Displaying publications 21 - 40 of 365 in total

Abstract:
Sort:
  1. Ibrahim NFA, Sabani N, Johari S, Manaf AA, Wahab AA, Zakaria Z, et al.
    Sensors (Basel), 2022 Oct 10;22(19).
    PMID: 36236769 DOI: 10.3390/s22197670
    Sweat analysis offers non-invasive real-time on-body measurement for wearable sensors. However, there are still gaps in current developed sweat-sensing devices (SSDs) regarding the concerns of mixing fresh and old sweat and real-time measurement, which are the requirements to ensure accurate the measurement of wearable devices. This review paper discusses these limitations by aiding model designs, features, performance, and the device operation for exploring the SSDs used in different sweat collection tools, focusing on continuous and non-continuous flow sweat analysis. In addition, the paper also comprehensively presents various sweat biomarkers that have been explored by earlier works in order to broaden the use of non-invasive sweat samples in healthcare and related applications. This work also discusses the target analyte's response mechanism for different sweat compositions, categories of sweat collection devices, and recent advances in SSDs regarding optimal design, functionality, and performance.
    Matched MeSH terms: Biosensing Techniques*
  2. Chen Y, Chen Y, Shi W, Hu S, Huang Q, Liu GS, et al.
    Biosens Bioelectron, 2022 Feb 15;198:113787.
    PMID: 34864241 DOI: 10.1016/j.bios.2021.113787
    High sensitivity and capturing ratio are strongly demanded for surface plasmon resonance (SPR) sensors when applied in detection of small molecules. Herein, an SPR sensor is combined with a novel smart material, namely, MoS2 nanoflowers (MNFs), to demonstrate programmable adsorption/desorption of small bipolar molecules, i.e., amino acids. The MNFs overcoated on the plasmonic gold layer increase the sensitivity by 25% compared to an unmodified SPR sensor, because of the electric field enhancement at the gold surface. Furthermore, as the MNFs have rich edge sites and negatively charged surfaces, the MNF-SPR sensors exhibit not only much higher bipolar-molecule adsorption capability, but also efficient desorption of these molecules. It is demonstrated that the MNF-SPR sensors enable controllable detection of amino acids by adjusting solution pH according to their isoelectric points. In addition, the MNFs decorated on the plasmonic interface can be as nanostructure frameworks and modified with antibody, which allows for specific detection of proteins. This novel SPR sensor provides a new simple strategy for pre-screening of amino acid disorders in blood plasma and a universal high-sensitive platform for immunoassay.
    Matched MeSH terms: Biosensing Techniques*
  3. Syamila N, Syahir A, Sulaiman Y, Ikeno S, Tan WS, Ahmad H, et al.
    Bioelectrochemistry, 2022 Feb;143:107952.
    PMID: 34600402 DOI: 10.1016/j.bioelechem.2021.107952
    The diagnosis of hepatitis B virus (HBV) and monitoring of the vaccination efficiency against HBV require real-time analysis. The presence of antibody against hepatitis B virus surface antigen (anti-HBsAg) as a result of HBV infection and/or immunization may indicate individual immune status towards HBV. This study investigated the ability of a bio-nanogate-based displacement immunosensing strategy in detecting anti-HBsAg antibody, via nonspecific-binding between polyamidoamine dendrimers encapsulated gold nanoparticles (PAMAM-Au) and the 'antigenic determinant' region (aD) of HBsAg. For this purpose, maltose binding protein harbouring the aD region (MBP-aD) was synthesized as a bioreceptor and immobilized on the screen-printed carbon electrode (SPCE). Following that, PAMAM-Au was deposited on MBP-aD, forming the 'gate' and was used as a monitoring agent. Under optimal conditions, the high specificity of anti-HBsAg antibody towards MBP-aD displaced PAMAM-Au causing the decrement of anodic peak in differential pulse voltammetry (DPV) analysis. The signal changes were proportionally related to the concentration of anti-HBsAg antibody, in a range of 1 - 1000 mIU/mL with a limit of detection (LOD) of 2.5 mIU/mL. The results also showed high specificity and selectivity of the immunosensor platform in detecting anti-HBsAg antibody both in spiked buffer and human serum samples.
    Matched MeSH terms: Biosensing Techniques*
  4. Ramanathan S, Gopinath SCB, Ismail ZH, Md Arshad MK, Poopalan P
    Biosens Bioelectron, 2022 Feb 01;197:113735.
