a signal peptidase, ultimately leading to the release of recombinant proteins into the extracellular environment of the cell. In addition, within the P. pastoris expression system, the ease of purifying recombinant protein arises from its restricted synthesis of endogenous secretory proteins. Despite its achievements, scientists often encounter persistent challenges when attempting to utilize yeast for the production of recombinant proteins. This review is dedicated to discussing the current achievements in the usage of P. pastoris as an expression host. Furthermore, it sheds light on the strategies employed in the expression system and the optimization and development of the fermentative process of this yeast. Finally, the impediments (such as identifying high expression strains, improving secretion efficiency, and decreasing hyperglycosylation) and successful resolution of certain difficulties are put forth and deliberated upon in order to assist and promote the expression of complex proteins in this prevalent recombinant host.
    Matched MeSH terms: Recombinant Proteins/metabolism
  2. Safdar ME, Wang X, Abbas M, Ozaslan C, Asif M, Adnan M, et al.
    PLoS One, 2021;16(11):e0258920.
    PMID: 34739485 DOI: 10.1371/journal.pone.0258920
    Weed infestation is a persistent problem for centuries and continues to be major yield reducing issue in modern agriculture. Chemical weed control through herbicides results in numerous ecological, environmental, and health-related issues. Moreover, numerous herbicides have evolved resistance against available herbicides. Plant extracts are regarded as an alternative to herbicides and a good weed management option. The use of plant extracts is environmentally safe and could solve the problem of herbicide resistance. Therefore, laboratory and wire house experiments were conducted to evaluate the phytotoxic potential of three Fabaceae species, i.e., Cassia occidentalis L. (Coffee senna), Sesbania sesban (L.) Merr. (Common sesban) and Melilotus alba Medik. (White sweetclover) against seed germination and seedling growth of some broadleaved weed species. Firstly, N-hexane and aqueous extracts of these species were assessed for their phytotoxic effect against lettuce (Lactuca sativa L.). The extracts found more potent were further tested against germination and seedling growth of four broadleaved weed species, i.e., Parthenium hysterophorus L. (Santa-Maria), Trianthema portulacastrum L. (Pigweed), Melilotus indica L (Indian sweetclover). and Rumex dentatus L. (Toothed dock) in Petri dish and pot experiments. Aqueous extracts of all species were more toxic than their N-hexane forms for seed germination and seedling growth of lettuce; therefore, aqueous extracts were assessed for their phytotoxic potential against four broadleaved weed species. Aqueous extracts of all species proved phytotoxic against T. portulacastrum, P. hysterophorus, M. indica and R. dentatus and retarder their germination by 57, 90, 100 and 58%, respectively. Nevertheless, foliar spray of C. occidentalis extract was the most effective against T. portulacastrum as it reduced its dry biomass by 72%, while M. alba was effective against P. hysterophorus, R. dentatus and M. indica and reduced their dry biomass by 55, 68 and 81%, respectively. It is concluded that aqueous extracts of M. alba, S. sesban and C. occidentalis could be used to retard seed germination of T. portulacastrum, P. hysterophorus, M. indica and R. dentatus. Similarly, aqueous extracts of C. occidentalis can be used to suppress dry biomass of T. portulacastrum, and those of M. alba against P. hysterophorus, R. dentatus. However, use of these extracts needs their thorough testing under field conditions.
    Matched MeSH terms: Herbicides/metabolism; Fabaceae/metabolism; Plant Extracts/metabolism; Lettuce/metabolism; Melilotus/metabolism; Rumex/metabolism; Seedlings/metabolism*
  3. Lim YA, Ilankoon IMSK, Khong NMH, Priyawardana SD, Ooi KR, Chong MN, et al.
    Bioresour Technol, 2024 Feb;393:129898.
