Displaying publications 341 - 360 of 2202 in total

Abstract:
Sort:
  1. Chen CX, Aris A, Yong EL, Noor ZZ
    Environ Sci Pollut Res Int, 2022 Jan;29(4):4787-4802.
    PMID: 34775565 DOI: 10.1007/s11356-021-17365-x
    Many advanced technologies have shown encouraging results in removing antibiotics from domestic wastewater. However, as activated sludge treatment is the most common sewage treatment system employed worldwide, improving its effect on antibiotic removal would be more desirable. Understanding the removal mechanisms, kinetics and factors that affect antibiotic removal in the activated sludge process is important as it would allow us to improve the treatment performance. Although these have been discussed in various literature covering different types of antibiotics and wastewater, a specific review on antibiotics and domestic wastewater is clearly missing. This review paper collates, discusses and analyses the removal of antibiotics from sewage in the activated sludge process along with the removal mechanisms and kinetics. The antibiotics are categorised into six classes: β-lactam, dihydrofolate reductase inhibitor, fluoroquinolone, macrolide, sulfonamides and tetracycline. Furthermore, the factors affecting the system performance with regard to antibiotic removal are examined.
    Matched MeSH terms: Anti-Bacterial Agents
  2. Tran TV, Jalil AA, Nguyen DTC, Nguyen TM, Alhassan M, Nabgan W, et al.
    Environ Res, 2023 May 15;225:115516.
    PMID: 36805897 DOI: 10.1016/j.envres.2023.115516
    Tetracycline (TCC) and sulfadiazine (SDZ) are two of the most consumed antibiotics for human therapies and bacterial infection treatments in aquafarming fields, but their accumulative residues can result in negative effects on water and aquatic microorganisms. Removal techniques are therefore required to purify water before use. Herein, we concentrate on adsorptive removal of TCC and SDZ using cobalt@carbon nanotubes (Co@CNTs) derived from Co-ZIF-67. The presence of CNTs on the edge of nanocomposites was observed. Taguchi orthogonal array was designed with four variables including initial concentration (5-20 mg L-1), dosage (0.05-0.2 g L-1), time (60-240 min), and pH (2-10). Concentration and pH were found to be main contributors to adsorption of tetracycline and sulfadiazine, respectively. The optimum condition was found at concentration 5 mg L-1, dosage 0.2 g L-1, contact time 240 min, and pH 7 for both TCC and SDZ removals. Confirmation tests showed that Co@CNTs-700 removed 99.6% of TCC and 97.3% of SDZ with small errors (3-5.5%). Moreover, the kinetic and isotherm were studied, which kinetic and isotherm data were best fitted with pseudo second-order model and Langmuir. Maximum adsorption capacity values for TCC and SDZ were determined at 118.4-174.1 mg g-1 for 180 min. We also proposed the main role of interactions such as hydrogen bonding, π-π stacking, and electrostatic attraction in the adsorption of antibiotics. With high adsorption performance, Co@CNTs-700 is expected to remove antibiotics efficiently from wastewater.
    Matched MeSH terms: Anti-Bacterial Agents
  3. Paul PK, Nakpheng T, Paliwal H, Prem Ananth K, Srichana T
    Int J Pharm, 2024 Jul 20;660:124309.
    PMID: 38848797 DOI: 10.1016/j.ijpharm.2024.124309
    Delivering novel antimycobacterial agents through the pulmonary route using nanoparticle-based systems shows promise for treating diseases like tuberculosis. However, creating dry powder inhaler (DPI) with suitable aerodynamic characteristics while preserving nanostructure integrity and maintaining bioactivity until the active ingredient travels deeply into the lungs is a difficult challenge. We developed DPI formulations containing levofloxacin-loaded solid lipid nanoparticles (SLNs) via spray-drying technique with tailored aerosolization characteristics for effective inhalation therapy. A range of biophysical techniques, including transmission electron microscopy, confocal microscopy, and scanning electron microscopy were used to measure the morphologies and sizes of the spray-dried microparticles that explored both the geometric and aerodynamic properties. Spray drying substantially reduced the particle sizes of the SLNs while preserving their nanostructural integrity and enhancing aerosol dispersion with efficient mucus penetration. Despite a slower uptake rate compared to plain SLNs, the polyethylene glycol modified formulations exhibited enhanced cellular uptake in both A549 and NR8383 cell lines. The percent viability of Mycobacterium bovis had dropped to nearly 0 % by day 5 for both types of SLNs. Interestingly, the levofloxacin-loaded SLNs demonstrated a lower minimum bactericidal concentration (0.25 µg/mL) compared with pure levofloxacin (1 µg/mL), which indicated the formulations have potential as effective treatments for tuberculosis.
