Displaying publications 21 - 40 of 68 in total

Abstract:
Sort:
  1. Goh KM, Wong YH, Abas F, Lai OM, Mat Yusoff M, Tan TB, et al.
    Foods, 2020 Jun 04;9(6).
    PMID: 32512737 DOI: 10.3390/foods9060739
    Shortening derived from palm oil is widely used in baking applications. However, palm oil and the related products are reported to contain high levels of monochloropropandiol (MCPD) ester and glycidyl ester (GE). MCPD and glycidol are known as process contaminants, which are carcinogenic and genotoxic compounds, respectively. The objective was to evaluate the effects of antioxidant addition in palm olein and stearin to the content of MCPD esters and GE in baked cake. Butylated hydroxyanisole (BHA), rosemary extract and tocopherol were used to fortify the samples at 200 mg/kg and in combinations (400, 600 and 800 mg/kg rosemary or tocopherol combined with 200 mg/kg BHA). The MCPD esters and GE content, radical formation and the quality of the fats portion were analyzed. The results showed that palm olein fortified with rosemary extract yielded less 2-MCPD ester. The GE content was lower when soft stearin was fortified with rosemary. ESR spectrometry measurements showed that the antioxidants were effective to reduce radical formation. The synergistic effects of combining antioxidants controlled the contaminants formation. In conclusion, oxidation stability was comparable either in the single or combined antioxidants. Tocopherol in combination with BHA was more effective in controlling the MCPD esters and GE formation.
  2. Chen Y, Ge H, Zheng Y, Zhang H, Li Y, Su X, et al.
    J Agric Food Chem, 2020 Jun 03;68(22):6190-6201.
    PMID: 32379465 DOI: 10.1021/acs.jafc.0c01250
    The present study aims to design a milk fat globule membrane (MFGM)-inspired structured membrane (phospholipid- and protein-rich) for microencapsulation of docosahexaenoic acid (DHA) oil. DHA-enriched oil emulsions were prepared using different ratios of sunflower phospholipid (SPL), proteins [whey protein concentrate (WPC), soy protein isolate (SPI), and sodium caseinate (SC)], and maltodextrin and spray-dried to obtain DHA microcapsules. The prepared DHA oil emulsions have nanosized particles. SPLs were found to affect the secondary structure of WPC, which resulted in increased exposure of the protein hydrophobic site and emulsion stability. SPL also reduced the surface tension and viscosity of the DHA oil emulsions. In vitro digestion of the spray-dried DHA microcapsules showed that they were able to effectively resist gastric proteolysis and protect their bioactivity en route to the intestine. The DHA microcapsules have a high lipid digestibility in the small intestine with a high DHA hydrolysis efficiency (74.3%), which is higher than that of commercial DHA microcapsules.
  3. Lei M, Zhang N, Lee WJ, Tan CP, Lai OM, Wang Y, et al.
    Food Chem, 2020 May 15;312:126047.
    PMID: 31884300 DOI: 10.1016/j.foodchem.2019.126047
    Formation of foams is critical for tailoring the texture and mouthfeel of fat-based products. Diacylglycerol (DAG) is regarded as a preferable alternative structurant to hydrogenated lipid. Effect of DAG concentration (2-10 wt%) on the characteristics of oleogels and foams including crystal polymorphisms, size and distribution, rheological and thermodynamic properties was investigated. Oleogel prepared with 10 wt% DAG had comparable whipping and foaming stability to that of 6 wt% fully hydrogenated palm oil (FHPO). DAG formed small plate-crystals which tend to occur at the bubble surface, whereas FHPO showed needle-like crystals that were formed mainly in the continuous phase. For the 2 wt% FHPO-8 wt% DAG-based oil foams, interfacial templating crystallization effect contributed to the smaller bubble size and improved rheological properties whereby less oil drainage and foam breakdown occurred. Hence, the non-aqueous foam formed by DAG has broad application prospect because of the thermoresponsive properties and the desirable health benefits.