    PMID: 37890731 DOI: 10.1016/j.biortech.2023.129898
    Microalgae's exceptional photosynthetic prowess, CO2 adaptation, and high-value bioproduct accumulation make them prime candidates for microorganism-based biorefineries. However, most microalgae research emphasizes downstream processes and applications rather than fundamental biomass and biochemical balances and kinetic under the influence of greenhouse gases such as CO2. Therefore, three distinctly different microalgae species were cultivated under 0% to 20% CO2 treatments to examine their biochemical responses, biomass production and metabolite accumulations. Using a machine learning approach, it was found that Chlorella sorokiniana showed a positive relationship between biomass and chl a, chl b, carotenoids, and carbohydrates under increasing CO2 treatments, while Chlamydomonas angulosa too displayed positive relationships between biomass and all studied biochemical contents, with minimal trade-offs. Meanwhile, Nostoc sp. exhibited a negative correlation between biomass and lipid contents under increasing CO2 treatment. The study showed the potential of Chlorella, Chlamydomonas and Nostoc for commercialization in biorefineries and carbon capture systems where their trade-offs were identified for different CO2 treatments and could be prioritized based on commercial objectives. This study highlighted the importance of understanding trade-offs between biomass production and biochemical yields for informed decision-making in microalgae cultivation, in the direction of mass carbon capture for climate change mitigation.
    Matched MeSH terms: Carbon Dioxide/metabolism
  4. Suparmaniam U, Lam MK, Lim JW, Tan IS, Chin BLF, Shuit SH, et al.
    Biotechnol Adv, 2024;70:108280.
    PMID: 37944570 DOI: 10.1016/j.biotechadv.2023.108280
    Microalgae showcase an extraordinary capacity for synthesizing high-value phytochemicals (HVPCs), offering substantial potential for diverse applications across various industries. Emerging research suggests that subjecting microalgae to abiotic stress during cultivation and the harvesting stages can further enhance the accumulation of valuable metabolites within their cells, including carotenoids, antioxidants, and vitamins. This study delves into the pivotal impacts of manipulating abiotic stress on microalgae yields, with a particular focus on biomass and selected HVPCs that have received limited attention in the existing literature. Moreover, approaches to utilising abiotic stress to increase HVPCs production while minimising adverse effects on biomass productivity were discussed. The present study also encompasses a techno-economic assessment (TEA) aimed at pinpointing significant bottlenecks in the conversion of microalgae biomass into high-value products and evaluating the desirability of various conversion pathways. The TEA methodology serves as a valuable tool for both researchers and practitioners in the quest to identify sustainable strategies for transforming microalgae biomass into high-value products and goods. Overall, this comprehensive review sheds light on the pivotal role of abiotic stress in microalgae cultivation, promising insights that could lead to more efficient and sustainable approaches for HVPCs production.
    Matched MeSH terms: Carotenoids/metabolism
  5. Sieghart W, Chiou LC, Ernst M, Fabjan J, M Savić M, Lee MT
    Pharmacol Rev, 2022 Jan;74(1):238-270.
    PMID: 35017178 DOI: 10.1124/pharmrev.121.000293
    GABAA receptors containing the α6 subunit are highly expressed in cerebellar granule cells and less abundantly in many other neuronal and peripheral tissues. Here, we for the first time summarize their importance for the functions of the cerebellum and the nervous system. The cerebellum is not only involved in motor control but also in cognitive, emotional, and social behaviors. α6βγ2 GABAA receptors located at cerebellar Golgi cell/granule cell synapses enhance the precision of inputs required for cerebellar timing of motor activity and are thus involved in cognitive processing and adequate responses to our environment. Extrasynaptic α6βδ GABAA receptors regulate the amount of information entering the cerebellum by their tonic inhibition of granule cells, and their optimal functioning enhances input filtering or contrast. The complex roles of the cerebellum in multiple brain functions can be compromised by genetic or neurodevelopmental causes that lead to a hypofunction of cerebellar α6-containing GABAA receptors. Animal models mimicking neuropsychiatric phenotypes suggest that compounds selectively activating or positively modulating cerebellar α6-containing GABAA receptors can alleviate essential tremor and motor disturbances in Angelman and Down syndrome as well as impaired prepulse inhibition in neuropsychiatric disorders and reduce migraine and trigeminal-related pain via α6-containing GABAA receptors in trigeminal ganglia. Genetic studies in humans suggest an association of the human GABAA receptor α6 subunit gene with stress-associated disorders. Animal studies support this conclusion. Neuroimaging and post-mortem studies in humans further support an involvement of α6-containing GABAA receptors in various neuropsychiatric disorders, pointing to a broad therapeutic potential of drugs modulating α6-containing GABAA receptors. SIGNIFICANCE STATEMENT: α6-Containing GABAA receptors are abundantly expressed in cerebellar granule cells, but their pathophysiological roles are widely unknown, and they are thus out of the mainstream of GABAA receptor research. Anatomical and electrophysiological evidence indicates that these receptors have a crucial function in neuronal circuits of the cerebellum and the nervous system, and experimental, genetic, post-mortem, and pharmacological studies indicate that selective modulation of these receptors offers therapeutic prospects for a variety of neuropsychiatric disorders and for stress and its consequences.
