Displaying publications 3261 - 3280 of 10390 in total

Abstract:
Sort:
  1. Mohd Ridzuan MA, Sow A, Noor Rain A, Mohd Ilham A, Zakiah I
    Trop Biomed, 2007 Jun;24(1):111-8.
    PMID: 17568384 MyJurnal
    Eurycoma longifolia, locally known as 'Tongkat Ali' is a popular local medicinal plant that possess a lot of medicinal properties as claimed traditionally, especially in the treatment of malaria. The claims have been proven scientifically on isolated compounds from the plant. The present study is to investigate the anti malaria properties of Eurycoma longifolia standardized extract (root) (TA164) alone and in combination with artemisinin in vivo. Combination treatment of the standardized extract (TA164) with artemisinin suppressed P. yoelii infection in the experimental mice. The 4 day suppressive test showed that TA164 suppressed the parasitemia of P. yoelii-infected mice as dose dependent manner (10, 30 and 60 mg/kg BW) by oral and subcutaneous treatment. By oral administration, combination of TA164 at 10, 30 and 60 mg/kg BW each with artemisinin respectively showed a significant increase in the parasitemia suppression to 63, 67 and 80 percent as compared to artemisinin single treatment (31%). Using subcutaneous administration, at 10 mg/kg BW of TA164 in combination with 1.7 mg/kg BW of artemisinin gave a suppression of 80% of infection. This study showed that combination treatment of TA164 with artemisinin gives a promising potential anti malaria candidate using both oral and subcutaneous route, the later being the most potent.
    Matched MeSH terms: Antimalarials/chemistry; Plant Extracts/chemistry; Plants, Medicinal/chemistry; Plant Roots/chemistry; Eurycoma/chemistry*
  2. Loo KY, Leong KH, Sivasothy Y, Ibrahim H, Awang K
    Chem Biodivers, 2019 Jun;16(6):e1900032.
    PMID: 30957403 DOI: 10.1002/cbdv.201900032
    The inhibition of carbohydrate-hydrolyzing enzymes in human digestive organs is crucial in controlling blood sugar levels, which is important in treating type 2 diabetes. In the current study, pahangensin A (1), a bis-labdanic diterpene characterized previously in the rhizomes of Alpinia pahangensis Ridl., was identified as an active dual inhibitor for α-amylase (IC50 =114.80 μm) and α-glucosidase (IC50 =153.87 μm). This is the first report on the dual α-amylase and α-glucosidase inhibitory activities of a bis-labdanic diterpene. The Lineweaver-Burk plots of compound 1 indicate that it is a mixed-type inhibitor with regard to both enzymes. Based on molecular docking studies, compound 1 docked in a non-active site of both enzymes. The dual inhibitory activity of compound 1 makes it a suitable natural alternative in the treatment of type 2 diabetes.
    Matched MeSH terms: alpha-Glucosidases/chemistry; Diterpenes/chemistry*; Enzyme Inhibitors/chemistry; Plant Extracts/chemistry; Alpinia/chemistry*
  3. Qazi SU, Naz A, Hameed A, Osra FA, Jalil S, Iqbal J, et al.
    Bioorg Chem, 2021 10;115:105209.
    PMID: 34364054 DOI: 10.1016/j.bioorg.2021.105209
    A series of semicarbazone, thiosemicarbazone, thiazole, and oxazole derivatives were designed, synthesized, and examined for monoamine oxidase inhibition using two isoforms, i.e., MAO-A and MAO-B. Among all the analogues, 3c and 3j possessed substantial activity against MAO-A with IC50 values of 5.619 ± 1.04 µM and 0.5781 ± 0.1674 µM, respectively. Whereas 3d and 3j were active against monoamine oxidase B with the IC50 values of 9.952 ± 1.831 µM and 3.5 ± 0.7 µM, respectively. Other derivatives active against MAO-B were 3c and 3g with the IC50 values of 17.67 ± 5.6 µM and 37.18 ± 2.485 µM. Moreover, molecular docking studies were achieved for the most potent compound (3j) contrary to human MAO-A and MAO-B. Kinetic studies were also performed for the most potent analogue to evaluate its mode of interaction with MAO-A and MAO-B.
