Displaying publications 281 - 300 of 10535 in total

Abstract:
Sort:
  1. Ong CC, Siva Sangu S, Illias NM, Chandra Bose Gopinath S, Saheed MSM
    Biosens Bioelectron, 2020 Apr 15;154:112088.
    PMID: 32056954 DOI: 10.1016/j.bios.2020.112088
    Deoxynivalenol (DON), a cosmopolitan mycotoxin found in agricultural commodities causes serious health maladies to human and animals when accidently consumed even at a low quantity. It necessitates selective and sensitive devices to analyse DON as the conventional methods are complex and time-consuming. This study is focused on developing a selective biosensing system using iron nanoflorets graphene nickel (INFGN) as the transducer and a specific aptamer as the biorecognition element. 3D-graphene is incorporated using a low-pressure chemical vapour deposition followed by the decoration of iron nanoflorets using electrochemical deposition. INFGN enables a feasible bio-capturing due to its large surface area. The X-ray photoelectron spectroscopy analysis confirms the presence of the hydroxyl groups on the INFGN surface, which acts as the linker. Clear Fourier-transform infrared peak shifts affirm the changes with surface chemical modification and biomolecular assembly. The limit of detection attained is 2.11 pg mL-1 and displays high stability whereby it retains 30.65% of activity after 48 h. The designed INFGN demonstrates remarkable discrimination of DON against similar mycotoxins (zearalenone and ochratoxin A). Overall, the high-performance biosensor shown here is an excellent, simple and cost-effective alternative for detecting DON in food and feed samples.
    Matched MeSH terms: Graphite/chemistry*; Iron/chemistry*; Nickel/chemistry; Trichothecenes/chemistry; Nanostructures/chemistry
  2. Al Balawi AN, Yusof NA, Kamaruzaman S, Mohammad F, Wasoh H, Al Abbosh KF, et al.
    Biomed Res Int, 2019;2019:7064073.
    PMID: 30868072 DOI: 10.1155/2019/7064073
    The present study has synthesized poly(4,4'-cyclohexylidene bisphenol oxalate) by the condensation of oxalyl chloride with 4,4'-cyclohexylidene bisphenol, where its efficacy was tested for the solid-phase extraction of DNA. The synthesized polymer in the form of a white powder was characterized by FTIR, TGA-DTG, SEM, and BET analysis. The study utilized solid-phase application of the resulting polymer to extract DNA. The analysis of results provided the information that the extraction efficiency is a strong dependent of polymer amount and binding buffer type. Among the three types of buffers tested, the GuHCl buffer produced the most satisfactory results in terms of yield and efficiency of extraction. Moreover, the absorbance ratio of A260/A280 in all of the samples varied from 1.682 to 1.491, thereby confirming the capability of poly(4,4'-cyclohexylidene bisphenol oxalate) to elute pure DNA. The results demonstrated an increased DNA binding capacity with respect to increased percentage of the polymer. The study has concluded that poly(bisphenol Z oxalate) can be applied as one of the potential candidates for the high efficiency extraction of DNA by means of a simple, cost-effective, and environmentally friendly approach compared to the other traditional solid-phase methods.
    Matched MeSH terms: Benzhydryl Compounds/chemistry; DNA/chemistry; Oxalates/chemistry*; Phenols/chemistry; Polymers/chemistry
  3. Syafri E, Jamaluddin, Wahono S, Irwan A, Asrofi M, Sari NH, et al.
    Int J Biol Macromol, 2019 Sep 15;137:119-125.