    Matched MeSH terms: Neurons/metabolism
  6. Wayah SB, Philip K
    Microb Cell Fact, 2018 Aug 13;17(1):125.
    PMID: 30103750 DOI: 10.1186/s12934-018-0972-1
    BACKGROUND: Emergence of antibiotic resistance and growing consumer trend towards foods containing biopreservatives stimulated the search for alternative antimicrobials. This research is aimed at characterizing, investigating the mechanism of action, scale up optimization and evaluating the biopreservative potential of a bacteriocin from Lactobacillus fermentum.

    RESULTS: Fermencin SA715 is a novel, broad-spectrum, non-pore-forming and cell wall-associated bacteriocin isolated from L. fermentum GA715 of goat milk origin. A combination of hydrophobic interaction chromatography, solid-phase extraction and reversed-phase HPLC was necessary for purification of the bacteriocin to homogeneity. It has a molecular weight of 1792.537 Da as revealed by MALDI-TOF mass spectrometry. Fermencin SA715 is potent at micromolar concentration, possesses high thermal and pH stability and inactivated by proteolytic enzymes thereby revealing its proteinaceous nature. Biomass accumulation and production of fermencin SA715 was optimum in a newly synthesized growth medium. Fermencin SA715 did not occur in the absence of manganese(II) sulphate. Tween 80, ascorbic acid, sodium citrate and magnesium sulphate enhanced the production of fermencin SA715. Sucrose is the preferred carbon source for growth and bacteriocin production. Sodium chloride concentration higher than 1% suppressed growth and production of fermencin SA715. Optimum bacteriocin production occurred at 37 °C and pH 6-7. Scale up of fermencin SA715 production involved batch fermentation in a bioreactor at a constant pH of 6.5 which resulted in enhanced production. Fermencin SA715 doubled the shelf life and improved the microbiological safety of fresh banana. Bacteriocin application followed by refrigeration tripled the shell life of banana.

    CONCLUSIONS: This study reveals the huge potential of fermencin SA715 as a future biopreservative for bananas and reveals other interesting characteristics which can be exploited in the preservation of other foods. Furthermore insights on the factors influencing the production of fermencin SA715 have been revealed and optimized condition for its production has been established facilitating future commercial production.

    Matched MeSH terms: Lactobacillus fermentum/metabolism*
  7. Liu H, Guo X, Jiang K, Shi B, Liu L, Hou R, et al.
    Food Chem, 2024 Jul 15;446:138739.
    PMID: 38412807 DOI: 10.1016/j.foodchem.2024.138739
    Nowadays, due to the rise of fast-food consumption, the metabolic diseases are increasing as a result of high-sugar and high-fat diets. Therefore, there is an urgent need for natural, healthy and side-effect-free diets in daily life. Whole grain supplementation can enhance satiety and regulate energy metabolism, effects that have been attributed to polyphenol content. Dietary polyphenols interact with gut microbiota to produce intermediate metabolites that can regulate appetite while also enhancing prebiotic effects. This review considers how interactions between gut metabolites and dietary polyphenols might regulate appetite by acting on the gut-brain axis. In addition, further advances in the study of dietary polyphenols and gut microbial metabolites on energy metabolism and gut homeostasis are summarized. This review contributes to a better understanding of how dietary polyphenols regulate appetite via the gut-brain axis, thereby providing nutritional references for citizens' dietary preferences.
    Matched MeSH terms: Polyphenols/metabolism
  8. Singh P, Lau CSS, Siah SY, Chua KO, Ting ASY
    Arch Microbiol, 2024 Mar 22;206(4):188.