    Matched MeSH terms: Monoamine Oxidase Inhibitors/chemistry; Oxazoles/chemistry; Semicarbazones/chemistry; Thiazoles/chemistry; Thiosemicarbazones/chemistry
  4. Bharathithasan M, Ravindran DR, Rajendran D, Chun SK, Abbas SA, Sugathan S, et al.
    PLoS One, 2021;16(11):e0260281.
    PMID: 34843539 DOI: 10.1371/journal.pone.0260281
    BACKGROUND: There is a growing need to use green alternative larvicidal control for Aedes larvae compared to chemical insecticides. Substantial reliance on chemical insecticides caused insecticide resistance in mosquito populations. Thus, research for alternate chemical compounds from natural products is necessary to control Aedes larvae. This study explores the analysis of chemical compositions from Areca catechu nut as a potential larvicide for Aedes (Diptera: Culicidae).

    METHODS: The Areca catechu nut collected from Ipoh, Perak, Malaysia was grounded into powder and used for Soxhlet extraction. The chemical analysis of the extracts and their structures were identified using the GCMS-QP2010 Ultra (Shimadzu) system. National Institute of Standards and Technology (NIST) Chemistry WebBook, Standard Reference Database 69 (https://webbook.nist.gov/chemistry/) and PubChem (https://pubchem.ncbi.nlm.nih.gov/), the two databases used to retrieve the synonyms, molecular formula, molecular weight, and 2-dimensional (2D) structure of chemical compounds. Next, following WHO procedures for larval bioassays, the extracts were used to asses larvicidal activity against early 4th instar larvae of Aedes aegypti and Aedes albopictus.

    RESULTS: The larvicidal activities were observed against early 4th stage larvae with different concentrations in the range from 200 mg/L to 1600 mg/L. The LC50 and LC95 of Aedes aegypti were 621 mg/L and 2264 mg/L respectively; whereas the LC50 and LC95 of Aedes albopictus were 636 mg/L and 2268 mg/L respectively. Mortality was not observed in the non-target organism test. The analysis using gas chromatography and mass spectrometer recovered several chemical compounds such as Arecaidine, Dodecanoic acid, Methyl tetradecanoate, Tetradecanoic acid , and n-Hexadecanoic acid bioactive components. These chemical constituents were used as additive formulations in pesticides, pest control, insect repellent, and insecticidal agents.

    CONCLUSIONS: Our study showed significant outcomes from the extract of Areca catechu nut and it deserves further investigation in relation to chemical components and larvicidal actions between different species of Aedes mosquitoes. Even though all these findings are fundamental, it may have some interesting potentials to be developed as natural bio-larvicidal products.

    Matched MeSH terms: Areca/chemistry*; Insect Repellents/chemistry; Insecticides/chemistry; Nuts/chemistry*; Plant Extracts/chemistry
  5. Wong ZW, Ng JF, New SY
    Chem Asian J, 2021 Dec 13;16(24):4081-4086.
    PMID: 34668337 DOI: 10.1002/asia.202101145
    miRNA (miR)-155 is a potential biomarker for breast cancers. We aimed at developing a nanosensor for miR-155 detection by integrating hybridization chain reaction (HCR) and silver nanoclusters (AgNCs). HCR serves as an enzyme-free and isothermal amplification method, whereas AgNCs provide a built-in fluorogenic detection probe that could simplify the downstream analysis. The two components were integrated by adding a nucleation sequence of AgNCs to the hairpin of HCR. The working principle was based on the influence of microenvironment towards the hosted AgNCs, whereby unfolding of hairpin upon HCR has manipulated the distance between the hosted AgNCs and cytosine-rich toehold region of hairpin. As such, the dominant emission of AgNCs changed from red to yellow in the absence and presence of miR-155, enabling a ratiometric measurement of miR with high sensitivity. The limit of detection (LOD) of our HCR-AgNCs nanosensor is 1.13 fM in buffered solution. We have also tested the assay in diluted serum samples, with comparable LOD of 1.58 fM obtained. This shows the great promise of our HCR-AgNCs nanosensor for clinical application.
