Displaying publications 261 - 280 of 623 in total

Abstract:
Sort:
  1. Sung TC, Liu CH, Huang WL, Lee YC, Kumar SS, Chang Y, et al.
    Biomater Sci, 2019 Oct 28.
    PMID: 31656967 DOI: 10.1039/c9bm00817a
    Current xeno-free and chemically defined methods for the differentiation of hPSCs (human pluripotent stem cells) into cardiomyocytes are not efficient and are sometimes not reproducible. Therefore, it is necessary to develop reliable and efficient methods for the differentiation of hPSCs into cardiomyocytes for future use in cardiovascular research related to drug discovery, cardiotoxicity screening, and disease modeling. We evaluated two representative differentiation methods that were reported previously, and we further developed original, more efficient methods for the differentiation of hPSCs into cardiomyocytes under xeno-free, chemically defined conditions. The developed protocol successively differentiated hPSCs into cardiomyocytes, approximately 90-97% of which expressed the cardiac marker cTnT, with beating speeds and sarcomere lengths that were similar to those of a healthy adult human heart. The optimal cell culture biomaterials for the cardiac differentiation of hPSCs were also evaluated using extracellular matrix-mimetic material-coated dishes. Synthemax II-coated and Laminin-521-coated dishes were found to be the most effective and efficient biomaterials for the cardiac differentiation of hPSCs according to the observation of hPSC-derived cardiomyocytes with high survival ratios, high beating colony numbers, a similar beating frequency to that of a healthy adult human heart, high purity levels (high cTnT expression) and longer sarcomere lengths similar to those of a healthy adult human heart.
  2. Azman A, Vasodavan K, Joseph N, Kumar S, Hamat RA, Nordin SA, et al.
    Future Microbiol, 2019 Nov;14:1417-1428.
    PMID: 31777284 DOI: 10.2217/fmb-2019-0174
    Aims: To study physiological and proteomic analysis of Stenotrophomonas maltophilia grown under iron-limited condition. Methods: One clinical and environmental S. maltophilia isolates grown under iron-depleted conditions were studied for siderophore production, ability to kill nematodes and alteration in protein expression using isobaric tags for relative and absolute quantification (ITRAQ). Results & conclusions: Siderophore production was observed in both clinical and environmental strains under iron-depleted conditions. Caenorhabditis elegans assay showed higher killing rate under iron-depleted (96%) compared with normal condition (76%). The proteins identified revealed, 96 proteins upregulated and 26 proteins downregulated for the two isolates under iron depletion. The upregulated proteins included several iron acquisition proteins, metabolic proteins and putative virulence proteins.
  3. Kumar S, Prasad S, Yadav KK, Shrivastava M, Gupta N, Nagar S, et al.
    Environ Res, 2019 12;179(Pt A):108792.
    PMID: 31610391 DOI: 10.1016/j.envres.2019.108792
    This review emphasizes the role of toxic metal remediation approaches due to their broad sustainability and applicability. The rapid developmental processes can incorporate a large quantity of hazardous and unseen heavy metals in all the segments of the environment, including soil, water, air and plants. The released hazardous heavy metals (HHMs) entered into the food chain and biomagnified into living beings via food and vegetable consumption and originate potentially health-threatening effects. The physical and chemical remediation approaches are restricted and localized and, mainly applied to wastewater and soils and not the plant. The nanotechnological, biotechnological and genetical approaches required to more rectification and sustainability. A cellular, molecular and nano-level understanding of the pathways and reactions are responsible for potentially toxic metals (TMs) accumulation. These approaches can enable the development of crop varieties with highly reduced concentrations of TMs in their consumable foods and vegetables. As a critical analysis by authors observed that nanoparticles could provide very high adaptability for both in-situ and ex-situ remediation of hazardous heavy metals (HHMs) in the environment. These methods could be used for the improvement of the inbuilt genetic potential and phytoremediation ability of plants by developing transgenic. These biological processes involve the transfer of gene of interest, which plays a role in hazardous metal uptake, transport, stabilization, inactivation and accumulation to increased host tolerance. This review identified that use of nanoremediation and combined biotechnological and, transgenic could help to enhance phytoremediation efficiency in a sustainable way.