    PMID: 38519709 DOI: 10.1007/s00203-024-03895-8
    Biodegradation is an eco-friendly measure to address plastic pollution. This study screened four bacterial isolates that were capable of degrading recalcitrant polymers, i.e., low-density polyethylene, polyethylene terephthalate, and polystyrene. The unique bacterial isolates were obtained from plastic polluted environment. Dermacoccus sp. MR5 (accession no. OP592184) and Corynebacterium sp. MR10 (accession no. OP536169) from Malaysian mangroves and Bacillus sp. BS5 (accession no. OP536168) and Priestia sp. TL1 (accession no. OP536170) from a sanitary landfill. The four isolates showed a gradual increase in the microbial count and the production of laccase and esterase enzymes after 4 weeks of incubation with the polymers (independent experiment set). Bacillus sp. BS5 produced the highest laccase 15.35 ± 0.19 U/mL and showed the highest weight loss i.e., 4.84 ± 0.6% for PS. Fourier transform infrared spectroscopy analysis confirmed the formation of carbonyl and hydroxyl groups as a result of oxidation reactions by enzymes. Liquid chromatography-mass spectrometry analysis showed the oxidation of the polymers to small molecules (alcohol, ethers, and acids) assimilated by the microbes during the degradation. Field emission scanning electron microscopy showed bacterial colonization, biofilm formation, and surface erosion on the polymer surface. The result provided significant insight into enzyme activities and the potential of isolates to target more than one type of polymer for degradation.
    Matched MeSH terms: Polyethylene/metabolism
  9. Ng MJ, Mohamad Razif MF, Kong BH, Yap HY, Ng ST, Tan CS, et al.
    J Ethnopharmacol, 2024 Jun 28;328:118073.
    PMID: 38513780 DOI: 10.1016/j.jep.2024.118073
    ETHNOPHARMACOLOGICAL RELEVANCE: Medicinal mushrooms belonging to the Lignosus spp., colloquially known as Tiger Milk mushrooms (TMMs), are used as traditional medicine by communities across various regions of China and Southeast Asia to enhance immunity and to treat various diseases. At present, three Lignosus species have been identified in Malaysia: L. rhinocerus, L. tigris, and L. cameronensis. Similarities in their macroscopic morphologies and the nearly indistinguishable appearance of their sclerotia often lead to interchangeability between them. Hence, substantiation of their traditional applications via identification of their individual bioactive properties is imperative in ensuring that they are safe for consumption. L. tigris was first identified in 2013. Thus far, studies on L. tigris cultivar sclerotia (Ligno TG-K) have shown that it possesses significant antioxidant activities and has greater antiproliferative action against selected cancer cells in vitro compared to its sister species, L. rhinocerus TM02®. Our previous genomics study also revealed significant genetic dissimilarities between them. Further omics investigations on Ligno TG-K hold immense potential in facilitating the identification of its bioactive compounds and their associated bioactivities.

    AIM OF STUDY: The overall aim of this study was to investigate the gene expression profile of Ligno TG-K via de novo RNA-seq and pathway analysis. We also aimed to identify highly expressed genes encoding compounds that contribute to its cytotoxic and antioxidant properties, as well as perform a comparative transcriptomics analysis between Ligno TG-K and its sister species, L. rhinocerus TM02®.

    MATERIALS AND METHODS: Total RNA from fresh 3-month-old cultivated L. tigris sclerotia (Ligno TG-K) was extracted and analyzed via de novo RNA sequencing. Expressed genes were analyzed using InterPro and NCBI-Nr databases for domain identification and homology search. Functional categorization based on gene functions and pathways was performed using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Clusters of Orthologous Genes (COG) databases. Selected genes were subsequently subjected to phylogenetic analysis.

    RESULTS: Our transcriptomics analysis of Ligno TG-K revealed that 68.06% of its genes are expressed in the sclerotium; 80.38% of these were coding transcripts. Our analysis identified highly expressed transcripts encoding proteins with prospective medicinal properties. These included serine proteases (FPKM = 7356.68), deoxyribonucleases (FPKM = 3777.98), lectins (FPKM = 3690.87), and fungal immunomodulatory proteins (FPKM = 2337.84), all of which have known associations with anticancer activities. Transcripts linked to proteins with antioxidant activities, such as superoxide dismutase (FPKM = 1161.69) and catalase (FPKM = 1905.83), were also highly expressed. Results of our sequence alignments revealed that these genes and their orthologs can be found in other mushrooms. They exhibit significant sequence similarities, suggesting possible parallels in their anticancer and antioxidant bioactivities.