  4. Hew KS, Asis AJ, Tan TB, Yusoff MM, Lai OM, Nehdi IA, et al.
    Food Chem, 2020 Mar 01;307:125545.
    PMID: 31654951 DOI: 10.1016/j.foodchem.2019.125545
    Corresponding the high presence of 3-monochloropropane-1,2-diol esters (3-MCPDE) and glycidyl esters (GE) in refined palm oil, this paper re-evaluated degumming and bleaching processes of physical palm oil refining to reduce the amount of said contaminants. Separation-free water degumming was incorporated into the process, and this significantly (p 
  5. Lee YY, Tang TK, Phuah ET, Tan CP, Wang Y, Li Y, et al.
    Crit Rev Food Sci Nutr, 2020;60(15):2509-2525.
    PMID: 31418288 DOI: 10.1080/10408398.2019.1650001
    Diacylglycerol (DAG) is a world leading anti-obesity functional cooking oil synthesized via structural modification of conventional fats and oils. DAG exits in three stereoisomers namely sn-1,2-DAG, sn-1,3-DAG, and sn-2,3-DAG. DAG particularly sn-1,3-DAG demonstrated to have the potential in suppressing body fat accumulation and lowering postprandial serum triacylglycerol, cholesterol and glucose level. DAG also showed to improve bone health. This is attributed to DAG structure itself that caused it to absorb and digest via different metabolic pathway than conventional fats and oils. With its purported health benefits, many studies attempt to enzymatically or chemically synthesis DAG through various routes. DAG has also received wide attention as low calorie fat substitute and has been incorporated into various food matrixes. Despite being claimed as healthy cooking oil the safety of DAG still remained uncertain. DAG was banned from sale as it was found to contain probable carcinogen glycidol fatty acid esters. The article aims to provide a comprehensive and latest review of DAG emphasizing on its structure and properties, safety and regulation, process developments, metabolism and beneficial health attributes as well as its applications in the food industry.
  6. Khor YP, Sim BI, Abas F, Lai OM, Wang Y, Nehdi IA, et al.
    J Sci Food Agric, 2019 Dec;99(15):6989-6997.
    PMID: 31414493 DOI: 10.1002/jsfa.9989
    BACKGROUND: Recycled oil has emerged as a significant food safety issue and poses a major threat to public health. To date, very limited studies have been conducted aiming to detect the adulteration of used and recycled palm olein in refined, bleached and deodorized palm olein (RBDPO). In the present study, oil samples that underwent controlled heating and deep-frying studies were refined using the common oil refining procedure to simulate the production of recycled oil. Polymerized triacylglycerol (PTG), oxidized monomeric triacylglycerols (oxTAGs), such as epoxy, keto and hydroxy acids, and caprylic acid have been proposed as potential indicators for tracking the adulteration of recycled oil.

    RESULTS: For PTG, triacylglycerol oligomers and dimers showed a significant increase (P 

  7. Khor YP, Hew KS, Abas F, Lai OM, Cheong LZ, Nehdi IA, et al.
    Foods, 2019 Oct 11;8(10).
    PMID: 31614487 DOI: 10.3390/foods8100475
    The stability of refined, bleached, and deodorized palm olein (RBDPO) was studied under controlled heating conditions. RBDPO was heated continuously for 24 h at 160, 170, and 180 °C, with oil sampled at four hour intervals. Thermo-oxidative alterations were measured through various parameters, such as monomeric oxidized triacylglycerols (oxTAG), total polar compounds (TPC), polymerized triacylglycerols (PTG), oxidative stability, and fatty acid composition. After 24 h of heating, the TPC and triacylglycerol oligomers showed a linear increase with heating time at all heating temperatures. At the end of the heating study, more epoxy acids were formed than keto and hydroxy acids. Moreover, caprylic acid, which was not present in fresh oil, was formed in significant amounts. The increase in oxTAG was strongly correlated with the increase in the p-anisidine value and total oxidation value. The decreases in diacylglycerol and free fatty acids were strongly correlated with an increase in PTG.