  4. Rajeshkumar S, Menon S, Venkat Kumar S, Tambuwala MM, Bakshi HA, Mehta M, et al.
    J. Photochem. Photobiol. B, Biol., 2019 Aug;197:111531.
    PMID: 31212244 DOI: 10.1016/j.jphotobiol.2019.111531
    Environment friendly methods for the synthesis of copper nanoparticles have become a valuable trend in the current scenario. The utilization of phytochemicals from plant extracts has become a unique technology for the synthesis of nanoparticles, as they possess dual nature of reducing and capping agents to the nanoparticles. In the present investigation we have synthesized copper nanoparticles (CuNPs) using a rare medicinal plant Cissus arnotiana and evaluated their antibacterial activity against gram negative and gram positive bacteria. The morphology and characterization of the synthesized CuNPs were studied and done using UV-Visible spectroscopy at a wavelength range of 350-380 nm. XRD studies were performed for analyzing the crystalline nature; SEM and TEM for evaluating the spherical shape within the size range of 60-90 nm and AFM was performed to check the surface roughness. The biosynthesized CuNPs showed better antibacterial activity against the gram-negative bacteria, E. coli with an inhibition zone of 22.20 ± 0.16 mm at 75 μg/ml. The antioxidant property observed was comparatively equal with the standard antioxidant agent ascorbic acid at a maximum concentration of 40 μg/ ml. This is the first study reported on C. arnotiana mediated biosynthesis of copper nanoparticles, where we believe that the findings can pave way for a new direction in the field of nanotechnology and nanomedicine where there is a significant potential for antibacterial and antioxidant activities. We predict that, these could lead to an exponential increase in the field of biomedical applications, with the utilization of green synthesized CuNPs, due to its remarkable properties. The highest antibacterial property was observed with gram-negative strains mainly, E. coli, due to its thin peptidoglycan layer and electrostatic interactions between the bacterial cell wall and CuNPs surfaces. Hence, CuNPs can be potent therapeutic agents in several biomedical applications, which are yet to be explored in the near future.
  5. Samrot AV, Saigeetha S, Mun CY, Abirami S, Purohit K, Cypriyana PJJ, et al.
    Sci Rep, 2021 12 31;11(1):24511.
    PMID: 34972829 DOI: 10.1038/s41598-021-03328-2
    Latex, a milky substance found in a variety of plants which is a natural source of biologically active compounds. In this study, Latex was collected from raw Carica papaya and was characterized using UV-Vis, FTIR and GC-MS analyses. Super Paramagnetic Iron Oxide Nanoparticles (SPIONs) were synthesized, coated with C. papaya latex (PL-Sp) and characterized using UV-Vis, FT-IR, SEM-EDX, XRD, VSM and Zeta potential analyses. SPIONs and latex coated SPIONs (PL-Sp) were used in batch adsorption study for effective removal of Methylene blue (MB) dye, where (PL-Sp) removed MB dye effectively. Further the PL-Sp was used to produce a nanoconjugate loaded with curcumin and it was characterized using UV-Vis spectrophotometer, FT-IR, SEM-EDX, XRD, VSM and Zeta potential. It showed a sustained drug release pattern and also found to have good antibacterial and anticancer activity.
  6. Dahiya S, Dahiya R, Fuloria NK, Mourya R, Dahiya S, Fuloria S, et al.
    Mini Rev Med Chem, 2022 Jan 13.