    CONCLUSION: This study is the first to provide a reference transcriptome profile of genes expressed in the sclerotia of L. tigris. The current study also presents distinct COG profiles of highly expressed genes in Ligno TG-K and L. rhinocerus TM02®, highlighting that any distinctions uncovered may be attributed to their interspecies variations and inherent characteristics that are unique to each species. Our findings suggest that Ligno TG-K contains bioactive compounds with prospective medicinal properties that warrant further investigations.

    CLASSIFICATION: Systems biology and omics.

    Matched MeSH terms: Antioxidants/metabolism
  10. Eskandari A, Nezhad NG, Leow TC, Rahman MBA, Oslan SN
    Arch Microbiol, 2024 Mar 12;206(4):152.
    PMID: 38472371 DOI: 10.1007/s00203-024-03871-2
    Producing recombinant proteins is a major accomplishment of biotechnology in the past century. Heterologous hosts, either eukaryotic or prokaryotic, are used for the production of these proteins. The utilization of microbial host systems continues to dominate as the most efficient and affordable method for biotherapeutics and food industry productions. Hence, it is crucial to analyze the limitations and advantages of microbial hosts to enhance the efficient production of recombinant proteins on a large scale. E. coli is widely used as a host for the production of recombinant proteins. Researchers have identified certain obstacles with this host, and given the growing demand for recombinant protein production, there is an immediate requirement to enhance this host. The following review discusses the elements contributing to the manifestation of recombinant protein. Subsequently, it sheds light on innovative approaches aimed at improving the expression of recombinant protein. Lastly, it delves into the obstacles and optimization methods associated with translation, mentioning both cis-optimization and trans-optimization, producing soluble recombinant protein, and engineering the metal ion transportation. In this context, a comprehensive description of the distinct features will be provided, and this knowledge could potentially enhance the expression of recombinant proteins in E. coli.
    Matched MeSH terms: Recombinant Proteins/metabolism
  11. Daud NNM, Al-Zaqri N, Yaakop AS, Ibrahim MNM, Guerrero-Barajas C
    Environ Sci Pollut Res Int, 2024 Mar;31(12):18750-18764.
    PMID: 38349489 DOI: 10.1007/s11356-024-32372-4
    Benthic microbial fuel cell (BMFC) is the most promising type of bioelectrochemical approach for producing electrons and protons from natural organic waste. In the present work, a single-chamber BMFC was used, containing sago (Cycas revoluta) waste as the organic feed for microorganisms. The local wastewater was supplemented with heavy metal ions (Pb2+, Cd2+, Cr3+, Ni2+, Co2+, Ag+, and Cu2+) and used as an inoculation source to evaluate the performance of BMFC against the toxic metal remediations. According to the experimental results, the maximum power density obtained was 42.55 mW/m2 within 25 days of the BMFC operation. The maximum remediation efficiency of the metal ion removal from the wastewater was found to be 99.30% (Ag+). The conductive pili-type bacteria species (Acinetobacter species, Leucobacter species, Bacillus species, Proteus species. and Klebsiella pneumoniae) were found in the present study during isolation and identification processes. This study's multiple parameter optimization revealed that pH 7 and room temperature is the best condition for optimal performance. Finally, this study included the mechanism, future recommendations, and concluding remarks.
    Matched MeSH terms: Bacteria/metabolism
  12. Du Q, Li H, Tu M, Wu Z, Zhang T, Liu J, et al.
    Colloids Surf B Biointerfaces, 2024 Jun;238:113929.
    PMID: 38677155 DOI: 10.1016/j.colsurfb.2024.113929
    In recent years, with increasing emphasis on healthy, green, and sustainable consumption concepts, plant-based foods have gained popularity among consumers. As widely sourced plant-based raw materials, legume proteins are considered sustainable and renewable alternatives to animal proteins. However, legume proteins have limited functional properties, which hinder their application in food products. LAB fermentation is a relatively natural processing method that is safer than chemical/physical modification methods and can enrich the functional properties of legume proteins through biodegradation and modification. Therefore, changes in legume protein composition, structure, and functional properties and their related mechanisms during LAB fermentation are described. In addition, the specific enzymatic hydrolysis mechanisms of different LAB proteolytic systems on legume proteins are also focused in this review. The unique proteolytic systems of different LAB induce specific enzymatic hydrolysis of legume proteins, resulting in the production of hydrolysates with diverse functional properties, including solubility, emulsibility, gelability, and foamability, which are determined by the composition (peptide/amino acid) and structure (secondary/tertiary) of legume proteins after LAB fermentation. The correlation between LAB-specific enzymatic hydrolysis, protein composition and structure, and protein functional properties will assist in selecting legume protein raw materials and LAB strains for legume plant-based food products and expand the application of legume proteins in the food industry.