  8. Mo SY, Lai OM, Chew BH, Ismail R, Bakar SA, Jabbar NA, et al.
    Eur J Nutr, 2019 Aug;58(5):1873-1885.
    PMID: 29872922 DOI: 10.1007/s00394-018-1738-6
    PURPOSE: We aim to investigate the postprandial effects of palm olein (PO) and chemically interesterified palm olein (IPO) with different proportions of palmitic acid at the sn-2 position using high oleic sunflower oil (HOS) as control fat on concentrations of gut hormones, glucose homeostasis, satiety, lipid and inflammatory parameters in type 2 diabetic (T2D) subjects.

    METHODS: Using a randomised double-blind crossover design, 21 (men = 6, women = 15) T2D subjects consumed test meals (3.65 MJ) consisting of a high fat muffin (containing 50 g test fats provided as PO, IPO or HOS) and a milkshake. Postprandial changes in gut hormones, glucose homeostasis, satiety, lipid and inflammatory parameters after meals were analysed. Some of the solid fractions of the IPO were removed and thus the fatty acid composition of the PO and IPO was not entirely equal (PO vs IPO: palmitate 39.8 vs 38.7; oleate 43.6 vs 45.1). PO, IPO and HOS contained 9.7, 38.9 and 0.2 g/100 g total fatty acids of palmitic acid at the sn-2 position, respectively. At 37 °C, IPO contained 4.2% SFC whereas PO and HOS were completely melted.

    RESULTS: Our novel observation shows that the incremental area under curve (iAUC) 0-6 h of plasma GIP concentration was on average 16% lower following IPO meal compared with PO and HOS (P 

  9. Goh KM, Wong YH, Ang MY, Yeo SCM, Abas F, Lai OM, et al.
    Food Res Int, 2019 07;121:553-560.
    PMID: 31108780 DOI: 10.1016/j.foodres.2018.12.013
    The detection of 3- and 2-MCPD ester and glycidyl ester was transformed from selected ion monitoring (SIM) mode to multiple reaction monitoring (MRM) mode by gas chromatography triple quadrupole spectrometry. The derivatization process was adapted from AOCS method Cd 29a-13. The results showed that the coefficient of determination (R2) of all detected compounds obtained from both detection mode was comparable, which falls between 0.997 and 0.999. The limit of detection and quantification (LOD and LOQ) were improved in MRM mode as compared to SIM mode. In MRM mode, the LOD of 3- and 2-MCPD ester was achieved 0.01 mg/kg while the LOQ was 0.05 mg/kg. Besides, LOD and LOQ of glycidyl ester were 0.024 and 0.06 mg/kg respectively. A blank spiked with MCPD esters (0.03, 0.10 and 0.50 mg/kg) and GE (0.06, 0.24 and 1.20 mg/kg) were chosen for repeatability and recovery tests. MRM mode showed better repeatability in area ratio and recovery with relative standard deviation (RSD %) 
  10. Goh KM, Maulidiani M, Rudiyanto R, Wong YH, Ang MY, Yew WM, et al.
    Talanta, 2019 Jun 01;198:215-223.