    Matched MeSH terms: DNA/chemistry; Fluorescent Dyes/chemistry*; Silver/chemistry; DNA Probes/chemistry; Metal Nanoparticles/chemistry*
  6. Shah K, Chan LW, Wong TW
    Drug Deliv, 2017 Nov;24(1):1631-1647.
    PMID: 29063794 DOI: 10.1080/10717544.2017.1384298
    The study investigated aerosolization, pulmonary inhalation, intracellular trafficking potential in macrophages and pharmacokinetics profiles of rifampicin-oleic acid first-generation nanoemulsion and its respective chitosan- and chitosan-folate conjugate-decorated second and third-generation nanoemulsions, delivered via nebulization technique. The nanoemulsions were prepared by conjugate synthesis and spontaneous emulsification techniques. They were subjected to physicochemical, drug release, aerosolization, inhalation, cell culture and pharmacokinetics analysis. The nanoemulsions had average droplet sizes of 40-60 nm, with narrow polydispersity indices. They exhibited desirable pH, surface tension, viscosity, refractive index, density and viscosity attributes for pulmonary rifampicin administration. All nanoemulsions demonstrated more than 95% aerosol output and inhalation efficiency greater than 75%. The aerosol output, aerosolized and inhaled fine particle fractions were primarily governed by the size and surface tension of nanoemulsions in an inverse relationship. The nanoemulsions were found to be safe with third-generation nanoemulsion exhibiting higher cell internalization potential, reduced plasma drug concentration, and higher lung drug content.
    Matched MeSH terms: Chemistry, Pharmaceutical/methods; Emulsions/chemistry; Oleic Acid/chemistry; Nanoparticles/chemistry
  7. Lopez JAV, Petitbois JG, Vairappan CS, Umezawa T, Matsuda F, Okino T
    Org. Lett., 2017 08 18;19(16):4231-4234.
    PMID: 28783344 DOI: 10.1021/acs.orglett.7b01869
    Two new chlorinated fatty acid amides, columbamides D (1) and E (2), along with apratoxins A and C and wewakazole, were isolated from the organic extract of a Moorea bouillonii sample from Sabah, Malaysia. Structure elucidation was accomplished by a combination of MS and NMR analyses. The total synthesis of all four stereoisomers of 1 was completed, and the absolute configuration was determined by chiral-phase HPLC and Marfey's analysis.
    Matched MeSH terms: Cyanobacteria/chemistry*; Amides/chemistry; Antineoplastic Agents/chemistry; Fatty Acids/chemistry; Peptides, Cyclic/chemistry
  8. Demirdöğen RE, Emen FM, Ocakoglu K, Murugan P, Sudesh K, Avşar G
    Int J Biol Macromol, 2018 Feb;107(Pt A):436-445.
    PMID: 28888547 DOI: 10.1016/j.ijbiomac.2017.09.011
    Carbon dioxide assisted particle formation combined with electrospraying using supercritical CO2 (scCO2) as an aid (Carbon Dioxide Assisted Nebulization-Electrodeposition, CAN-ED) was used to produce Bortezomib loaded poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) P(3HB-co-3HHx) nanoparticles for sustained release. The morphology and structure of the prepared nanoparticles were investigated by SEM, TEM and FT-IR spectroscopy. Average diameter of particles obtained was 155nm and the average core sizes of P(3HB-co-3HHx) nanoparticles were between 6 and 13nm. The drug loading capacity, drug release and stability of Bortezomib loaded P(3HB-co-3HHx) nanoparticles were analyzed. The maximum loading capacity was achieved at pH=6.0 in phosphate buffer (K2HPO4/KH2PO4). It was found that temperature did not affect the stability of Bortezomib loaded nanoparticles and it was good both at 37°C and 4°C. This study pointed out that CAN-ED is a green method to produce P(3HB-co-3HHx) nanoparticles for pH responsive targeting of Bortezomib especially to parts of the body where size exclusion is not crucial.