    Matched MeSH terms: Lactobacillales/metabolism
  13. Teoh EY, Teo CH, Baharum NA, Tan BC
    PeerJ, 2024;12:e17285.
    PMID: 38708359 DOI: 10.7717/peerj.17285
    BACKGROUND: Waterlogging poses a significant threat to plant growth and yield worldwide. Identifying the genes responsible for mitigating waterlogging stress is crucial. Ethylene-responsive factors (ERFs) are transcriptional regulators that respond to various biotic and abiotic stresses in plants. However, their roles and involvement in responding to waterlogging stress remain largely unexplored. Hence, this study aimed to elucidate the role of ERFs in enhancing banana plant resilience to waterlogging.

    METHODS: We hypothesized that introducing a group VII ERF transcription factor in Arabidopsis could enhance waterlogging stress tolerance. To test this hypothesis, we isolated MaERFVII3 from banana roots, where it exhibited a significant induction in response to waterlogging stress. The isolated MaERFVII3 was introduced into Arabidopsis plants for functional gene studies.

    RESULTS: Compared with wild-type plants, the MaERFVII3-expressing Arabidopsis showed increased survival and biomass under waterlogging stress. Furthermore, the abundance of transcripts related to waterlogging and hypoxia response showed an elevation in transgenic plants but a decrease in wild-type and empty vector plants when exposed to waterlogging stress. Our results demonstrate the significant contribution of MaERFVII3 to waterlogging tolerance in Arabidopsis, providing baseline data for further exploration and potentially contributing to crop improvement programs.

    Matched MeSH terms: Water/metabolism
  14. Curren E, Kuwahara VS, Yoshida T, Leong SCY
    Funct Integr Genomics, 2024 Mar 02;24(2):46.
    PMID: 38429576 DOI: 10.1007/s10142-024-01328-9
    Cyanobacteria are oxygenic photosynthetic organisms which are found across many ecosystems, including freshwater and marine habitats. They are also found on natural and artificial surfaces. In this study, we cultured and characterise a novel cyanobacterium from the surfaces of foam microplastics of tropical coastal waters. We study the chemical ecology of this cyanobacterium, Sphaerothrix gracilis gen. et sp. nov., together with its potential to form harmful cyanobacterial blooms and bioremediation applications to combat plastic pollution. The genome of S. gracilis spanned 6.7 Mbp, with identification of antibiotic resistance, nitrogen-fixation, plastic-degrading and genes involved in harmful metabolite production. The transport of potentially harmful S. gracilis in coastal environments could have severe implications on human health and food security, especially in times of a cyanobacterial bloom.
    Matched MeSH terms: Plastics/metabolism
  15. Seow SR, Mat S, Ahmad Azam A, Rajab NF, Safinar Ismail I, Singh DKA, et al.
    Expert Rev Mol Med, 2024 Apr 12;26:e8.
    PMID: 38606593 DOI: 10.1017/erm.2024.7
    Osteoarthritis (OA) commonly affects the knee and hip joints and accounts for 19.3% of disability-adjusted life years and years lived with disability worldwide (Refs , ). Early management is important in order to avoid disability uphold quality of life (Ref. ). However, a lack of awareness of subclinical and early symptomatic stages of OA often hampers early management (Ref. ). Moreover, late diagnosis of OA among those with severe disease, at a stage when OA management becomes more complicated is common (Refs , , , ). Established risk factors for the development and progression of OA include increasing age, female, history of trauma and obesity (Ref. ). Recent studies have also drawn a link between OA and metabolic syndrome, which is characterized by insulin resistance, dyslipidaemia and hypertension (Refs , ).