    PMID: 35049431 DOI: 10.2174/1389557522666220113122117
    Bridged peptide macrobicycles (BPMs) from natural resources belong to types of compounds that are not investigated fully in terms of their formation, pharmacological potential and stereo-chemical properties. This division of biologically active congeners with multiple circular rings, has merits over other varieties of peptide molecules. BPMs form one of the most hopeful grounds for establishment of drugs because of their close resemblance and biocompatibility to proteins, and these bio-actives are debated as feasible realistic tools in diverse biomedical applications. Despite huge potential, poor metabolic stability and cell permeability limit the therapeutic success of macrocyclic peptides. In this review, we have comprehensively explored major bicyclic peptides sourced from plants and mushrooms including βs-leucyl-tryptophano-histidine bridged and tryptophano-cysteine bridged peptide macrobicycles. The unique structural features, structure activity relationship, synthetic routes, bioproperties and therapeutic potential of the natural BPMs are also discussed.
  7. Benelli G, Maggi F, Romano D, Stefanini C, Vaseeharan B, Kumar S, et al.
    Ticks Tick Borne Dis, 2017 10;8(6):821-826.
    PMID: 28865955 DOI: 10.1016/j.ttbdis.2017.08.004
    Ticks serve as vectors of a wide range of infectious agents deleterious to humans and animals. Tick bite prevention is based to a large extent on the use of chemical repellents and acaricides. However, development of resistance in targeted ticks, environmental pollution, and contamination of livestock meat and milk are major concerns. Recently, metal, metal oxide and carbon nanoparticles, particularly those obtained through green fabrication routes, were found to be highly effective against a wide array of arthropod pests and vectors. We summarize current knowledge on the toxicity of nanoparticles against tick vectors of medical and veterinary importance. We also discuss the toxicity of products from botanical- and bacterial-based as well as classic chemical nanosynthesis routes, showing differences in bioactivity against ticks based on the products used for the fabrication of nanoparticles. Further research is needed, to validate the efficacy of nanoparticle-based acaricides in the field and clarify mechanisms of action of nanoparticles against ticks. From a technical point of view, the literature analyzed here showed little standardization of size and weight of tested ticks, a lack of uniform methods to assess toxicity and concerns related to data analysis. Finally, an important challenge for future research is the need for ecotoxicology studies to evaluate potential negative effects on non-target organisms and site contamination arising from nanoparticle-based treatments in close proximity of livestock and farmers.
  8. Priya SP, Sakinah S, Sharmilah K, Hamat RA, Sekawi Z, Higuchi A, et al.
    Acta Trop, 2017 Dec;176:206-223.
    PMID: 28823908 DOI: 10.1016/j.actatropica.2017.08.007
    Immuno-pathogenesis of leptospirosis can be recounted well by following its trail path from entry to exit, while inducing disastrous damages in various tissues of the host. Dysregulated, inappropriate and excessive immune responses are unanimously blamed in fatal leptospirosis. The inherent abilities of the pathogen and inabilities of the host were debated targeting the severity of the disease. Hemorrhagic manifestation through various mechanisms leading to a fatal end is observed when this disease is unattended. The similar vascular destructions and hemorrhage manifestations are noted in infections with different microbes in endemic areas. The simultaneous infection in a host with more than one pathogen or parasite is referred as the coinfection. Notably, common endemic infections such as leptospirosis, dengue, chikungunya, and malaria, harbor favorable environments to flourish in similar climates, which is aggregated with stagnated water and aggravated with the poor personal and environmental hygiene of the inhabitants. These factors aid the spread of pathogens and parasites to humans and potential vectors, eventually leading to outbreaks of public health relevance. Malaria, dengue and chikungunya need mosquitoes as vectors, in contrast with leptospirosis, which directly invades human, although the environmental bacterial load is maintained through other mammals, such as rodents. The more complicating issue is that infections by different pathogens exhibiting similar symptoms but require different treatment management. The current review explores different pathogens expressing specific surface proteins and their ability to bind with array of host proteins with or without immune response to enter into the host tissues and their ability to evade the host immune responses to invade and their affinity to certain tissues leading to the common squeal of hemorrhage. Furthermore, at the host level, the increased susceptibility and inability of the host to arrest the pathogens' and parasites' spread in different tissues, various cytokines accumulated to eradicate the microorganisms and their cellular interactions, the antibody dependent defense and the susceptibility of individual organs bringing the manifestation of the diseases were explored. Lastly, we provided a discussion on the immune trail path of pathogenesis from entry to exit to narrate the similarities and dissimilarities among various hemorrhagic fevers mentioned above, in order to outline future possibilities of prevention, diagnosis, and treatment of coinfections, with special reference to endemic areas.