    Matched MeSH terms: Anti-Bacterial Agents/administration & dosage; Anti-Bacterial Agents/pharmacology; Anti-Bacterial Agents/chemistry
  4. Dheyauldeen Salahdin O, Othman H, Hafsan H, Mohammed F, Ahmed Hamza T, Kadhim MM, et al.
    Arch Razi Inst, 2023 Feb;78(1):95-105.
    PMID: 37312740 DOI: 10.22092/ARI.2022.359522.2442
    Due to its beneficial components, such as glycyrrhizin, licorice is regarded a medicinal and fragrant plant. This research was designed to investigate the efficacy of licorice essential oil as an alternative to chemical antibiotics on broiler production, carcass features, cellular and humoral safety, and numerous biochemical variables in broiler blood serum. A total of 160 day-old broiler chicks were assigned to four treatment groups using a totally randomized approach. Each treatment consisted of 4 replicates, with 10 chicks in each replication. The experimental treatments included a control group, a group receiving an elemental diet containing 0.1% licorice essential oil, a group receiving an elemental diet containing 0.2% licorice essential oil, and a group receiving an elemental diet containing 0.3% licorice essential oil. Broilers had ad libitum access to feed and water in accordance with a three-phase feeding schedule consisting of a starter, grower, and finisher diet. There was no statistically significant difference (P>0.05) in body weight, feed intake, or feed conversion ratio between birds given the control or essential oil licorice at various stages of the experiment. However, birds receiving 0.1% licorice essential oil had a lower gallbladder relative weight and 0.3% licorice essential oil had less abdominal fat than the control group (P<0.05). Blood glucose, cholesterol, and LDL concentrations all fell considerably in licorice essential oil-treated birds relative to controls (P<0.05). The cellular immune response of birds fed licorice-containing diets did not differ from that of control birds (P>0.05), however there was a significant difference in the humoral immune response at 0.1% licorice essential oil compared to the control group (P<0.05). In overall, the results of this experiment demonstrated that incorporating licorice essential oil into a bird's diet improves its health and safety.
    Matched MeSH terms: Anti-Bacterial Agents
  5. Hamid HA, Lin X, Qin YK, Akim AM, Zhang L, Wang J, et al.
    Int Wound J, 2024 Feb;21(2):e14574.
    PMID: 38379231 DOI: 10.1111/iwj.14574
    This cross-sectional study was conducted to examine the most effective strategies for managing malodorous and infected wounds in patients who have been diagnosed with advanced cervical cancer. The research was conducted in Liupanshui, China. The study specifically examined demographic profiles, wound characteristics and effectiveness of wound management approaches. The study incorporated the heterogeneous sample of 289 participants who fulfilled the inclusion criteria. Data collection was conducted via structured questionnaires and medical record evaluations. Descriptive statistics and statistical analyses, such as regression analysis, were utilized to evaluate demographic attributes, wound profiles and effects of different approaches to wound management. The findings unveiled the heterogeneous demographic composition of patients, encompassing differences in socioeconomic standing, educational attainment and age. A wide range of wound characteristics were observed, as 65.7% of lesions during the acute phase with diameter between 2 and 5 centimetres, while 41.5% of lesions had this range. The most prevalent types of infections were those caused by fungi (48.4%), followed by bacterial infections lacking resistance (38.1%). A moderate degree of odour intensity was prevalent, affecting 45.0% of the cases. With maximal odour reduction of 80%, a mean healing time of 25 days and patient satisfaction rating of 4.5 out of 5, Negative Pressure Wound Therapy demonstrated itself to be the most efficacious treatment method. Additional approaches, such as photodynamic therapy and topical antibiotic therapy, demonstrated significant effectiveness, as evidenced by odour reductions of 70% and 75%, respectively, and patient satisfaction ratings of 4.3 and 4.2. Thus, the study determined challenges associated with management of malodorous and infected lesions among patients with advanced cervical cancer. The results underscored the significance of individualized care approaches, drew attention to efficacious wound management techniques and identified critical determinants that impacted patient recuperation. The findings of this study hold potential for advancing palliative care for individuals diagnosed with advanced cervical cancer.
    Matched MeSH terms: Anti-Bacterial Agents
  6. Dorai AA
    Indian J Plast Surg, 2012 May;45(2):418-24.