    PMID: 30876552 DOI: 10.1016/j.talanta.2019.01.111
    The technique of Fourier transform infrared spectroscopy is widely used to generate spectral data for use in the detection of food contaminants. Monochloropropanediol (MCPD) is a refining process-induced contaminant that is found in palm-based fats and oils. In this study, a chemometric approach was used to evaluate the relationship between the FTIR spectra and the total MCPD content of a palm-based cooking oil. A total of 156 samples were used to develop partial least squares regression (PLSR), artificial neural network (nnet), average artificial neural network (avNNET), random forest (RF) and cubist models. In addition, a consensus approach was used to generate fusion result consisted from all the model mentioned above. All the models were evaluated based on validation performed using training and testing datasets. In addition, the box plot of coefficient of determination (R2), root mean square error (RMSE), slopes and intercepts by 100 times randomization was also compared. Evaluation of performance based on the testing R2 and RMSE suggested that the cubist model predicted total MCPD content with the highest accuracy, followed by the RF, avNNET, nnet and PLSR models. The overfitting tendency was assessed based on differences in R2 and RMSE in the training and testing calibrations. The observations showed that the cubist and avNNET models possessed a certain degree of overfitting. However, the accuracy of these models in predicting the total MCPD content was high. Results of the consensus model showed that it slightly improved the accuracy of prediction as well as significantly reduced its uncertainty. The important variables derived from the cubist and RF models suggested that the wavenumbers corresponding to the MCPDs originated from the -CH=CH2 or CH=CH (990-900 cm-1) and C-Cl stretch (800-700 cm-1) regions of the FTIR spectrum data. In short, chemometrics in combination with FTIR analysis especially for the consensus model represent a potential and flexible technique for estimating the total MCPD content of refined vegetable oils.
  11. Jiang C, Ma B, Song S, Lai OM, Cheong LZ
    J Agric Food Chem, 2018 Jul 11;66(27):7131-7138.
    PMID: 29902005 DOI: 10.1021/acs.jafc.8b01393
    Phospholipid composition in the milk fat globule membrane (MFGM) fluctuates during the entire lactation period in order to suit the growing needs of newborn infants. The present study elucidated and relatively quantified phospholipid molecular species extracted from human milk (HM), mature human milk (MHM), and infant formulas (with or without MFGM supplementation) using hydrophilic liquid chromatography-electrospray ionization-ion trap-time of flight-mass spectrometry (HILIC-ESI-IT-TOF-MS) system. Principal component analysis was used to clarify the differences between phospholipid composition in HM, MHM, and infant formulas. HM and MHM contained high concentrations of sphingomyeline (HM: 107.61 μg/mL, MHM: 227.18 μg/mL), phosphatidylcholine (HM: 59.96 μg/mL, MHM: 50.77 μg/mL), and phosphatidylethanolamine (PE) (HM: 25.24 μg/mL, MHM: 31.76 μg/mL). Significant concentrations (<300 ng/mL) of arachidonic, eicosapentanoic, and docosahexanoic acids were found to esterify to PE in HM and MHM. Meanwhile, all infant formulas were found to contain high concentrations of phosphatidic acids indicating the possibility of degradation of the fortified MFGM either during processing or storage of the infant formulas.
  12. Chew SC, Tan CP, Lai OM, Nyam KL
    Food Sci Biotechnol, 2018 Jun;27(3):905-914.
    PMID: 30263818 DOI: 10.1007/s10068-017-0295-8
    An optimized refining process for kenaf seed oil was conducted. The 3-monochloro-1,2-propanediol (3-MCPD) contents, triacylglycerol composition, fatty acids composition, bioactive compounds, phosphorus contents, and oxidation indexes of the kenaf seed oil during each stage of the refining process were determined. The results showed that there was no detected 3-MCPD ester in kenaf seed oil throughout the refining process. Deodorization had slightly increased the 2-MCPD ester (9.0 μg/kg) and glycidyl ester (54.8 μg/kg). Oleic (36.53%) and linoleic acids (36.52%) were presented in the largest amount in the refined kenaf seed oil, and triacylglycerols contributed to 99.96% in the oil. There was a removal of 31.6% of phytosterol content and 17.1% of tocopherol and tocotrienol contents in kenaf seed oil after refining. The refining process was totally removed the hydroperoxides, 93% of free fatty acids and 98.8% of phosphorus content in kenaf seed oil.
  13. Sim BI, Muhamad H, Lai OM, Abas F, Yeoh CB, Nehdi IA, et al.
    J Oleo Sci, 2018 Apr 01;67(4):397-406.