  9. Higuchi A, Ling QD, Kumar SS, Munusamy MA, Alarfaj AA, Chang Y, et al.
    Lab Invest, 2015 Jan;95(1):26-42.
    PMID: 25365202 DOI: 10.1038/labinvest.2014.132
    Induced pluripotent stem cells (iPSCs) provide a platform to obtain patient-specific cells for use as a cell source in regenerative medicine. Although iPSCs do not have the ethical concerns of embryonic stem cells, iPSCs have not been widely used in clinical applications, as they are generated by gene transduction. Recently, iPSCs have been generated without the use of genetic material. For example, protein-induced PSCs and chemically induced PSCs have been generated by the use of small and large (protein) molecules. Several epigenetic characteristics are important for cell differentiation; therefore, several small-molecule inhibitors of epigenetic-modifying enzymes, such as DNA methyltransferases, histone deacetylases, histone methyltransferases, and histone demethylases, are potential candidates for the reprogramming of somatic cells into iPSCs. In this review, we discuss what types of small chemical or large (protein) molecules could be used to replace the viral transduction of genes and/or genetic reprogramming to obtain human iPSCs.
  10. Meyer JC, MacBride-Stewart S, Fadare JO, Abdulrahman Jairoun A, Haque M, Massele A, et al.
    Cureus, 2022 Nov;14(11):e31918.
    PMID: 36447806 DOI: 10.7759/cureus.31918
    The growing prevalence of gastroesophageal reflux disease (GERD) needs to be carefully managed to relieve the symptoms and prevent complications. Complications of GERD can include erosive esophagitis, Barrett's esophagus and gastrointestinal (GI) bleeding. Proton pump inhibitors (PPIs) are typically first-line treatment for GERD alongside lifestyle changes in view of their effectiveness and cost-effectiveness. However, there are concerns with adherence to dosing regimens and recommended lifestyle changes reducing their effectiveness. There are also concerns about potential complications from chronic high-dose PPIs. These include an increased risk of chronic kidney disease, cardiovascular events and infections. Recommendations to physicians include prescribing or dispensing the lowest dose of PPI for the shortest time, with ongoing patient monitoring. Activities among community pharmacists and others have resulted in increased dispensing of PPIs without a prescription, which can be a challenge. PPIs are among the most prescribed and dispensed medicines in view of their effectiveness in managing GERD. However, there are concerns with the doses prescribed and dispensed as well as adherence to lifestyle advice. These issues and challenges need to be addressed by health authorities to maximize the role and value of PPIs.
  11. Menon V, Sharma S, Gupta S, Ghosal A, Nadda AK, Jose R, et al.
    Chemosphere, 2023 Mar;317:137848.
    PMID: 36642147 DOI: 10.1016/j.chemosphere.2023.137848
    Synthetic plastics, which are lightweight, durable, elastic, mouldable, cheap, and hydrophobic, were originally invented for human convenience. However, their non-biodegradability and continuous accumulation at an alarming rate as well as subsequent conversion into micro/nano plastic scale structures via mechanical and physio-chemical degradation pose significant threats to living beings, organisms, and the environment. Various minuscule forms of plastics detected in water, soil, and air are making their passage into living cells. High temperature and ambient humidity increase the degradation potential of plastic polymers photo-catalytically under sunlight or UV-B radiations. Microplastics (MPs) of polyethylene terephthalate, polyethylene, polystyrene, polypropylene, and polyvinyl chloride have been detected in bottled water. These microplastics are entering into the food chain cycle, causing serious harm to all living organisms. MPs entering into the food chain are usually inert in nature, possessing different sizes and shapes. Once they enter a cell or tissue, it causes mechanical damage, induces inflammation, disturbs metabolism, and even lead to necrosis. Various generation routes, types, impacts, identification, and treatment of microplastics entering the water bodies and getting associated with various pollutants are discussed in this review. It emphasizes potential detection techniques like pyrolysis, gas chromatography-mass spectrometry (GC-MS), micro-Raman spectroscopy, and fourier transform infrared spectroscopy (FT IR) spectroscopy for microplastics from water samples.