    PMID: 23162243 DOI: 10.4103/0970-0358.101331
    Wound care is constantly evolving with the advances in medicine. Search for the ideal dressing material still continues as wound care professionals are faced with several challenges. Due to the emergence of multi-resistant organisms and a decrease in newer antibiotics, wound care professionals have revisited the ancient healing methods by using traditional and alternative medicine in wound management. People's perception towards traditional medicine has also changed and is very encouraging. The concept of moist wound healing has been well accepted and traditional medicine has also incorporated this method to fasten the healing process. Several studies using herbal and traditional medicine from different continents have been documented in wound care management. Honey has been used extensively in wound care practice with excellent results. Recent scientific evidences and clinical trials conducted using traditional and alternative medicine in wound therapy holds good promise in the future.
    Matched MeSH terms: Anti-Bacterial Agents
  7. Farzinebrahimi R, Mat Taha R, Rashid KA, Ali Ahmed B, Danaee M, Rozali SE
    PMID: 27298625 DOI: 10.1155/2016/6429652
    Leaf, seed, and tuber explants of C. latifolia were inoculated on MS medium supplemented with various concentrations of BAP and IBA, alone or in combinations, to achieve in vitro plant regeneration. Subsequently, antioxidant and antibacterial activities were determined from in vitro and in vivo plant developed. No response was observed from seed culture on MS media with various concentrations of PGRs. The highest percentage of callus was observed on tuber explants (94%) and leaf explants (89%) when cultured on MS media supplemented with IBA in combination with BAP. A maximum of 88% shoots per tuber explant, with a mean number of shoots (8.8 ± 1.0), were obtained on MS medium supplemented with combinations of BAP and IBA (2.5 mg L(-1)). The best root induction (92%) and mean number (7.6 ± 0.5) from tuber explants were recorded on 2.5 mg L(-1) IBA alone supplemented to MS medium. The higher antioxidant content (80%) was observed from in vivo tuber. However, tuber part from the intact plant showed higher inhibition zone in antibacterial activity compared to other in vitro and in vivo tested parts.
    Matched MeSH terms: Anti-Bacterial Agents
  8. Imran M, Ahmed S, Abdullah AZ, Hakami J, Chaudhary AA, Rudayni HA, et al.
    Luminescence, 2023 Jul;38(7):1064-1086.
    PMID: 36378274 DOI: 10.1002/bio.4408
    The penicillin derivative amoxicillin (AMX) plays an important role in treating various types of infections caused by bacteria. However, excessive use of AMX may have negative health effects. Therefore, it is of utmost importance to detect and quantify the AMX in pharmaceutical drugs, biological fluids, and environmental samples with high sensitivity. Therefore, this review article provides valuable and up-to-date information on nanostructured material-based optical and electrochemical sensors to detect AMX in various biological and chemical samples. The role of using different nanostructured materials on the performance of important optical sensors such as colorimetric sensors, fluorescence sensors, surface-enhanced Raman scattering sensors, chemiluminescence/electroluminescence sensors, optical immunosensors, optical fibre-based sensors, and several important electrochemical sensors based on different electrode types have been discussed. Moreover, nanocomposites, polymer, and MXenes-based electrochemical sensors have also been discussed, in which such materials are being used to further enhance the sensitivity of these sensors. Furthermore, nanocomposite-based photo-electrochemical sensors and the market availability of biosensors including AMX have also been discussed briefly. Finally, the conclusion, challenges, and future perspectives of the above-mentioned sensing techniques for AMX detection are presented.
    Matched MeSH terms: Anti-Bacterial Agents
  9. Nguyen TB, Nguyen TK, Chen CW, Chen WH, Bui XT, Lam SS, et al.
    Bioresour Technol, 2023 Aug;382:129182.
    PMID: 37210031 DOI: 10.1016/j.biortech.2023.129182
    In this study, biochar produced from sunflower seeds husk was activated through ZnCl2 to support the NiCo2O4 nanoparticles (NiCo2O4@ZSF) in catalytic activation of peroxymonosulfate (PMS) toward tetracycline (TC) removal from aqueous solution. The good dispersion of NiCo2O4 NPs on the ZSF surface provided sufficient active sites and abundant functional groups for the adsorption and catalytic reaction. The NiCo2O4@ZSF activating PMS showed high removal efficiency up to 99% after 30 min under optimal condition ([NiCo2O4@ZSF] = 25 mg L-1, [PMS] = 0.04 mM, [TC] = 0.02 mM and pH = 7). The catalyst also exhibited good adsorption performance with a maximum adsorption capacity of 322.58 mg g-1. Sulfate radicals (SO4•-), superoxide radical (O2•-), and singlet oxygen (1O2) played a decisive role in the NiCo2O4@ZSF/PMS system. In conclusion, our research elucidated the production of highly efficient carbon-based catalysts for environmental remediation, and also emphasized the potential application of NiCo2O4 doped biochar.