    Matched MeSH terms: Bortezomib/chemistry*; Caproates/chemistry; Carbon Dioxide/chemistry; 3-Hydroxybutyric Acid/chemistry; Nanoparticles/chemistry*
  9. Ng MH, Kushairi A
    Molecules, 2017 Aug 29;22(9).
    PMID: 28850073 DOI: 10.3390/molecules22091424
    There are six tocol analogs present in palm oil, namely α-tocopherol (α-T), α-tocomonoenol (α-T₁), α-tocotrienol (α-T₃), γ-tocotrienol (γ-T₃), β-tocotrioenol (β-T₃) and δ-tocotrienol (δ-T₃). These analogs were difficult to separate chromatographically due to their similar structures, physical and chemical properties. This paper reports on the effect of pressure and injection solvent on the separation of the tocol analogs in palm oil. Supercritical CO₂ modified with ethanol was used as the mobile phase. Both total elution time and resolution of the tocol analogs decreased with increased pressure. Ethanol as an injection solvent resulted in peak broadening of the analogs within the entire pressure range studied. Solvents with an eluent strength of 3.4 or less were more suitable for use as injecting solvents.
    Matched MeSH terms: Chromans/chemistry; Vitamin E/chemistry; alpha-Tocopherol/chemistry; Tocopherols/chemistry*; Tocotrienols/chemistry
  10. Zulfakar MH, Chan LM, Rehman K, Wai LK, Heard CM
    AAPS PharmSciTech, 2018 Apr;19(3):1116-1123.
    PMID: 29181705 DOI: 10.1208/s12249-017-0923-x
    Coenzyme Q10 (CoQ10) is a vitamin-like oil-soluble molecule that has anti-oxidant and anti-ageing effects. To determine the most optimal CoQ10 delivery vehicle, CoQ10 was solubilised in both water and fish oil, and formulated into hydrogel, oleogel and bigel. Permeability of CoQ10 from each formulation across porcine ear skin was then evaluated. Furthermore, the effects of the omega-3 fatty eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids from fish oil on skin permeation were investigated by means of nuclear magnetic resonance (NMR) and computerised molecular modelling docking experiments. The highest drug permeation was achieved with the bigel formulation that proved to be the most effective vehicle in delivering CoQ10 across the skin membrane due to a combination of its adhesive, viscous and lipophilic properties. Furthermore, the interactions between CoQ10 and fatty acids revealed by NMR and molecular modelling experiments likely accounted for skin permeability of CoQ10. NMR data showed dose-dependent changes in proton chemical shifts in EPA and DHA. Molecular modelling revealed complex formation and large binding energies between fatty acids and CoQ10. This study advances the knowledge about bigels as drug delivery vehicles and highlights the use of NMR and molecular docking studies for the prediction of the influence of drug-excipient relationships at the molecular level.
    Matched MeSH terms: Antioxidants/chemistry; Docosahexaenoic Acids/chemistry*; Fish Oils/chemistry; Ubiquinone/chemistry; Eicosapentaenoic Acid/chemistry*
  11. Batumalaie K, Edbeib MF, Mahat NA, Huyop F, Wahab RA
    J Biomol Struct Dyn, 2018 Sep;36(12):3077-3093.