  12. Mahar AM, Balouch A, Talpur FN, Abdullah, Panah P, Kumar R, et al.
    Environ Sci Pollut Res Int, 2020 Mar;27(9):9970-9978.
    PMID: 31933082 DOI: 10.1007/s11356-019-07548-y
    In this study, nano-sized ITO supported Pt-Pd bimetallic catalyst was synthesized for the degradation of methyl parathion pesticide, a common extremely toxic contaminant in aqueous solution. On the characterization with different techniques, a beautiful scenario of honeycomb architecture composed of ultra-small nanoneedles or fine hairs was found. Average size of nanocatalyst also confirmed which was in the range of 3-5 nm. High percent degradation (94%) was obtained in 30 s using 1.5 × 10- 1 mg of synthesized nanocatalyst, 0.5 mM NaBH4, and 110 W microwave radiations power. Recyclability of nanocatalyst was efficient till 4th cycle observed during study of reusability. The supported Pt-Pd bimetallic nanocatalyst on ITO displayed many advantages over conventional methods for degradation of methyl parathion pesticide, such as high percent degradation, short reaction time, small amount of nanocatalyst, and multitime reusability. Graphical abstract Schematic illustration of reaction for degradation of methyl parathion.
  13. George Pallivathukal R, Kumar S, Joy Idiculla J, Kyaw Soe HH, Ke YY, Donald PM, et al.
    Cureus, 2024 Apr;16(4):e58238.
    PMID: 38745819 DOI: 10.7759/cureus.58238
    BACKGROUND: Direct digital photography for lip print recording is a recent trend, and there is a dearth of systematic research on the analysis of the recorded prints with existing clip print classification systems.

    AIMS AND OBJECTIVES: This study aims to compare the accuracy of the digital photographic method in lip print recording, comparing it with traditional methods, and assessing the suitability of commonly used lip print classification for analyzing lip prints recorded by photographic method.

    METHODOLOGY: A total of 72 participants aged between 20 and 26 were included. The lip print recording process involved photographing the lips without and with lipstick, followed by recording the lip print with cellophane tape on bond paper. The prints collected using the different methods were analyzed and compared for agreement, and the data were analyzed statistically.

    RESULTS: Inter-observer reliability was high for all methods (>0.800). The distribution of lip print patterns differed across the methods, suggesting a potential influence of the recording technique. The agreement between the conventional method and both digital methods was moderate (kappa=0.449-0.517). The agreement between digital methods with and without enhancement was also moderate (kappa=0.718). Notably, digital photographs with enhancement tend to have a higher positive agreement for several lip print types.

    CONCLUSION: Digital photography is a potential method for lip print recording. However, this study highlights the need for the calibration of lip print classification systems for digitally recorded lip prints. Further research is needed to refine the use of digital photography in forensic lip print analysis and to explore its integration with artificial intelligence for biometric identification.