    PMID: 31252021 DOI: 10.1016/j.ijbiomac.2019.06.174
    The cellulose microfibers (CMF) from water hyacinth (WH) fiber as a filler in sago starch (SS) biocomposites was investigated. The CMF was isolated by pulping, bleaching and acid hydrolysis methods. The addition of CMF in sago matrix was varied i.e. 0, 5, 10, 15 and 20 wt%. Biocomposites were made by using solution casting and glycerol as a plasticizer. The biocomposites were also determined by tensile test, FTIR, X-Ray, thermogravimetric, SEM, and soil burial tests. The results show that the SS15CMF sample has the highest tensile strength of 10.23 MPa than those other samples. Scanning Electron Microscope (SEM) images show that the strong interaction was formed between CMF WH and matrix. Fourier Transform Infra-red (FTIR) indicated that the functional group of biocomposites was a hydrophilic cluster. The addition of CMF WH in sago starch biocomposites lead to the moisture barrier, crystallinity, and thermal stability increased; it is due to the pure sago starch film was more rapidly degraded than its biocomposites.
    Matched MeSH terms: Cellulose/chemistry*; Soil/chemistry; Starch/chemistry*; Arecaceae/chemistry*; Eichhornia/chemistry*
  4. Yang J, Qiu C, Li G, Lee WJ, Tan CP, Lai OM, et al.
    Food Chem, 2020 Oct 15;327:127014.
    PMID: 32434126 DOI: 10.1016/j.foodchem.2020.127014
    The influence of diacylglycerol (DAG) combined with polyglycerol polyricinoleate (PGPR) on the stability of water-in-oil (W/O) emulsions containing hydrogenated palm oil (HPO) was studied. Polarized light microscope revealed that DAG promoted HPO to crystallize at the water-oil interface, providing the combination of Pickering and network stabilization effects. It was proposed that the molecular compatibility of fatty acids in DAG with HPO accounted for the promotional effect. The interfacial crystallization of DAG together with the surface activity of PGPR led to the formation of emulsions with uniform small droplets and high freeze-thaw stability. Further exploration of physical properties indicated that the combination of DAG and PGPR dramatically improved the emulsion's viscoelasticity and obtained a larger deformation yield. Water droplets in DAG-based emulsions acted as active fillers to improve the network rigidity. Therefore, DAG is a promising material to be used as emulsifier to enhance the physical stability of W/O emulsions.
    Matched MeSH terms: Diglycerides/chemistry*; Emulsions/chemistry*; Glycerol/chemistry; Ricinoleic Acids/chemistry; Water/chemistry
  5. Bera H, Kumar S
    Int J Biol Macromol, 2018 Mar;108:1053-1062.
    PMID: 29122714 DOI: 10.1016/j.ijbiomac.2017.11.019
    The current study aimed at developing diethonolamine-modified high-methoxyl pectin (DMP)-alginate (ALG) based core-shell composites for controlled intragastric delivery of metformin HCl (MFM) by combined approach of floating and bioadhesion. DMP with degree of amidation of 48.72% was initially accomplished and characterized by FTIR, DSC and XRD analyses. MFM-loaded core matrices were then fabricated by ionotropic gelation technique employing zinc acetate as cross-linker. The core matrices were further coated by fenugreek gum (FG)-ALG gel membrane via diffusion-controlled interfacial complexation method. Various formulations demonstrated excellent drug encapsulation efficiency (DEE, 51-70%) and sustained drug eluting behavior (Q8h, 72-96%), which were extremely influenced by polymer-blend (ALG:DMP) ratios, low density additives (olive oil/magnesium stearate) and FG-ALG coating inclusion. The drug release profile of the core-shell matrices (F-7) was best fitted in zero-order kinetic model with case-II transport driven mechanism. It also portrayed outstanding gastroretentive characteristics. Moreover, the composites were analyzed for surface morphology, drug-excipients compatibility, thermal behavior and drug crystallinity. Thus, the developed composites are appropriate for controlled stomach-specific delivery of MFM for type 2 diabetes management.
    Matched MeSH terms: Alginates/chemistry; Drug Carriers/chemistry*; Ethanolamines/chemistry*; Metformin/chemistry; Pectins/chemistry*
  6. Tabandeh M, Salman AA, Goh EW, Heidelberg T, Hussen RSD
    Chem Phys Lipids, 2018 05;212:111-119.