    PMID: 28884626 DOI: 10.1080/07391102.2017.1377635
    Interests in Acinetobacter haemolyticus lipases are showing an increasing trend concomitant with growth of the enzyme industry and the widening search for novel enzymes and applications. Here, we present a structural model that reveals the key catalytic residues of lipase KV1 from A. haemolyticus. Homology modeling of the lipase structure was based on the structure of a carboxylesterase from the archaeon Archaeoglobus fulgidus as the template, which has a sequence that is 58% identical to that of lipase KV1. The lipase KV1 model is comprised of a single compact domain consisting of seven parallel and one anti-parallel β-strand surrounded by nine α-helices. Three structurally conserved active-site residues, Ser165, Asp259, and His289, and a tunnel through which substrates access the binding site were identified. Docking of the substrates tributyrin and palmitic acid into the pH 8 modeled lipase KV1 active sites revealed an aromatic platform responsible for the substrate recognition and preference toward tributyrin. The resulting binding modes from the docking simulation correlated well with the experimentally determined hydrolysis pattern, for which pH 8 and tributyrin being the optimum pH and preferred substrate. The results reported herein provide useful insights into future structure-based tailoring of lipase KV1 to modulate its catalytic activity.
    Matched MeSH terms: Acinetobacter/chemistry*; Alkalies/chemistry; Lipase/chemistry*; Archaeoglobus fulgidus/chemistry*; Carboxylesterase/chemistry*
  12. Mohamed Tap F, Abd Majid FA, Ismail HF, Wong TS, Shameli K, Miyake M, et al.
    Molecules, 2018 Jan 19;23(1).
    PMID: 29351216 DOI: 10.3390/molecules23010073
    Phospholipase A2 (Pla2) is an enzyme that induces inflammation, making Pla2 activity an effective approach to reduce inflammation. Therefore, investigating natural compounds for this Pla2 inhibitory activity has important therapeutic potential. The objective of this study was to investigate the potential in bromelain-phytochemical complex inhibitors via a combination of in silico and in vitro methods. Bromelain-amenthoflavone displays antagonistic effects on Pla2. Bromelian-asiaticoside and bromelain-diosgenin displayed synergistic effects at high concentrations of the combined compounds, with inhibition percentages of more than 70% and 90%, respectively, and antagonistic effects at low concentrations. The synergistic effect of the bromelain-asiaticoside and bromelain-diosgenin combinations represents a new application in treating inflammation. These findings not only provide significant quantitative data, but also provide an insight on valuable implications for the combined use of bromelain with asiaticoside and diosgenin in treating inflammation, and may help researchers develop more natural bioactive compounds in daily foods as anti-inflammatory agent.
    Matched MeSH terms: Anti-Inflammatory Agents/chemistry; Bromelains/chemistry*; Phospholipases A2/chemistry*; Phytochemicals/chemistry*; Phospholipase A2 Inhibitors/chemistry*
  13. Kamada T, Phan CS, Vairappan CS
    J Asian Nat Prod Res, 2019 Mar;21(3):241-247.
    PMID: 29281900 DOI: 10.1080/10286020.2017.1417265
    Two new halogenated nonterpenoids C15-acetogenins, nangallenes A-B (1-2), together with two known halogenated compounds itomanallene A (3) and 2,10-dibromo-3-chloro-α-chamigrene (4), were isolated and identified from the organic extract of the marine red alga Laurencia nangii Masuda collected from the coastal waters in Semporna, Borneo. Their structures were established by means of spectroscopic analysis including IR, high-resolution electrospray ionization mass spectrometry (HRESI-MS), and 1D and 2D NMR techniques. All these metabolites were submitted for the antifungal assay against four species of selected marine fungi. Compounds 1-4 showed potent activity against Haliphthoros sabahensis and Lagenidium thermophilum.
    Matched MeSH terms: Antifungal Agents/chemistry*; Heterocyclic Compounds, 2-Ring/chemistry; Sesquiterpenes/chemistry; Laurencia/chemistry*; Acetogenins/chemistry*
  14. Zare-Zardini H, Taheri-Kafrani A, Amiri A, Bordbar AK
    Sci Rep, 2018 01 12;8(1):586.