  14. Kaur T, Devi R, Negi R, Kumar S, Singh S, Rustagi S, et al.
    PMID: 38668814 DOI: 10.1007/s12223-024-01168-x
    In the past few decades, the pressure of higher food production to satisfy the demand of ever rising population has inevitably increased the use synthetic agrochemicals which have deterioration effects. Biostimulants containing beneficial microbes (single inoculants and microbial consortium) were found as an ideal substitute of synthetic chemical fertilizers. In recent years, microbial consortium is known as a better bioinoculant in comparison to single inoculant bioformulation because of multifarious plant growth-promoting advantages. Looking at the advantageous effect of consortium, in present investigation, different bacteria were isolated from rhizospheric soil and plant samples collected from the Himalayan mountains on the green slopes of the Shivaliks, Himachal Pradesh. The isolated bacteria were screened for nitrogen (N) fixation, phosphorus (P) solubilization and potassium (K) solubilization plant growth promoting attributes, and efficient strains were identified through 16S rRNA gene sequencing and BLASTn analysis. The bacteria showing a positive effect in NPK uptake were developed as bacterial consortium for the growth promotion of eggplant crop. A total of 188 rhizospheric and endophytic bacteria were sorted out, among which 13 were exhibiting nitrogenase activity, whereas 43 and 31 were exhibiting P and K solubilization traits, respectively. The selected three efficient and potential bacterial strains were identified using 16S rRNA gene sequencing as Enterobacter ludwigii EU-BEN-22 (N-fixer; 35.68 ± 00.9 nmol C2H4 per mg protein per h), Micrococcus indicus EU-BRP-6 (P-solubilizer; 201 ± 0.004 mg/L), and Pseudomonas gessardii EU-BRK-55 (K-solubilizer; 51.3 ± 1.7 mg/mL), and they were used to develop a bacterial consortium. The bacterial consortium evaluation on eggplant resulted in the improvement of growth (root/shoot length and biomass) and physiological parameters (chlorophyll, carotenoids, total soluble sugar, and phenolic content) of the plants with respect to single culture inoculation, chemical fertilizer, and untreated control. A bacterial consortium having potential to promote plant growth could be used as bioinoculant for horticulture crops growing in hilly regions.
  15. Gandhi UH, Benjamin A, Gajjar S, Hirani T, Desai K, Suhagia BB, et al.
    Cureus, 2024 Jun;16(6):e62270.
    PMID: 39006719 DOI: 10.7759/cureus.62270
    The scientific literature dealing with alcohol and alcoholic beverages revealed that these drinks possess an adverse impact on periodontal tissues. Additionally, other principal risk factors include tobacco, smoking, poor oral hygiene, etc. It has been observed that among chronic alcoholics, there are further issues, such as mental, social, and physical effects, that promote alcoholism. These people may have weak immunity for defense against pathogenic organisms and bacteria. Thus, chances of gingival bleeding, swollen gums, bad breath, and increased bone loss are there. Different alcoholic beverages in the market cause less salivation; these beverages contain sugars that promote acid production in the oral cavity by pathogens that demineralize the enamel and damage gum and teeth. This chronic alcohol consumption can progress into different types of oral disorders, including cancer, halitosis, and caries, and is also associated with tobacco and smoking. Chronic alcohol consumption can cause alteration of the oral microbiome and increase oral pathogens, which lead to periodontal disease and an environment of inflammation created in the body due to malnutrition, diminished immunity, altered liver condition, brain damage, and gut microbiota alteration. Heavily colored alcoholic beverages produce staining on teeth and, due to less saliva, may cause other toxic effects on the periodontium. Over-dependency on alcohol leads to necrotizing lesions such as necrotizing gingivitis, necrotizing periodontitis, and necrotizing stomatitis. These pathological impairments instigate severe damage to oral structures. Therefore, proper counseling by the attending dental surgeon and related health professionals is urgently required for the patient on the basis that the individual case needs to go away from the regular heavy consumption of alcohol.
  16. Haque M, Kumar S, Charan J, Bhatt R, Islam S, Dutta S, et al.
    Front Pharmacol, 2020;11:582154.