    PMID: 29409839 DOI: 10.1016/j.chemphyslip.2018.01.011
    A new synthesis approach towards biantennary lipids of Guerbet glycoside type was developed based on oleic acid as sustainable resource. Functionalization of the double bond provided access to primary alcohols with α-branched C19-skeleton. Formulation studies with corresponding lactosides indicated formation of vesicles with high assembly stability. A relatively narrow bimodal size distribution of the latter, which turns into a narrow unimodal distribution of small vesicles upon addition of an ionic cosurfactant, suggests potential for a vesicular drug delivery system.
    Matched MeSH terms: Glycolipids/chemistry*; Glycosides/chemistry; Surface-Active Agents/chemistry; Oleic Acid/chemistry; Unilamellar Liposomes/chemistry
  7. Bin Sintang MD, Danthine S, Patel AR, Rimaux T, Van De Walle D, Dewettinck K
    J Colloid Interface Sci, 2017 Oct 15;504:387-396.
    PMID: 28586736 DOI: 10.1016/j.jcis.2017.05.114
    In order to modify the self-assembly of sucrose esters (SEs) in sunflower oil, we added sunflower lecithin (SFL) as co-surfactant. It is hypothesized that SFL modifies the self-assembly of SEs by interrupting the extensive hydrogen bonding between SEs monomers. The addition of SFL into SEs induced gelation of the mixed surfactant system oleogels at all studied ratios. The 7:3 SEs:SFL combination showed enhanced rheological properties compared to the other studied ratios, which suggests better molecular ordering induced by SFL. The modifications might have been caused by interference in the hydrogen bonding, connecting the polar heads of SEs molecules in the presence of SFL. This effect was confirmed by thermal behavior and small angle X-ray diffraction (SAXD) analysis. From the crystallization and melting analyses, it was shown that the peak temperature, shape and enthalpy decreased as the SFL ratio increases. Meanwhile, the bi-component oleogels exhibited new peaks in the SAXD profile, which imply a self-assembly modification. The microscopic study through polarized and electrons revealed a change in the structure. Therefore, it can be concluded that a synergistic effect between SEs and SFL, more particularly at 7:3 ratio, towards sunflower oil structuring could be obtained. These findings shed light for greater applications of SEs as structuring and carrier agent in foods and pharmaceutical.
    Matched MeSH terms: Esters/chemistry; Gels/chemistry*; Sucrose/chemistry*; Surface-Active Agents/chemistry*; Lecithins/chemistry*
  8. Daniali G, Jinap S, Sanny M, Tan CP
    Food Chem, 2018 Apr 15;245:1-6.
    PMID: 29287315 DOI: 10.1016/j.foodchem.2017.10.070
    This work investigated the underlying formation of acrylamide from amino acids in frying oils during high temperatures and at different times via modeling systems. Eighteen amino acids were used in order to determine which one was more effective on acrylamide production. Significantly the highest amount of acrylamide was produced from asparagine (5987.5µg/kg) and the lowest from phenylalanine (9.25µg/kg). A constant amount of asparagine and glutamine in palm olein and soy bean oils was heated up in modelling system at different temperatures (160, 180 and 200°C) and times (1.5, 3, 4.5, 6, 7.5min). The highest amount of acrylamide was found at 200°C for 7.5min (9317 and 8511µg/kg) and lowest at 160°C for 1.5min (156 and 254µg/kg) in both frying oils and both amino acids. Direct correlations have been found between time (R2=0.884), temperature (R2=0.951) and amount of acrylamide formation, both at p<0.05.
    Matched MeSH terms: Amino Acids/chemistry*; Asparagine/chemistry; Glutamine/chemistry; Soybean Oil/chemistry*; Acrylamide/chemistry*
  9. Lamaming J, Hashim R, Leh CP, Sulaiman O
    Carbohydr Polym, 2017 Jan 20;156:409-416.