    PMID: 29330486 DOI: 10.1038/s41598-017-18938-y
    In this study, Rh2-treated graphene oxide (GO-Rh2), lysine-treated highly porous graphene (Gr-Lys), arginine-treated Gr (Gr-Arg), Rh2-treated Gr-Lys (Gr-Lys-Rh2) and Rh2-treated Gr-Arg (Gr-Arg-Rh2) were synthesized. MTT assay was used for evaluation of cytotoxicity of samples on ovarian cancer (OVCAR3), breast cancer (MDA-MB), Human melanoma (A375) and human mesenchymal stem cells (MSCs) cell lines. The percentage of apoptotic cells was determined by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay. The hemolysis and blood coagulation activity of nanostructures were performed. Interestingly, Gr-Arg, Gr-Lys, Gr-Arg-Rh2, and Gr-Lys-Rh2 were more active against cancer cell lines in comparison with their cytotoxic activity against normal cell lines (MSCs) with IC50 values higher than 100 μg/ml. The results of TUNEL assay indicates a significant increase in the rates of TUNEL positive cells by increasing the concentrations of nanomaterials. Results were also shown that aggregation and changes of RBCs morphology were occurred in the presence of GO, GO-Rh2, Gr-Arg, Gr-Lys, Gr-Arg-Rh2, and Gr-Lys-Rh2. Note that all the samples had effect on blood coagulation system, especially on PTT. All nanostrucure act as antitumor drug so that binding of drugs to a nostructures is irresolvable and the whole structure enter to the cell as a drug.
    Matched MeSH terms: Antineoplastic Agents/chemistry; Arginine/chemistry; Graphite/chemistry*; Lysine/chemistry; Ginsenosides/chemistry
  15. Saman N, Johari K, Song ST, Kong H, Cheu SC, Mat H
    Chemosphere, 2017 Mar;171:19-30.
    PMID: 28002763 DOI: 10.1016/j.chemosphere.2016.12.049
    An effective organoalkoxysilanes-grafted lignocellulosic waste biomass (OS-LWB) adsorbent aiming for high removal towards inorganic and organic mercury (Hg(II) and MeHg(II)) ions was prepared. Organoalkoxysilanes (OS) namely mercaptoproyltriethoxylsilane (MPTES), aminopropyltriethoxylsilane (APTES), aminoethylaminopropyltriethoxylsilane (AEPTES), bis(triethoxysilylpropyl) tetrasulfide (BTESPT), methacrylopropyltrimethoxylsilane (MPS) and ureidopropyltriethoxylsilane (URS) were grafted onto the LWB using the same conditions. The MPTES grafted lignocellulosic waste biomass (MPTES-LWB) showed the highest adsorption capacity towards both mercury ions. The adsorption behavior of inorganic and organic mercury ions (Hg(II) and MeHg(II)) in batch adsorption studies shows that it was independent with pH of the solutions and dependent on initial concentration, temperature and contact time. The maximum adsorption capacity of Hg(II) was greater than MeHg(II) which respectively followed the Temkin and Langmuir models. The kinetic data analysis showed that the adsorptions of Hg(II) and MeHg(II) onto MPTES-LWB were respectively controlled by the physical process of film diffusion and the chemical process of physisorption interactions. The overall mechanism of Hg(II) and MeHg(II) adsorption was a combination of diffusion and chemical interaction mechanisms. Regeneration results were very encouraging especially for the Hg(II); this therefore further demonstrated the potential application of organosilane-grafted lignocellulosic waste biomass as low-cost adsorbents for mercury removal process.