    Matched MeSH terms: Anti-Bacterial Agents
  10. Z Mazlan M, A H Ismail M, Ali S, Salmuna ZN, Wan Muhd Shukeri WF, Omar M
    Anaesthesiol Intensive Ther, 2021;53(3):207-214.
    PMID: 34006044 DOI: 10.5114/ait.2021.104300
    INTRODUCTION: This study was conducted to assess the efficacy of point-of-care (POC) procalcitonin (PCT) serial measurement in determining the antibiotic treatment duration in patients with ventilator-associated pneumonia (VAP).

    MATERIAL AND METHODS: One hundred patients were randomly recruited and then further randomly divided into two groups of 50 patients each. The first group used the POC PCT test along with the standard sepsis parameter monitoring, while the second group had the standard monitoring only (C-reactive protein [CRP] level, total white count, temperature and tracheal aspirate culture). Serial PCT test results and CRP levels were monitored on days 1, 3, 7 and 9. The patients were followed up for 28-day mortality.

    RESULTS: Eighty-five patients completed the trial, of whom 43 were in the PCT group and 42 were in the control group. The PCT group had a significantly lower mean (SD) antibiotic treatment duration (10.28 [2.68] days) than the control group (11.52 [3.06]). The mean (SD) difference was -1.25 (95% confidence interval [CI], -2.48 to 0.01; t-statistic [df] = -1.997 [83]; P = 0.049). The PCT group also had a higher number of antibiotic-free days alive during the 28 days after VAP onset than the control group (mean [SD], 10.79 [7.61] vs. 8.72 [6.41]). The Sequential Organ Failure Assessment score was the sole factor for the decrease in duration after VAP onset (regression coefficient β [95% CI], -0.70 [-1.19 to -0.20]; P = 0.006).

    CONCLUSIONS: The POC procalcitonin test can reduce the antibiotic treatment duration in patients with VAP.

    Matched MeSH terms: Anti-Bacterial Agents
  11. Pertiwi H, Rochmy SE, Chwen LT
    Arch Razi Inst, 2023 Aug;78(4):1269-1275.
    PMID: 38226375 DOI: 10.32592/ARI.2023.78.4.1269
    Restriction of antibiotic growth promoters (AGP) in Indonesia reduces broiler production due to bacterial diseases. Some poultry farmers have attempted to replace AGP with phytogenic compounds, such as tannin as an in-feed additive. Therefore, this study was carried out to investigate the effects of tannin administration on the production performance, viscera weight, and lipoprotein levels of tropically-raised broiler chickens. Cobb Strain broiler chicks aged one day were used in an experiment with a completely random design, three treatments, and four replicate pens, each containing nine birds. Three dietary treatments were assigned to the birds: basal diet (negative control), basal diet+0.03% Zn Bacitracyn (positive control), and basal diet+0.05% tannin for the starter phase of 1-21 days and the grower phase of 22-42 days, respectively. Tannin supplementation significantly increased the feed conversion ratio in all phases relative to the control group. Tannin supplementation in the diet significantly reduced daily feed intake during the grower phase, final body weight, carcass weight, intestine weight, liver weight, and total visceral weight, compared to the control group. Tannin had lower levels of aspartate aminotransferase but higher levels of low-density lipoprotein and alanine aminotransferase. Tannin addition in broiler diets might not improve growth performance and health. Therefore, it is not suggested as a substitute for AGPs in broiler diets.
    Matched MeSH terms: Anti-Bacterial Agents
  12. Tan KK, Khoo TJ, Rajagopal M, Wiart C
    Nat Prod Res, 2015;29(24):2346-9.
    PMID: 25738993 DOI: 10.1080/14786419.2015.1013954
    Chloroform extract of bark of Artabotrys crassifolius Hook.f. & Thomson exhibited antibacterial activities against both American Type Culture Collection and clinical bacterial strains in vitro with zones of inhibition ranging from 7 to 14 mm. Further analysis of this extract yielded artabotrine, liridine, lysicamine and atherospermidine. Artabotrine displayed a broad array of antibacterial activity mostly against Gram-positive bacteria with minimum inhibitory concentration (MIC) values ranging from 1.25 μg/mL to 5 μg/mL. Of note, artabotrine, liridine and lysicamine are bactericidal against Gram-negative extended-spectrum beta-lactamase-producing Klebsiella with MIC values equal 2.5, 2.5 and 10 μg/mL, respectively, and minimum bactericidal concentrations values equal to 2.5, 5 and 20 μg/mL.