    PMID: 34736114 DOI: 10.1016/j.bios.2021.113735
    In an aim of developing portable biosensor for SARS-CoV-2 pandemic, which facilitates the point-of-care aptasensing, a strategy using 10 μm gap-sized gold interdigitated electrode (AuIDE) is presented. The silane-modified AuIDE surface was deposited with ∼20 nm diamond and enhanced the detection of SARS-CoV-2 nucleocapsid protein (NCP). The characteristics of chemically modified diamond were evidenced by structural analyses, revealing the cubic crystalline nature at (220) and (111) planes as observed by XRD. XPS analysis denotes a strong interaction of carbon element, composed ∼95% as seen in EDS analysis. The C-C, CC, CO, CN functional groups were well-refuted from XPS spectra of carbon and oxygen elements in diamond. The interrelation between elements through FTIR analysis indicates major intrinsic bondings at 2687-2031 cm-1. The aptasensing was evaluated through electrochemical impedance spectroscopy measurements, using NCP spiked human serum. With a good selectivity the lower detection limit was evidenced as 0.389 fM, at a linear detection range from 1 fM to 100 pM. The stability, and reusability of the aptasensor were demonstrated, showing ∼30% and ∼33% loss of active state, respectively, after ∼11 days. The detection of NCP was evaluated by comparing anti-NCP aptamer and antibody as the bioprobes. The determination coefficients of R2 = 0.9759 and R2 = 0.9772 were obtained for aptamer- and antibody-based sensing, respectively. Moreover, the genuine interaction of NCP aptamer and protein was validated by enzyme linked apta-sorbent assay. The aptasensing strategy proposed with AuIDE/diamond enhanced sensing platform is highly recommended for early diagnosis of SARS-CoV-2 infection.
    Matched MeSH terms: Biosensing Techniques*
  5. Alathari MJA, Al Mashhadany Y, Mokhtar MHH, Burham N, Bin Zan MSD, A Bakar AA, et al.
    Sensors (Basel), 2021 Dec 15;21(24).
    PMID: 34960456 DOI: 10.3390/s21248362
    Life was once normal before the first announcement of COVID-19's first case in Wuhan, China, and what was slowly spreading became an overnight worldwide pandemic. Ever since the virus spread at the end of 2019, it has been morphing and rapidly adapting to human nature changes which cause difficult conundrums in the efforts of fighting it. Thus, researchers were steered to investigate the virus in order to contain the outbreak considering its novelty and there being no known cure. In contribution to that, this paper extensively reviewed, compared, and analyzed two main points; SARS-CoV-2 virus transmission in humans and detection methods of COVID-19 in the human body. SARS-CoV-2 human exchange transmission methods reviewed four modes of transmission which are Respiratory Transmission, Fecal-Oral Transmission, Ocular transmission, and Vertical Transmission. The latter point particularly sheds light on the latest discoveries and advancements in the aim of COVID-19 diagnosis and detection of SARS-CoV-2 virus associated with this disease in the human body. The methods in this review paper were classified into two categories which are RNA-based detection including RT-PCR, LAMP, CRISPR, and NGS and secondly, biosensors detection including, electrochemical biosensors, electronic biosensors, piezoelectric biosensors, and optical biosensors.
    Matched MeSH terms: Biosensing Techniques*
  6. Wong ZW, Ng JF, New SY
    Chem Asian J, 2021 Dec 13;16(24):4081-4086.
    PMID: 34668337 DOI: 10.1002/asia.202101145
    miRNA (miR)-155 is a potential biomarker for breast cancers. We aimed at developing a nanosensor for miR-155 detection by integrating hybridization chain reaction (HCR) and silver nanoclusters (AgNCs). HCR serves as an enzyme-free and isothermal amplification method, whereas AgNCs provide a built-in fluorogenic detection probe that could simplify the downstream analysis. The two components were integrated by adding a nucleation sequence of AgNCs to the hairpin of HCR. The working principle was based on the influence of microenvironment towards the hosted AgNCs, whereby unfolding of hairpin upon HCR has manipulated the distance between the hosted AgNCs and cytosine-rich toehold region of hairpin. As such, the dominant emission of AgNCs changed from red to yellow in the absence and presence of miR-155, enabling a ratiometric measurement of miR with high sensitivity. The limit of detection (LOD) of our HCR-AgNCs nanosensor is 1.13 fM in buffered solution. We have also tested the assay in diluted serum samples, with comparable LOD of 1.58 fM obtained. This shows the great promise of our HCR-AgNCs nanosensor for clinical application.
    Matched MeSH terms: Biosensing Techniques/methods
  7. Yunos MFAM, Manczak R, Guines C, Mansor AFM, Mak WC, Khan S, et al.
    Biosensors (Basel), 2021 Dec 03;11(12).