    Matched MeSH terms: Biomarkers/metabolism
  16. Mohan P, Shahul Hamid F, Furumai H, Nishikawa K
    Mar Environ Res, 2024 Jul;199:106581.
    PMID: 38878345 DOI: 10.1016/j.marenvres.2024.106581
    Anadara granosa or blood cockles have been reported to be a candidate for biomonitoring agents due to their sedimentary nature and their nutrient uptake mechanisms. Yet, this bivalve is still regarded as a delicacy in Asian cuisine. Malaysia is the largest exporter of this sea product that contaminated cockles may also be experienced by the importing countries. However, the bioaccumulation of microplastics in A. granosa cultivated in Malaysia has not been extensively studied. It is crucial to comprehend the risk posed to humans by consuming A. granosa in their diet. Therefore, the purpose of this research is to investigate the levels of microplastic accumulation in A. granosa from major exporters in Peninsular Malaysia, to evaluate the associated risk of microplastics on the species, and to estimate daily human consumption of microplastics through the consumption of A. granosa. The abundance of microplastics was quantified through the use of a stereo microscope, and the polymer type was determined using FTIR and micro-FTIR. Findings from this investigation revealed that all samples of A. granosa were contaminated with microplastics, with the highest levels of accumulation found in bivalves collected from the west coast (0.26 ± 0.15 particles/g) of Peninsular Malaysia. Fragment and fiber microplastics, measuring between 0.05 and 0.1 mm in size, were found to be the most prevalent in A. granosa, with blue being the dominant identified colour and rayon being the most common polymer type. Microplastic risk assessment due to the presence of polyacrylate, polycarbonate (PC), and polymethyl methacrylate (PMMA) resulted in a high risk of contamination for A. granosa. It was further determined that the current estimated dietary intake (EDI) suggests that consumers of A. granosa uptake approximately 21.8-93.5 particles/person/year of microplastics. This study highlights that A. granosa accumulates microplastics, which could potentially result in bioaccumulation and biomagnification in humans through consumption.
    Matched MeSH terms: Arcidae/metabolism
  17. Mei Y, Hu H, Deng L, Sun X, Tan W
    Sci Rep, 2022 Jul 27;12(1):12857.
    PMID: 35896572 DOI: 10.1038/s41598-022-16119-0
    Isosteviol sodium (STVNa) is a beyerane diterpene synthesized via acid hydrolysis of stevioside, which can improve glucose and lipid metabolism in animals with diabetes. However, it remains unknown whether STVNa can exhibit a therapeutic effect on nonalcoholic fatty liver disease (NAFLD) and its underlying mechanism. We hypothesize that autophagic initiation may play a key role in mediating the development of NAFLD. Herein, we assessed the effects of STVNa on NAFLD and its underlying mechanisms. The results demonstrated that STVNa treatment effectively ameliorated NAFLD in rats fed high-fat diet (HFD). Moreover, STVNa decreased the expression of inflammation-related genes and maintained a balance of pro-inflammatory cytokines in NAFLD rats. STVNa also reduced lipid accumulation in free fatty acid (FFA)-exposed LO2 cells. In addition, STVNa attenuated hepatic oxidative stress and fibrosis in NAFLD rats. Furthermore, STVNa enhanced autophagy and activated Sirtuin 1/adenosine monophosphate-activated protein kinase (Sirt1/AMPK) pathway both in vivo and in vitro, thus attenuating intracellular lipid accumulation. In summary, STVNa could improve lipid metabolism in NAFLD by initiating autophagy via Sirt1/AMPK pathway. Therefore, STVNa may be an alternative therapeutic agent for treatment of NAFLD.
    Matched MeSH terms: Adenosine Monophosphate/metabolism; Fatty Acids, Nonesterified/metabolism; Liver/metabolism; Sodium/metabolism; Lipid Metabolism; AMP-Activated Protein Kinases/metabolism; Sirtuin 1/metabolism
  18. Haq IU, Khurshid A, Inayat R, Zhang K, Liu C, Ali S, et al.
    PLoS One, 2021;16(11):e0259749.