    Matched MeSH terms: Lignin/chemistry*; Mercury/chemistry; Methylmercury Compounds/chemistry; Silanes/chemistry*; Water Pollutants, Chemical/chemistry
  16. Lim CS, Goh SL, Kariapper L, Krishnan G, Lim YY, Ng CC
    Clin Chim Acta, 2015 Aug 25;448:206-10.
    PMID: 26164385 DOI: 10.1016/j.cca.2015.07.008
    Development of indirect enzyme-linked immunosorbent assays (ELISAs) often utilizes synthetic peptides or recombinant proteins from Escherichia coli as immobilized antigens. Because inclusion bodies (IBs) formed during recombinant protein expression in E. coli are commonly thought as misfolded aggregates, only refolded proteins from IBs are used to develop new or in-house diagnostic assays. However, the promising utilities of IBs as nanomaterials and immobilized enzymes as shown in recent studies have led us to explore the potential use of IBs of recombinant Epstein-Barr virus viral capsid antigen p18 (VCA p18) as immobilized antigens in ELISAs for serologic detection of nasopharyngeal carcinoma (NPC).
    Matched MeSH terms: Antigens, Viral/chemistry; Inclusion Bodies, Viral/chemistry; Recombinant Proteins/chemistry; Capsid Proteins/chemistry; Immobilized Proteins/chemistry
  17. Suroowan S, Llorent-Martínez EJ, Zengin G, Dall'Acqua S, Sut S, Buskaran K, et al.
    Molecules, 2022 Sep 10;27(18).
    PMID: 36144622 DOI: 10.3390/molecules27185886
    Artemisia verlotiorum Lamotte is recognized medicinally given its long-standing ethnopharmacological uses in different parts of the world. Nonetheless, the pharmacological properties of the leaves of the plant have been poorly studied by the scientific community. Hence, this study aimed to decipher the phytochemicals; quantify through HPLC-ESI-MS analysis the plant’s biosynthesis; and evaluate the antioxidant, anti-tyrosinase, amylase, glucosidase, cholinesterase, and cytotoxicity potential on normal (NIH 3T3) and human liver and human colon cancer (HepG2 and HT 29) cell lines of this plant species. The aqueous extract contained the highest content of phenolics and phenolic acid, methanol extracted the most flavonoid, and the most flavonol was extracted by ethyl acetate. The one-way ANOVA results demonstrated that all results obtained were statistically significant at p < 0.05. A total of 25 phytoconstituents were identified from the different extracts, with phenolic acids and flavonoids being the main metabolites. The highest antioxidant potential was recorded for the aqueous extract. The best anti-tyrosinase extract was the methanolic extract. The ethyl acetate extract of A. verlotiorum had the highest flavonol content and hence was most active against the cholinesterase enzymes. The ethyl acetate extract was the best α-glucosidase and α-amylase inhibitor. The samples of Artemisia verlotiorum Lamotte in both aqueous and methanolic extracts were found to be non-toxic after 48 h against NIH 3T3 cells. In HepG2 cells, the methanolic extract was nontoxic up to 125 µg/mL, and an IC50 value of 722.39 µg/mL was recorded. The IC50 value exhibited in methanolic extraction of A. verlotiorum was 792.91 µg/mL in HT29 cells. Methanolic extraction is capable of inducing cell cytotoxicity in human hepatocellular carcinoma without damaging normal cells. Hence, A. verlotiorum can be recommended for further evaluation of its phytochemical and medicinal properties.
    Matched MeSH terms: Methanol/chemistry; alpha-Amylases/chemistry; alpha-Glucosidases/chemistry; Antioxidants/chemistry; Plant Extracts/chemistry
  18. Ahmad T, Danish M, Rafatullah M, Ghazali A, Sulaiman O, Hashim R, et al.
    Environ Sci Pollut Res Int, 2012 Jun;19(5):1464-84.
    PMID: 22207239 DOI: 10.1007/s11356-011-0709-8
    BACKGROUND: In tropical countries, the palm tree is one of the most abundant and important trees. Date palm is a principal fruit grown in many regions of the world. It is abundant, locally available and effective material that could be used as an adsorbent for the removal of different pollutants from aqueous solution.