    PMID: 33628172 DOI: 10.3389/fphar.2020.582154
    Background: COVID-19 has already claimed a considerable number of lives worldwide. However, there are concerns with treatment recommendations given the extent of conflicting results with suggested treatments and misinformation, some of which has resulted in increased prices and shortages alongside increasing use and prices of personal protective equipment (PPE). This is a concern in countries such as India where there have been high patient co-payments and an appreciable number of families going into poverty when members become ill. However, balanced against pricing controls. Community pharmacists play a significant role in disease management in India, and this will remain. Consequently, there is a need to review prices and availability of pertinent medicines during the early stages of the COVID-19 pandemic in India to provide future direction. Objective: Assess current utilisation and price changes as well as shortages of pertinent medicines and equipment during the early stages of the pandemic. Our Approach: Multiple approach involving a review of treatments and ongoing activities across India to reduce the spread of the virus alongside questioning pharmacies in selected cities from early March to end May 2020. Our Activities: 111 pharmacies took part, giving a response rate of 80%. Encouragingly, no change in utilisation of antimalarial medicines in 45% of pharmacies despite endorsements and for antibiotics in 57.7% of pharmacies, helped by increasing need for a prescription for dispensing. In addition, increased purchasing of PPE (over 98%). No price increases were seen for antimalarials and antibiotics in 83.8 and 91.9% of pharmacies respectively although shortages were seen for antimalarials in 70.3% of pharmacies, lower for antibiotics (9.9% of pharmacies). However, price increases were typically seen for PPE (over 90% of stores) as well as for analgesics (over 50% of pharmacies). Shortages were also seen for PPE (88.3%). Conclusion: The pandemic has impacted on utilisation and prices of pertinent medicines and PPE in India but moderated by increased scrutiny. Key stakeholder groups can play a role with enhancing evidenced-based approaches and reducing inappropriate purchasing in the future.
  17. Zaman T, Haq A, Ahmad R, Sinha S, Chowdhury K, Parvin S, et al.
    Cureus, 2024 Mar;16(3):e56283.
    PMID: 38495972 DOI: 10.7759/cureus.56283
    Background Helicobacter pylori infection has been identified to cause constantly recurring inflammation, leading to gastrointestinal tract disorders, including carcinoma. The standard triple therapy (STT), used to eradicate H. pylori, includes two antimicrobials and a proton pump inhibitor for two weeks. Other drug regimens have also been developed since H. pylori exhibits antimicrobial resistance. These regimens, including probiotics, have been shown to lower adverse drug reactions (ADR), improve drug adherence, exert bacteriostatic effect, and reduce inflammation. Objective This study intended to explore probiotic intervention for improving eradication rates and mitigating adverse effects while administrating STT.  Methods This prospective study was conducted from May to December, 2021, in the Department of Gastroenterology of Ship International Hospital, Dhaka, Bangladesh, to observe the effects of probiotics inclusion along with STT on H. pylori eradication. A total of 100 patients aged ≥18 years who tested positive for H. pylori were included. The experimental group (n=50) was given STT and probiotics, and the control group (n=50) was given only STT without probiotics for 14 days. Necessary follow-up was done six weeks after treatment. An independent sample t-test, chi-square test, and multiple regression analysis were used for statistical analysis. Result The odds of getting rapid urease test (RUT) negative results from positive were 2.06 times higher (95%CI= 0.95, 3.22, p=0.054) in the experimental group. ADRs were crucially towering in the control group (p=0.045) compared to the probiotics group. The probiotics group had a lower risk of having adverse effects by 0.54 times (95%CI=0.19, 0.84, p=0.032) than the control group. Conclusion Using probiotics and STT together to eradicate H. pylori may lower ADR and improve treatment adherence. It may also help terminate H. pylori infection more effectively. More research is required as H. pylori is very contagious and can ultimately cause life-threatening gastric cancer.
  18. Muniandy K, Gothai S, Tan WS, Kumar SS, Esa NM, Chandramohan G, et al.
    PMID: 32617103 DOI: 10.1155/2020/2705479
    [This corrects the article DOI: 10.1155/2018/3142073.].