    PMID: 34752476 DOI: 10.1371/journal.pone.0259749
    The fall armyworm (Spodoptera frugiperda) is a major economic pest in the United States and has recently become a significant concern in African and Asian countries. Due to its increased resistance to current management strategies, including pesticides and transgenic corn, alternative management techniques have become more necessary. Currently, silicon (Si) is being used in many pest control systems due to its ability to increase plant resistance to biotic and abiotic factors and promote plant growth. The current experiments were carried out at the College of Plant Protection, Gansu Agricultural University, Lanzhou, China, to test the effect of Si on lifetable parameters and lipase activity of fall armyworm and vegetative and physiological parameters of maize plants. Two sources of Si (silicon dioxide: SiO2 and potassium silicate: K2SiO3) were applied on maize plants with two application methods (foliar application and soil drenching). The experiment results revealed that foliar applications of SiO2 and K2SiO3 significantly (P≤0.05) increased mortality percentage and developmental period and decreased larval and pupal biomass of fall armyworm. Similarly, both Si sources significantly (P≤0.05) reduced lipase activity of larvae, and fecundity of adults, whereas prolonged longevity of adults. Among plant parameters, a significant increase in fresh and dry weight of shoot, stem length, chlorophyll content, and antioxidant activity was observed with foliar applications of Si. Root fresh and dry weight was significantly (P ≤ 0.05) higher in plants treated with soil drenching of SiO2 and K2SiO3. Moreover, SiO2 performed better for all parameters as compared to K2SiO3 and control treatment. The study conclusively demonstrated a significant negative effect on various biological parameters of fall armyworm when plants were treated with Si, so it can be a promising strategy to control this pest.
    Matched MeSH terms: Lipase/metabolism
  19. Seevanathan Y, Zawawi N, Salleh AB, Oslan SN, Ashaari NS, Amir Hamzah AS, et al.
    Carbohydr Res, 2024 Nov;545:109293.
    PMID: 39437465 DOI: 10.1016/j.carres.2024.109293
    The increasing concern over sugar-related health issues has sparked research interest in seeking alternatives to sucrose. Trehalulose, a beneficial structural isomer of sucrose, is a non-cariogenic sugar with a low glycemic and insulinemic index. Besides its potential as a sugar substitute, trehalulose exhibits high antioxidant properties, making it attractive for various industrial applications. Despite its numerous advantages and potential application in various sectors, the industrial adoption of trehalulose has yet to be established due to lack of studies on its characteristics and practical uses. This review aims to provide a comprehensive overview of the properties of trehalulose, emphasizing its health benefits. The industrial prospects of trehalulose as sweetener and reducing agent, particularly in food and beverages pharmaceutical, and cosmeceutical sectors, are explored. Additionally, the review delves into the sources of trehalulose and the diverse organisms capable of producing trehalulose. The biosynthesis of this sugar primarily involves an enzyme-mediated process. Thus, these enzymes' properties, mechanisms, and the heterologous expression of genes associated with trehalulose production are explored. The strategies discussed in this review can be improved and applied to establish trehalulose bio-factories for efficient synthesis of trehalulose in the future. With further research and development, trehalulose holds promise as a valuable component across various industries.
    Matched MeSH terms: Sweetening Agents/metabolism
  20. Kabir Ahmad SF, Kanadasan G, Lee KT, Vadivelu VM
    Crit Rev Biotechnol, 2024 Dec;44(8):1594-1609.
    PMID: 38485522 DOI: 10.1080/07388551.2024.2317785
    Microalgae-based technology is widely utilized in wastewater treatment and resource recovery. However, the practical implementation of microalgae-based technology is hampered by the difficulty in separating microalgae from treated water due to the low density of microalgae. This review is designed to find the current status of the development and utilization of microalgae biogranulation technology for better and more cost-effective wastewater treatment. This review reveals that the current trend of research is geared toward developing microalgae-bacterial granules. Most previous works were focused on studying the effect of operating conditions to improve the efficiency of wastewater treatment using microalgae-bacterial granules. Limited studies have been directed toward optimizing operating conditions to induce the secretion of extracellular polymeric substances (EPSs), which promotes the development of denser microalgae granules with enhanced settling ability. Likewise, studies on the understanding of the EPS role and the interaction between microalgae cells in forming granules are scarce. Furthermore, the majority of current research has been on the cultivation of microalgae-bacteria granules, which limits their application only in wastewater treatment. Cultivation of microalgae granules without bacteria has greater potential because it does not require additional purification and can be used for border applications.
    Matched MeSH terms: Bacteria/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links