    REVIEW: This article presents a review on the role of date palm as adsorbents in the removal of unwanted materials such as acid and basic dyes, heavy metals, and phenolic compounds. Many studies on adsorption properties of various low cost adsorbent, such as agricultural waste and activated carbons based on agricultural waste have been reported in recent years.

    CONCLUSION: Studies have shown that date palm-based adsorbents are the most promising adsorbents for removing unwanted materials. No previous review is available where researchers can get an overview of the adsorption capacities of date palm-based adsorbent used for the adsorption of different pollutants. This review provides the recent literature demonstrating the usefulness of date palm biomass-based adsorbents in the adsorption of various pollutants.

    Matched MeSH terms: Coloring Agents/chemistry; Pesticides/chemistry; Water Pollutants, Chemical/chemistry; Metals, Heavy/chemistry; Arecaceae/chemistry*
  19. Yong SK, Skinner WM, Bolan NS, Lombi E, Kunhikrishnan A, Ok YS
    Environ Sci Pollut Res Int, 2016 Jan;23(2):1050-9.
    PMID: 26538256 DOI: 10.1007/s11356-015-5654-5
    Pristine chitosan beads were modified with sulfur (S)-containing functional groups to produce thiolated chitosan beads (ETB), thereby increasing S donor ligands and crosslinks. The effect of temperature, heating time, carbon disulfide (CS2)/chitosan ratio, and pH on total S content of ETB was examined using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The total S content of ETB increased with increasing CS2/chitosan ratio and decreased with decreasing pH and increasing temperature (>60 °C) and heating time (at 60 °C). Spectroscopic analyses revealed the presence of thiol (-SH)/thione, disulfide (-S-S-), and sulfonate groups in ETB. The thiolation mechanism involves decomposition of dithiocarbamate groups, thereby forming thiourea crosslinks and trithiocarbonate, resulting in -SH oxidation to produce -S-S- crosslinks. The partially formed ETB crosslinks contribute to its acid stability and are thermodynamically feasible in adsorbing Cd and Cu. The S-containing functional groups added to chitinous wastes act as sorbents for metal remediation from acidic environments.
    Matched MeSH terms: Cadmium/chemistry*; Copper/chemistry*; Sulfur/chemistry*; Water Pollutants, Chemical/chemistry*; Chitosan/chemistry*
  20. Ashrafi M, Mohamad S, Yusoff I, Shahul Hamid F
    Environ Sci Pollut Res Int, 2015 Jan;22(1):223-30.
    PMID: 25060308 DOI: 10.1007/s11356-014-3299-4
    Heavy-metal-contaminated soil is one of the major environmental pollution issues all over the world. In this study, two low-cost amendments, inorganic eggshell and organic banana stem, were applied to slightly alkaline soil for the purpose of in situ immobilization of Pb, Cd, and Zn. The artificially metal-contaminated soil was treated with 5% eggshell or 10% banana stem. To simulate the rainfall conditions, a metal leaching experiment for a period of 12 weeks was designed, and the total concentrations of the metals in the leachates were determined every 2 weeks. The results from the metal leaching analysis revealed that eggshell amendment generally reduced the concentrations of Pb, Cd, and Zn in the leachates, whereas banana stem amendment was effective only on the reduction of Cd concentration in the leachates. A sequential extraction analysis was carried out at the end of the experiment to find out the speciation of the heavy metals in the amended soils. Eggshell amendment notably decreased mobility of Pb, Cd, and Zn in the soil by transforming their readily available forms to less accessible fractions. Banana stem amendment also reduced exchangeable form of Cd and increased its residual form in the soil.
    Matched MeSH terms: Egg Shell/chemistry*; Soil/chemistry; Water/chemistry; Plant Stems/chemistry; Musa/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links