    PMID: 27842840 DOI: 10.1016/j.carbpol.2016.09.053
    Cellulose nanocrystals were isolated from oil palm trunk by total chlorine free method. The samples were either water pre-hydrolyzed or non-water pre-hydrolyzed, subjected to soda pulping, acidified and ozone bleached. Cellulose and cellulose nanocrystal (CNC) physical, chemical, thermal properties, and crystallinity index were investigated by composition analysis, scanning electron microscopy, transmission electron microscopy, fourier transform infrared, thermogravimetric analysis and X-ray diffraction. Water pre-hydrolysis reduced lignin (<0.5%) and increased holocellulose (99.6%) of ozone-bleached cellulose. Water pre-hydrolyzed cellulose exhibited surface fibrillation and peeling off after acid hydrolysis process compared to non-fibrillated of non-water pre-hydrolyzed cellulose. Water pre-hydrolysis improved final CNC crystallinity (up to 75%) compared to CNC without water pre-hydrolysis crystallinity (69%). Cellulose degradation was found to occur during ozone bleaching stage but CNC showed an increase in crystallinity after acid hydrolysis. Thus, oil palm trunk CNC can be potentially applied in pharmaceutical, food, medical and nanocomposites.
    Matched MeSH terms: Cellulose/chemistry*; Water/chemistry; Plant Stems/chemistry*; Arecaceae/chemistry*; Nanoparticles/chemistry*
  10. Hsin YK, Thangarajoo T, Choudhury H, Pandey M, Meng LW, Gorain B
    J Pharm Sci, 2023 Feb;112(2):562-572.
    PMID: 36096286 DOI: 10.1016/j.xphs.2022.09.002
    Vaginal candidiasis is a common form of infection in women caused by Candida species. Due to several drawbacks of conventional treatments, the current research is attempted to formulate and optimize a miconazole nitrate-loaded in situ spray gel for vaginal candidiasis. The stimuli-responsive (pH and thermo-responsive) polymers selected for the in situ gel were chitosan and poloxamer 407, respectively, whereas hydroxypropyl methylcellulose (HPMC) was introduced in the formulation to further improve the mucoadhesive property. The dispersion of each polymer was carried out using the cold method, whereas the optimization of the formulation was achieved using Box-Behnken statistical design considering viscosity and gelation temperature as dependent variables. Present design achieved the optimized outcome with HPMC, poloxamer and chitosan at 0.52% (w/v), 18.68% (w/v) and 0.41% (w/v), respectively. Evaluation of drug-excipients compatibility was performed using differential scanning calorimetry, Fourier transform infrared spectroscopy, and thermogravimetric analysis where the results showed the absence of any chemical interaction between the polymers and drug component. The optimized formulation showed gelation temperature at 31°C allowing in situ phase transition in a vaginal environment; pH of 4.21 is suitable for use in the vaginal cavity, and appropriate viscosity (290 cP) at storage temperature (below 30°C) would allow spraying at ease, whereas strong mucoadhesive force (22.4±0.513 g) would prevent leaking of the formulation after application. The drug release profile showed sustained release up to 24 h with a cumulative drug release of 81.72%, which is significantly better than the marketed miconazole nitrate cream. In addition, an improved antifungal activity could be correlated to the sustained release of the drug from the formulation. Finally, the safety of the formulation was established while tested on HaCaT cell lines. Based on our findings, it could be concluded that the in situ hydrogel formulation using stimuli-responsive polymers could be a viable alternative to the conventional dosage form that can help to reduce the frequency of administration with ease of application to the site of infection, thus will provide better patient compliance.
    Matched MeSH terms: Antifungal Agents/chemistry; Delayed-Action Preparations/chemistry; Gels/chemistry; Miconazole/chemistry; Poloxamer/chemistry
  11. Amid BT, Mirhosseini H, Poorazarang H, Mortazavi SA
    Molecules, 2013 Dec 06;18(12):15110-25.