    Matched MeSH terms: Anti-Bacterial Agents/isolation & purification; Anti-Bacterial Agents/chemistry*
  13. Ramaiya SD, Bujang JS, Zakaria MH
    ScientificWorldJournal, 2014;2014:167309.
    PMID: 25028673 DOI: 10.1155/2014/167309
    This study focused on total phenolic content (TPC) and antioxidant and antibacterial activities of the leaves and stems of Passiflora quadrangularis, P. maliformis, and P. edulis extracted using three solvents: petroleum ether, acetone, and methanol. The maximum extraction yields of antioxidant components from the leaves and stems were isolated using methanol extracts of P. edulis (24.28%) and P. quadrangularis (9.76%), respectively. Among the leaf extracts, the methanol extract of P. maliformis had the significantly highest TPC and the strongest antioxidant activity, whereas among the stem extracts, the methanol extract of P. quadrangularis showed the highest phenolic amount and possessed the strongest antioxidant activity. The antibacterial properties of the Passiflora species were tested using the disc diffusion method against 10 human pathogenic bacteria. The largest inhibition zone was observed for the methanol extract of P. maliformis against B. subtilis. Generally, extracts from the Passiflora species exhibit distinct inhibition against Gram-positive but not Gram-negative bacteria. Based on the generated biplot, three clusters of bacteria were designated according to their performance towards the tested extracts. The present study revealed that methanol extracts of the Passiflora contain constituents with significant phenolic, antioxidant, and antibacterial properties for pharmaceutical and nutraceutical uses.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*; Anti-Bacterial Agents/chemistry*
  14. Razmavar S, Abdulla MA, Ismail SB, Hassandarvish P
    Biomed Res Int, 2014;2014:521287.
    PMID: 25028658 DOI: 10.1155/2014/521287
    This study was based on screening antibacterial activity of the ethanol extract of Baeckea frutescens L. against MRSA clinical isolates, analyzes the potential antibacterial compound, and assesses the cytotoxicity effect of the extract in tissue culture. Leaves of Baeckea frutescens L. were shade dried, powdered, and extracted using solvent ethanol. Preliminary phytochemical screening of the crude extracts revealed the presence of alkaloids, flavonoids, steroids, terpenoids, phenols, and carbohydrates. The presence of these bioactive constituents is related to the antibacterial activity of the plant. Disc diffusion method revealed a high degree of activity against microorganisms. The results confirm that Baeckea frutescens L. can be used as a source of drugs to fight infections caused by susceptible bacteria.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*; Anti-Bacterial Agents/chemistry
  15. Chen GX, He WW, Wang Y, Zou YD, Liang JB, Liao XD, et al.
    Sci Total Environ, 2014 May 1;479-480:241-6.
    PMID: 24561929 DOI: 10.1016/j.scitotenv.2014.01.124
    The degradation behavior of veterinary antibiotics in soil is commonly studied using the following methods of adding antibiotics to the soil: (i) adding manure collected from animals fed with a diet containing antibiotics, (ii) adding antibiotic-free animal manure spiked with antibiotics and (iii) directly adding antibiotics. No research simultaneously comparing different antibiotic addition methods was found. Oxytetracycline (OTC) was used as a model antibiotic to compare the effect of the three commonly used antibiotic addition methods on OTC degradation behavior in soil. The three treatment methods have similar trends, though OTC degradation half-lives show the following significant differences (P<0.05): manure from swine fed OTC (treatment A)
    Matched MeSH terms: Anti-Bacterial Agents/analysis; Anti-Bacterial Agents/chemistry*
  16. Kamada T, Vairappan CS
    Nat Prod Commun, 2013 Mar;8(3):287-8.