    PMID: 29526878 DOI: 10.5650/jos.ess17210
    This paper examines the interactions of degumming and bleaching processes as well as their influences on the formation of 3-monochloropropane-1,2-diol esters (3-MCPDE) and glycidyl esters in refined, bleached and deodorized palm oil by using D-optimal design. Water degumming effectively reduced the 3-MCPDE content up to 50%. Acid activated bleaching earth had a greater effect on 3-MCPDE reduction compared to natural bleaching earth and acid activated bleaching earth with neutral pH, indicating that performance and adsorption capacities of bleaching earth are the predominant factors in the removal of esters, rather than its acidity profile. The combination of high dosage phosphoric acid during degumming with the use of acid activated bleaching earth eliminated almost all glycidyl esters during refining. Besides, the effects of crude palm oil quality was assessed and it was found that the quality of crude palm oil determines the level of formation of 3-MCPDE and glycidyl esters in palm oil during the high temperature deodorization step of physical refining process. Poor quality crude palm oil has strong impact towards 3-MCPDE and glycidyl esters formation due to the intrinsic components present within. The findings are useful to palm oil refining industry in choosing raw materials as an input during the refining process.
  14. Chang HW, Tan TB, Tan PY, Abas F, Lai OM, Wang Y, et al.
    Food Res Int, 2018 03;105:482-491.
    PMID: 29433239 DOI: 10.1016/j.foodres.2017.11.034
    Fish oil-in-water emulsions containing fish oil, thiol-modified β-lactoglobulin (β-LG) fibrils, chitosan and maltodextrin were fabricated using a high-energy method. The results showed that chitosan coating induced charge reversal; denoting successful biopolymers complexation. A significantly (p<0.05) larger droplet size and lower polydispersity index value, attributed to the thicker chitosan coating at the oil-water interface, were observed. At high chitosan concentrations, the cationic nature of chitosan strengthened the electrostatic repulsion between the droplets, thus conferring high oxidative stability and low turbidity loss rate to the emulsions. The apparent viscosity of emulsions stabilized using thiol-modified β-LG fibrils-chitosan complex was higher than those stabilized using β-LG fibrils alone, resulting in the former's higher creaming stability. Under thermal treatments (63°C and 100°C), emulsions stabilized using thiol-modified β-LG fibrils-chitosan complex possessed higher heat stability as indicated by the consistent droplet sizes observed. Chitosan provided a thicker protective layer that protected the oil droplets against high temperature. Bridging flocculation occurred at low chitosan concentration (0.1%, w/w), as revealed through microscopic observations which indicated the presence of large flocs. All in all, this work provided us with a better understanding of the application of protein fibrils-polysaccharide complex to produce stable emulsion.
  15. Tan PY, Tan TB, Chang HW, Tey BT, Chan ES, Lai OM, et al.
    Food Chem, 2018 Feb 15;241:79-85.
    PMID: 28958562 DOI: 10.1016/j.foodchem.2017.08.075
    Tocotrienol microcapsules (TM) were formed by firstly preparing Pickering emulsion containing tocotrienols, which was then gelled into microcapsules using alginate and chitosan. In this study, we examined the stability of TM during storage and when applied into a model food system, i.e. yogurt. During storage at 40°C, TM displayed remarkably lower tocotrienols loss (50.8%) as compared to non-encapsulated tocotrienols in bulk oil (87.5%). When the tocotrienols were incorporated into yogurt, the TM and bulk oil forms showed a loss of 23.5% and 81.0%, respectively. Generally, the tocotrienols were stable in the TM form and showed highest stability when these TM were added into yogurt. δ-Tocotrienol was the most stable isomer in both forms during storage and when incorporated into yogurt. The addition of TM into yogurt caused minimal changes in the yogurt's color and texture but slightly altered the yogurt's viscosity.
  16. Tiong SH, Saparin N, Teh HF, Ng TLM, Md Zain MZB, Neoh BK, et al.
    J Agric Food Chem, 2018 Jan 31;66(4):999-1007.