    PMID: 24322494 DOI: 10.3390/molecules181215110
    This paper deals with the conjugation of durian seed gum (DSG) with whey protein isolate (WPI) through Maillard reactions. Subsequently, the functional properties of durian seed gum in the non-conjugated (control sample) and conjugated forms were compared with several commercial gums (i.e., Arabic gum, sodium alginate, kappa carrageenan, guar gum, and pectin). The current study revealed that the conjugation of durian seed gum with whey protein isolate significantly (p < 0.05) improved its foaming properties. In this study, the conjugated durian seed gum produced the most stable foam among all samples. On the other hand, the emulsion stabilized with the conjugated durian seed gum also showed more uniform particles with a larger specific surface area than the emulsion containing the non-conjugated durian seed gum. The conjugated durian seed gum showed significant different foaming properties, specific surface area, particle uniformity and water holding capacity (WHC) as compared to the target polysaccharide gums. The conjugated durian seed gum showed more similar functional properties to Arabic gum rather than other studied gums.
    Matched MeSH terms: Milk Proteins/chemistry*; Seeds/chemistry*; Water/chemistry; Bombacaceae/chemistry*; Plant Gums/chemistry*
  12. Veronica N, Heng PWS, Liew CV
    Mol Pharm, 2024 May 06;21(5):2484-2500.
    PMID: 38647432 DOI: 10.1021/acs.molpharmaceut.4c00031
    Excipients are ubiquitous in pharmaceutical products, and often, they can also play a critical role in maintaining product quality. For a product containing a moisture-sensitive drug, moisture can be deleterious to the product stability during storage. Therefore, using excipients that interact with moisture in situ can potentially alleviate product stability issues. In this study, the interactive behavior of starch with moisture was augmented by coprocessing maize starch with sodium chloride (NaCl) or magnesium nitrate hexahydrate [Mg(NO3)2·6H2O] at different concentrations (5 and 10%, w/w). The effect of the formulation on drug stability was assessed through the degradation of acetylsalicylic acid, which was used as the model drug. The results showed that coprocessing of the starch with either NaCl or Mg(NO3)2·6H2O impacted the number of water molecule binding sites on the starch and how the sorbed moisture was distributed. The coprocessed excipients also resulted in lower drug degradation and lesser changes in tablet tensile strength during post-compaction storage. However, corresponding tablet formulations containing physical mixtures of starch and salts did not yield promising outcomes. This study demonstrated the advantageous concomitant use of common excipients by coprocessing to synergistically mitigate the adverse effects of moisture and promote product stability when formulating a moisture-sensitive drug. In addition, the findings could help to improve the understanding of moisture-excipient interactions and allow for the judicious choice of excipients when designing formulations containing moisture-sensitive drugs.
    Matched MeSH terms: Aspirin/chemistry; Chemistry, Pharmaceutical/methods; Sodium Chloride/chemistry; Water/chemistry
  13. Hapipi NM, Mazlan SA, Ubaidillah U, Abdul Aziz SA, Ahmad Khairi MH, Nordin NA, et al.
    Int J Mol Sci, 2020 Mar 05;21(5).
    PMID: 32151055 DOI: 10.3390/ijms21051793
    Chemically crosslinked hydrogel magnetorheological (MR) plastomer (MRP) embedded with carbonyl iron particles (CIPs) exhibits excellent magnetic performance (MR effect) in the presence of external stimuli especially magnetic field. However, oxidation and desiccation in hydrogel MRP due to a large amount of water content as a dispersing phase would limit its usage for long-term applications, especially in industrial engineering. In this study, different solvents such as dimethyl sulfoxide (DMSO) are also used to prepare polyvinyl alcohol (PVA) hydrogel MRP. Thus, to understand the dynamic viscoelastic properties of hydrogel MRP, three different samples with different solvents: water, DMSO, and their binary mixtures (DMSO/water) were prepared and systematically carried out using the oscillatory shear. The outcomes demonstrate that the PVA hydrogel MRP prepared from precursor gel with water shows the highest MR effect of 15,544% among the PVA hydrogel MRPs. However, the samples exhibit less stability and tend to oxidise after a month. Meanwhile, the samples with binary mixtures (DMSO/water) show an acceptable MR effect of 11,024% with good stability and no CIPs oxidation. Otherwise, the sample with DMSO has the lowest MR effect of 7049% and less stable compared to the binary solvent samples. This confirms that the utilisation of DMSO as a new solvent affects the rheological properties and stability of the samples.