    PMID: 23678792
    A Bomean red algal population of Laurencia similis Nam et Saito was analyzed for its secondary metabolite composition. Seven compounds were identified: ent-1(10)-aristolen-9beta-ol (1), (+)-aristolone (2), axinysone B (3), 9-aristolen-1alpha-ol (4), 2,3,5,6-tetrabromoindole (5), 1-methyl-2,3,5,6-tetrabromoindole (6), and 1-methyl-2,3,5-tribromoindole (7). Compound 1 was identified as a new optical isomer of 1(10)-aristolen-9beta-ol. Compounds 1, 4 and 5 exhibited good antibacterial activity against antibiotic resistant clinical bacteria and cytotoxic effects against selected cancer cell lines.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*; Anti-Bacterial Agents/chemistry
  17. Azizi S, Ahmad MB, Hussein MZ, Ibrahim NA
    Molecules, 2013 May 28;18(6):6269-80.
    PMID: 23760028 DOI: 10.3390/molecules18066269
    Synthesis of ZnO-Ag heterostructure nanoparticles was carried out by a precipitation method with cellulose nanocrystals (CNCs) as a stabilizer for antimicrobial and thermal studies. ZnO-Ag nanoparticles were obtained from various weight percentages of added AgNO₃ relative to Zn precursors for evaluating the best composition with enhanced functional properties. The ZnO-Ag/CNCs samples were characterized systematically by TEM, XRD, UV, TGA and DTG. From the TEM studies we observed that ZnO-Ag heterostructure nanoparticles have spherical shapes with size diameters in a 9-35 nm range. The antibacterial activities of samples were assessed against the bacterial species Salmonella choleraesuis and Staphylococcus aureus. The CNC-stabilized ZnO-Ag exhibited greater bactericidal activity compared to cellulose-free ZnO-Ag heterostructure nanoparticles of the same particle size. The incorporation of ZnO-Ag hetreostructure nanoparticles significantly increased the thermal stability of cellulose nanocrystals.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology; Anti-Bacterial Agents/chemistry*
  18. Wibowo A, Ahmat N, Hamzah AS, Low AL, Mohamad SA, Khong HY, et al.
    Fitoterapia, 2012 Dec;83(8):1569-75.
    PMID: 22982329 DOI: 10.1016/j.fitote.2012.09.004
    A new oligostilbenoid tetramer, malaysianol B (1), was isolated from the acetone extract of the stem bark of Dryobalanops lanceolata along with seven oligostilbenoids tetramers; hopeaphenol (2), stenophyllol A (3), nepalensinol B (4), vaticanol B (5) and C (6), upunaphenol D (7), and flexuosol A (8). The structures of the isolated compounds were established on the basis of their spectroscopic data evidence. The antibacterial activity of the isolated compounds was evaluated using resazurin microtitre-plate assay.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology; Anti-Bacterial Agents/chemistry
  19. Ismail Hossain M, El-Harbawi M, Noaman YA, Bustam MA, Alitheen NB, Affandi NA, et al.
    Chemosphere, 2011 Jun;84(1):101-4.
    PMID: 21421256 DOI: 10.1016/j.chemosphere.2011.02.048
    Eight hydroxylammonium-based room temperature ionic liquids (ILs) have been synthesized by acid-base neutralization of ethanolamines with organic acids. The ILs were characterized by infrared and nuclear magnetic resonance spectroscopies and elemental analysis. Their anti-microbial activities were determined using the well-diffusion method. All eight ILs were toxic to Staphylococcus aureus, while 2-hydroxyethylammonium lactate and 2-hydroxy-N-(2-hydroxyethyl)-N-methylethanaminium acetate showed high anti-microbial activity against a wide range of human pathogens.
    Matched MeSH terms: Anti-Bacterial Agents/chemical synthesis; Anti-Bacterial Agents/toxicity*
  20. Daud J, Ishak SR, Deris ZZ, Hitam WH
    Asian Pac J Trop Biomed, 2011 Oct;1(5):419-20.
    PMID: 23569805 DOI: 10.1016/S2221-1691(11)60092-0
    Infectious conjunctivitis is a very common presentation to medical professional and ophthalmologist all over the world. Although its typically self-limiting and treatable in almost all of the cases, but we need to be aware of the rare and potentially life threatening if the cause is not promptly identified and treated accordingly. In our case report, we highlighted the rare case of Neisseria meningitidis as a primary cause of keratoconjunctivitis. Neisseria meningitidis is a rare etiology of keratoconjunctivitis and its ocular presentations are quite similar with other bacterial or viral infection. The infection may potentially fatal if systemic invasion occurred, however with immediate and proper treatment the outcome is satisfactory. Early diagnosis and proper antibiotic treatment are critical to prevent systemic spread of the infection. Public health intervention is needed to prevent outbreak of the disease.
    Matched MeSH terms: Anti-Bacterial Agents/administration & dosage; Anti-Bacterial Agents/therapeutic use
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links