    PMID: 29260544 DOI: 10.1021/acs.jafc.7b04995
    During high-temperature refining of vegetable oils, 3-monochloropropanediol (3-MCPD) esters, possible carcinogens, are formed from acylglycerol in the presence of a chlorine source. To investigate organochlorine compounds in vegetable oils as possible precursors for 3-MCPD esters, we tested crude palm, soybean, rapeseed, sunflower, corn, coconut, and olive oils for the presence of organochlorine compounds. Having found them in all vegetable oils tested, we focused subsequent study on oil palm products. Analysis of the chlorine isotope mass pattern exhibited in high-resolution mass spectrometry enabled organochlorine compound identification in crude palm oils as constituents of wax esters, fatty acid, diacylglycerols, and sphingolipids, which are produced endogenously in oil palm mesocarp throughout ripening. Analysis of thermal decomposition and changes during refining suggested that these naturally present organochlorine compounds in palm oils and perhaps in other vegetable oils are precursors of 3-MCPD esters. Enrichment and dose-response showed a linear relationship to 3-MCPD ester formation and indicated that the sphingolipid-based organochlorine compounds are the most active precursors of 3-MCPD esters.
  17. Lee YY, Tang TK, Phuah ET, Karim NAA, Alitheen NBM, Tan CP, et al.
    Food Res Int, 2018 01;103:200-207.
    PMID: 29389606 DOI: 10.1016/j.foodres.2017.10.022
    Medium-and-Long Chain Triacylglycerol (MLCT) is a type of structured lipid that is made up of medium chain, MCFA (C8-C12) and long chain, LCFA (C16-C22) fatty acid. Studies claimed that consumption of MLCT has the potential in reducing visceral fat accumulation as compared to long chain triacylglycerol, LCT. This is mainly attributed to the rapid metabolism of MCFA as compared to LCFA. Our study was designed to compare the anti-obesity effects of a enzymatically interesterified MLCT (E-MLCT) with physical blend of palm kernel and palm oil (B-PKOPO) having similar fatty acid composition and a commercial MLCT (C-MLCT) made of rapeseed/soybean oil on Diet Induced Obesity (DIO) C57BL/6J mice for a period of four months in low fat, LF (7%) and high fat, HF (30%) diet. The main aim was to determine if the anti-obesity effect of MLCT was contributed solely by its triacylglycerol structure alone or its fatty acid composition or both. Out of the three types of MLCT, mice fed with Low Fat, LF (7%) E-MLCT had significantly (P<0.05) lower body weight gain (by ~30%), body fat accumulation (by ~37%) and hormone leptin level as compared to both the LF B-PKOPO and LF C-MLCT. Histological examination further revealed that dietary intake of E-MLCT inhibited hepatic lipid accumulation. Besides, analysis of serum profile also demonstrated that consumption of E-MLCT was better in regulating blood glucose compared to B-PKOPO and C-MLCT. Nevertheless, both B-PKO-PO and E-MLCT which contained higher level of myristic acid was found to be hypercholesterolemic compared to C-MLCT. In summary, our finding showed that triacylglycerol structure, fatty acid composition and fat dosage play a pivotal role in regulating visceral fat accumulation. Consumption of E-MLCT in low fat diet led to a significantly lesser body fat accumulation. It was postulated that the MLM/MLL/LMM/MML/LLM types of triacylglycerol and C8-C12 medium chain fatty acids were the main factors that contributed to the visceral fat suppressing effect of MLCT. Despite being able to reduce body fat, the so called healthful functional oil E-MLCT when taken in high amount do resulted in fat accumulation. In summary, E-MLCT when taken in moderation can be used to manage obesity issue. However, consumption of E-MLCT may lead to higher total cholesterol and LDL level.
  18. Lin YK, Show PL, Yap YJ, Ariff A, Annuar MSBM, Lai OM, et al.
    Front Chem, 2018;6:448.