    Matched MeSH terms: Dimethyl Sulfoxide/chemistry*; Polyvinyl Alcohol/chemistry*; Solvents/chemistry*; Coated Materials, Biocompatible/chemistry*; Hydrogels/chemistry*
  14. Samiun WS, Ashari SE, Salim N, Ahmad S
    Int J Nanomedicine, 2020;15:1585-1594.
    PMID: 32210553 DOI: 10.2147/IJN.S198914
    BACKGROUND: Aripiprazole, which is a quinolinone derivative, has been widely used to treat schizophrenia, major depressive disorder, and bipolar disorder.

    PURPOSE: A Central Composite Rotatable Design (CCRD) of Response Surface Methodology (RSM) was used purposely to optimize process parameters conditions for formulating nanoemulsion containing aripiprazole using high emulsification methods.

    METHODS: This design is used to investigate the influences of four independent variables (overhead stirring time (A), shear rate (B), shear time (C), and the cycle of high-pressure homogenizer (D)) on the response variable namely, a droplet size (Y) of nanoemulsion containing aripiprazole.

    RESULTS: The optimum conditions suggested by the predicted model were: 120 min of overhead stirring time, 15 min of high shear homogenizer time, 4400 rpm of high shear homogenizer rate and 11 cycles of high-pressure homogenizer, giving a desirable droplet size of nanoemulsion containing aripiprazole of 64.52 nm for experimental value and 62.59 nm for predicted value. The analysis of variance (ANOVA) showed the quadratic polynomial fitted the experimental values with F-value (9.53), a low p-value (0.0003) and a non-significant lack of-fit. It proved that the models were adequate to predict the relevance response. The optimized formulation with a viscosity value of 3.72 mPa.s and pH value of 7.4 showed good osmolality value (297 mOsm/kg) and remained stable for three months in three different temperatures (4°C, 25°C, and 45°C).

    CONCLUSION: This proven that response surface methodology is an efficient tool to produce desirable droplet size of nanoemulsion containing aripiprazole for parenteral delivery application.

    Matched MeSH terms: Aripiprazole/chemistry*; Chemistry, Pharmaceutical/methods; Emulsions/chemistry*; Nanostructures/chemistry*
  15. Suresh Kumar R, Almansour AI, Arumugam N, Altaf M, Menéndez JC, Kumar RR, et al.
    Molecules, 2016 Jan 29;21(2):165.
    PMID: 26840282 DOI: 10.3390/molecules21020165
    The microwave-assisted three-component reactions of 3,5-bis(E)-arylmethylidene]tetrahydro-4(1H)-pyridinones, acenaphthenequinone and cyclic α-amino acids in an ionic liquid, 1-butyl-3-methylimidazolium bromide, occurred through a domino sequence affording structurally intriguing diazaheptacyclic cage-like compounds in excellent yields.
    Matched MeSH terms: Acenaphthenes/chemistry; Acids, Heterocyclic/chemistry; Imidazoles/chemistry; Pyridones/chemistry; Ionic Liquids/chemistry*
  16. Charbgoo F, Ahmad MB, Darroudi M
    Int J Nanomedicine, 2017;12:1401-1413.
    PMID: 28260887 DOI: 10.2147/IJN.S124855
    CeO2 nanoparticles (NPs) have shown promising approaches as therapeutic agents in biology and medical sciences. The physicochemical properties of CeO2-NPs, such as size, agglomeration status in liquid, and surface charge, play important roles in the ultimate interactions of the NP with target cells. Recently, CeO2-NPs have been synthesized through several bio-directed methods applying natural and organic matrices as stabilizing agents in order to prepare biocompatible CeO2-NPs, thereby solving the challenges regarding safety, and providing the appropriate situation for their effective use in biomedicine. This review discusses the different green strategies for CeO2-NPs synthesis, their advantages and challenges that are to be overcome. In addition, this review focuses on recent progress in the potential application of CeO2-NPs in biological and medical fields. Exploiting biocompatible CeO2-NPs may improve outcomes profoundly with the promise of effective neurodegenerative therapy and multiple applications in nanobiotechnology.