  19. Muniandy K, Gothai S, Tan WS, Kumar SS, Mohd Esa N, Chandramohan G, et al.
    PMID: 29670658 DOI: 10.1155/2018/3142073
    Impaired wound healing is one of the serious problems among the diabetic patients. Currently, available treatments are limited due to side effects and cost effectiveness. In line with that, we attempted to use a natural source to study its potential towards the wound healing process. Therefore, Alternanthera sessilis (A. sessilis), an edible and medicinal plant, was chosen as the target sample for the study. During this investigation, the wound closure properties using stem extract of A. sessilis were analyzed. Accordingly, we analyzed the extract on free radical scavenging capacity and the cell migration of two most prominent cell types on the skin, human dermal fibroblast (NHDF), keratinocytes (HaCaT), and diabetic human dermal fibroblast (HDF-D) to mimic the wound healing in diabetic patients. The bioactive compounds were identified using gas chromatography-mass spectrometry (GC-MS). We discovered that the analysis exhibited a remarkable antioxidant, proliferative, and migratory rate in NHDF, HaCaT, and HDF-D in dose-dependent manner, which supports wound healing process, due to the presence of wound healing associated phytocompounds such as Hexadecanoic acid. This study suggested that the stem extract of A. sessilis might be a potential therapeutic agent for skin wound healing, supporting its traditional medicinal uses.
  20. Deepak P, Kumar P, Arya DK, Pandey P, Kumar S, Parida BP, et al.
    Int J Pharm, 2023 Jul 25;642:123160.
    PMID: 37379892 DOI: 10.1016/j.ijpharm.2023.123160
    Current anticancer drug research includes tumor-targeted administration as a critical component because it is the best strategy to boost efficacy and decrease toxicity. Low drug concentration in cancer cells, nonspecific distribution, rapid clearance, multiple drug resistance, severe side effects, and other factors contribute to the disappointing results of traditional chemotherapy. As an innovative technique of treatments for hepatocellular carcinoma (HCC) in recent years, nanocarrier-mediated targeted drug delivery systems can overcome the aforesaid limitations via enhanced permeability and retention effect (EPR) and active targeting. Epidermal growth factor receptor (EGFR) inhibitor Gefitinib (Gefi) has dramatic effects on hepatocellular carcinoma. Herein, we developed and assessed an αvβ3 integrin receptor targeted c(RGDfK) surface modified liposomes for better targeting selectivity and therapeutic efficacy of Gefi on HCC cells. The conventional and modified Gefi loaded liposomes, i.e., denoted as Gefi-L and Gefi-c(RGDfK)-L, respectively, were prepared through the ethanol injection method and optimized via Box Behnken design (BBD). The FTIR and 1H NMR spectroscopy verified that the c(RGDfK) pentapeptides had formed an amide bond with the liposome surface. In addition, the particle size, Polydispersity index, zeta potential, encapsulation efficiency, and in-vitro Gefi release of the Gefi-L and Gefi-c(RGDfK)-L were measured and analyzed. As indicated by the MTT assay on HepG2 cells, Gefi-c(RGDfK)-L displayed considerably higher cytotoxicity than Gefi-L or Gefi alone. Throughout the incubation period, HepG2 cells took up significantly more Gefi-c(RGDfK)-L than Gefi-L. According to the in vivo biodistribution analysis, Gefi-c(RGDfK)-L accumulated more strongly at the tumor site than Gefi-L and free Gefi. Furthermore, HCC-bearing rats treated with Gefi-c(RGDfK)-L showed a substantial drop in liver marker enzymes (alanine transaminase, alkaline phosphatase, aspartate transaminase, and total bilirubin levels) compared to the disease control group. Gefi-c(RGDfK)-L suppresses tumour growth more effectively than Gefi-L and free Gefi, according to an in vivo analysis of their anticancer activities. Thus, c(RGDfK)-surface modified liposomes, i.e., Gefi-c(RGDfK)-L may serve as an efficient carrier for the targeted delivery of anticancer drugs.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links