    PMID: 30345267 DOI: 10.3389/fchem.2018.00448
    An extractive bioconversion conducted on soluble starch with cyclodextrin glycosyltransferase (CGTase) enzyme in ethylene oxide-propylene oxide (EOPO)/potassium phosphates liquid biphasic system (LBS) to extract gamma-cyclodextrin (γ-CD) was examined. A range of EOPO (with potassium phosphates) molecular weights was screen to investigate the effect of the latter on the partioning efficency of CGTase and γ-CD. The results show that the optimal top phase γ-CD yield (74.4%) was reached in 35.0% (w/w) EOPO 970 and 10.0% (w/w) potassium phosphate with 2.0% (w/w) sodium chloride. A theoretical explanation for the effect of NaCl on γ-CD was also presented. After a 2 h bioconversion process, a total of 0.87 mg/mL concentration of γ-CD was produced in the EOPO/ phosphates LBS top phase. After the extraction of top phase from LBS, four continuous repetitive batches were successfully conducted with relative CGTase activity of 1.00, 0.86, 0.45, and 0.40 respectively.
  19. Chong WT, Tan CP, Cheah YK, B Lajis AF, Habi Mat Dian NL, Kanagaratnam S, et al.
    PLoS One, 2018;13(8):e0202771.
    PMID: 30142164 DOI: 10.1371/journal.pone.0202771
    Red palm oil (RPO) is a natural source of Vitamin E (70-80% tocotrienol). It is a potent natural antioxidant that can be used in skin-care products. Its antioxidant property protects skin from inflammation and aging. In our work, a tocotrienol-rich RPO-based nanoemulsion formulation was optimized using response surface methodology (RSM) and formulated using high pressure homogenizer. Effect of the concentration of three independent variables [surfactant (5-15 wt%), co-solvent (10-30 wt%) and homogenization pressure (500-700 bar)] toward two response variables (droplet size, polydispersity index) was studied using central composite design (CCD) coupled to RSM. RSM analysis showed that the experimental data could be fitted into a second-order polynomial model and the coefficients of multiple determination (R2) is 0.9115. The optimized formulation of RPO-based nanoemulsion consisted of 6.09 wt% mixed surfactant [Tween 80/Span 80 (63:37, wt)], 20 wt% glycerol as a co-solvent via homogenization pressure (500 bar). The optimized tocotrienol-rich RPO-based nanoemulsion response values for droplet size and polydispersity index were 119.49nm and 0.286, respectively. The actual values of the formulated nanoemulsion were in good agreement with the predicted values obtained from RSM, thus the optimized compositions have the potential to be used as a nanoemulsion for cosmetic formulations.
  20. Tan PY, Tan TB, Chang HW, Tey BT, Chan ES, Lai OM, et al.
    J Agric Food Chem, 2017 Dec 06;65(48):10651-10657.
    PMID: 29124932 DOI: 10.1021/acs.jafc.7b03521
    Considering the health benefits of tocotrienols, continuous works have been done on the encapsulation and delivery of these compounds. In this study, we encapsulated tocotrienols in chitosan-alginate microcapsules and evaluated their release profile. Generally, these tocotrienols microcapsules (TM) displayed high thermal stability. When subjected to pH adjustments (pH 1-9), we observed that the release of tocotrienols was the highest (33.78 ± 0.18%) under basic conditions. The TM were also unstable against the effect of ionic strength, with a high release (70.73 ± 0.04%) of tocotrienols even at a low sodium chloride concentration (50 mM). As for the individual isomers, δ-tocotrienol was the most sensitive to pH and ionic strength. In contrast, β-/γ-tocotrienols were the most ionic-stable isomers but more responsive toward thermal treatment. Simulated gastrointestinal model showed that the chitosan-alginate-based TM could be used to retain tocotrienols in the gastric and subsequently release them in the intestines for possible absorption.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links