    Matched MeSH terms: Biopolymers/chemistry; Cerium/chemistry*; Nanoparticles/chemistry*; Green Chemistry Technology/methods*
  17. Zamhuri A, Lim GP, Ma NL, Tee KS, Soon CF
    Biomed Eng Online, 2021 Apr 01;20(1):33.
    PMID: 33794899 DOI: 10.1186/s12938-021-00873-9
    MXene is a recently emerged multifaceted two-dimensional (2D) material that is made up of surface-modified carbide, providing its flexibility and variable composition. They consist of layers of early transition metals (M), interleaved with n layers of carbon or nitrogen (denoted as X) and terminated with surface functional groups (denoted as Tx/Tz) with a general formula of Mn+1XnTx, where n = 1-3. In general, MXenes possess an exclusive combination of properties, which include, high electrical conductivity, good mechanical stability, and excellent optical properties. MXenes also exhibit good biological properties, with high surface area for drug loading/delivery, good hydrophilicity for biocompatibility, and other electronic-related properties for computed tomography (CT) scans and magnetic resonance imaging (MRI). Due to the attractive physicochemical and biocompatibility properties, the novel 2D materials have enticed an uprising research interest for application in biomedicine and biotechnology. Although some potential applications of MXenes in biomedicine have been explored recently, the types of MXene applied in the perspective of biomedical engineering and biomedicine are limited to a few, titanium carbide and tantalum carbide families of MXenes. This review paper aims to provide an overview of the structural organization of MXenes, different top-down and bottom-up approaches for synthesis of MXenes, whether they are fluorine-based or fluorine-free etching methods to produce biocompatible MXenes. MXenes can be further modified to enhance the biodegradability and reduce the cytotoxicity of the material for biosensing, cancer theranostics, drug delivery and bio-imaging applications. The antimicrobial activity of MXene and the mechanism of MXenes in damaging the cell membrane were also discussed. Some challenges for in vivo applications, pitfalls, and future outlooks for the deployment of MXene in biomedical devices were demystified. Overall, this review puts into perspective the current advancements and prospects of MXenes in realizing this 2D nanomaterial as a versatile biological tool.
    Matched MeSH terms: Biocompatible Materials/chemistry; Carbon/chemistry; Tantalum/chemistry; Titanium/chemistry; Chemistry Techniques, Synthetic
  18. Javed M, Akbar N, Khan AA, Masood A, Ahmed N, Khan MJ, et al.
    Environ Sci Pollut Res Int, 2024 Aug;31(40):53532-53551.
    PMID: 39192152 DOI: 10.1007/s11356-024-34753-1
    Worldwide environmental challenges pose critical problems with the growth of the global economy. Addressing these issues requires the development of an eco-friendly and sustainable catalyst for degrading organic dye pollutants. In this study, copper-doped magnesium aluminates (CuxMg1-xAl2O4) with x = 0.0-0.8 were synthesized using a citrate-based combustion route. The inclusion of Cu(II) significantly impacted the structural, microstructural, optical, and photocatalytic activity of the catalyst. Rietveld analysis of X-ray diffraction powder profiles revealed single-phase spinels crystallized in the face-centered cubic unit cell with Fd 3 ¯ m space group. Chemical states of the ions, surface morphology, and elemental investigation were analyzed by X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, and energy-dispersive X-ray spectroscopy, respectively. UV-visible and diffuse reflectance spectroscopies confirmed the reduction of the band gap due to Cu(II) doping, validated by first-principle investigations using the WIEN2k code. The catalyst with x = 0.8 showed higher photocatalytic efficacy (90% and 93%) for removing two azo organic dye pollutants, rhodamine B and methyl orange, respectively, within 120 min. Degradation kinetics followed a pseudo-first-order mechanism. The doped (0.8) sample was structurally and morphologically stable and reusable under visible irradiation, retaining performance after three runs. Scavenger studies confirmed hydroxyl and superoxide radicals' involvement in the degradation. This work presents an effective approach to enhancing CuxMg1-xAl2O4 catalysts' photodegradation performance, with potential applications in pharmaceuticals and wastewater remediation.
    Matched MeSH terms: Aluminum Oxide/chemistry; Azo Compounds/chemistry; Rhodamines/chemistry; Water Pollutants, Chemical/chemistry; Nanoparticles/chemistry
  19. Kandel S, Zaidi STR, Wanandy ST, Ming LC, Castelino RL, Sud K, et al.
    Perit Dial Int, 2017 11 21;38(1):49-56.
    PMID: 29162678 DOI: 10.3747/pdi.2017.00115
    BACKGROUND: Intraperitoneal (IP) administration of ceftazidime is recommended for the treatment of peritoneal dialysis-associated peritonitis (PDAP) from Pseudomonas. Patients with PDAP may also need IP heparin to overcome problems with drainage of turbid peritoneal dialysis (PD) fluids and blockage of catheters with fibrin. Physico-chemical stability of ceftazidime and heparin, and biological stability of heparin in many types of PD solutions is unknown. Therefore, we investigated the stability of ceftazidime and heparin in 4 types of PD solutions.

    METHODS: A total of 12 PD bags (3 for each type of solution) containing ceftazidime and heparin were prepared and stored at 4°C for 120 hours, and then at 25°C for 6 hours, and finally at 37°C for 12 hours. An aliquot was withdrawn after predefined time points and analyzed for the concentration of ceftazidime and heparin using high-performance liquid-chromatography (HPLC). Samples were assessed for pH, color changes, particle content, and anticoagulant activity of heparin.

    RESULTS: Ceftazidime and heparin retained more than 91% of their initial concentration when stored at 4°C for 120 hours followed by storage at 25°C for 6 hours and then at 37°C for 12 hours. Heparin retained more than 95% of its initial activity throughout the study period. Particle formation was not detected at any time under the storage conditions. The pH and color remained essentially unchanged throughout the study.

    CONCLUSIONS: Ceftazidime-heparin admixture retains its stability over long periods of storage at different temperatures, allowing its potential use for PDAP treatment in outpatient and remote settings.

    Matched MeSH terms: Anti-Bacterial Agents/chemistry*; Anticoagulants/chemistry*; Ceftazidime/chemistry*; Heparin/chemistry*; Dialysis Solutions/chemistry*
  20. Anasdass JR, Kannaiyan P, Raghavachary R, Gopinath SCB, Chen Y
    PLoS One, 2018;13(2):e0193281.
    PMID: 29466453 DOI: 10.1371/journal.pone.0193281
    We present a biogenic method for the synthesis of palladium nanoparticle (PdNP)-modified by reducing graphene oxide sheets (rGO) in a one-pot strategy using Ficus carica fruit juice as the reducing agent. The synthesized material was well characterized by morphological and structural analyses, including, Ultraviolet-Visible spectroscopy (UV-Vis), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and Transmission Electron Microscopy (TEM) and Raman spectroscopy. The results revealed that the PdNP modified GO are spherical in shape and estimated to be a dimension of ~0.16 nm. The PdNP/graphene exhibits a great catalytic activity in Suzuki cross-coupling reactions for the synthesis of biaryl compounds with various substrates under both aqueous and aerobic conditions. The catalyst can be recovered easily and is suitable for repeated use because it retains its original catalytic activity. The PdNP/rGO catalyst synthesized by an eco-friendly protocol was used for the Suzuki coupling reactions. The method offers a mild and effective substitute to the existing methods and may significantly contribute to green chemistry.
    Matched MeSH terms: Fruit/chemistry*; Graphite/chemistry*; Palladium/chemistry*; Fucus/chemistry*; Metal Nanoparticles/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links