    PMID: 34940251 DOI: 10.3390/bios11120494
    Diabetes has become a major health problem in society. Invasive glucometers, although precise, only provide discrete measurements at specific times and are unsuitable for long-term monitoring due to the injuries caused on skin and the prohibitive cost of disposables. Remote, continuous, self-monitoring of blood sugar levels allows for active and better management of diabetics. In this work, we present a radio frequency (RF) sensor based on a stepped impedance resonator for remote blood glucose monitoring. When placed on top of a human hand, this RF interdigital sensor allows detection of variation in blood sugar levels by monitoring the changes in the dielectric constant of the material underneath. The designed stepped impedance resonator operates at 3.528 GHz with a Q factor of 1455. A microfluidic device structure that imitates the blood veins in the human hand was fabricated in PDMS to validate that the sensor can measure changes in glucose concentrations. To test the RF sensor, glucose solutions with concentrations ranging from 0 to 240 mg/dL were injected into the fluidic channels and placed underneath the RF sensor. The shifts in the resonance frequencies of the RF sensor were measured using a network analyzer via its S11 parameters. Based on the change in resonance frequencies, the sensitivity of the biosensor was found to be 264.2 kHz/mg·dL-1 and its LOD was calculated to be 29.89 mg/dL.
    Matched MeSH terms: Biosensing Techniques*
  8. Li X, Gopinath SCB, Peng X, Lv J
    J Biomed Nanotechnol, 2021 Dec 01;17(12):2495-2504.
    PMID: 34974872 DOI: 10.1166/jbn.2021.3213
    An aptasensor was developed on an interdigitated microelectrode (IDME) by current-volt sensing for the diagnosis of ulcerative colitis by detecting the biomarker lipocalin-2. Higher immobilization of the anti-lipocalin-2 aptamer as a probe was achieved by using sodium dodecyl benzenesulfonate-aided zeolite particles. FESEM and FETEM observations revealed that the size of the zeolite particles was <200 nm, and they displayed a uniform distribution and spherical shape. XPS analysis attested the occurrence of Si, Al, and O groups on the zeolite particles. Zeolite particles were immobilized on IDME by a (3-aminopropyl)-trimethoxysilane amine linker, and then, the aptamer as the probe was tethered on the zeolite particles through a biotin-streptavidin strategy assisted by a bifunctional aldehyde linker. Due to the high occupancy of the aptamer and the efficient electric transfer from zeolite particles, higher changes in current can be observed upon interaction of the aptamer with lipocalin-2. The lower detection of lipocalin-2 was noted as 10 pg/mL, with a linear range from 10 pg/mL to 1 μg/mL and a linear regression equation of y=8E-07x+8E-08; R² = 0.991. Control experiments with complementary aptamer and matrix metalloproteinase-9 indicate the specific detection of lipocalin-2. Furthermore, spiking lipocalin-2 in human serum does not interfere with the identification.
    Matched MeSH terms: Biosensing Techniques*
  9. Yeap CSY, Chaibun T, Lee SY, Zhao B, Jan Y, La-O-Vorakiat C, et al.
    Chem Commun (Camb), 2021 Nov 16;57(91):12155-12158.
    PMID: 34726213 DOI: 10.1039/d1cc05181d
    We report a highly sensitive and selective multiplex assay by empowering an electrochemical DNA sensor with isothermal rolling circle amplification. The assay could simultaneously detect and discriminate three common entero-pathogens in a single reaction, with femtomolar sensitivity. It is useful for field- or resource-limited settings.
    Matched MeSH terms: Biosensing Techniques*
  10. Subramani IG, Perumal V, Gopinath SCB, Mohamed NM, Ovinis M, Sze LL
    Sci Rep, 2021 10 21;11(1):20825.
    PMID: 34675227 DOI: 10.1038/s41598-021-00057-4
    The bovine milk allergenic protein, 'β-lactoglobulin' is one of the leading causes of milk allergic reaction. In this research, a novel label-free non-faradaic capacitive aptasensor was designed to detect β-lactoglobulin using a Laser Scribed Graphene (LSG) electrode. The graphene was directly engraved into a microgapped (~ 95 µm) capacitor-electrode pattern on a flexible polyimide (PI) film via a simple one-step CO2 laser irradiation. The novel hybrid nanoflower (NF) was synthesized using 1,1'-carbonyldiimidazole (CDI) as the organic molecule and copper (Cu) as the inorganic molecule via one-pot biomineralization by tuning the reaction time and concentration. NF was fixed on the pre-modified PI film at the triangular junction of the LSG microgap specifically for bio-capturing β-lactoglobulin. The fine-tuned CDI-Cu NF revealed the flower-like structures was viewed through field emission scanning electron microscopy. Fourier-transform infrared spectroscopy showed the interactions with PI film, CDI-Cu NF, oligoaptamer and β-lactoglobulin. The non-faradaic sensing of milk allergen β-lactoglobulin corresponds to a higher loading of oligoaptamer on 3D-structured CDI-Cu NF, with a linear range detection from 1 ag/ml to 100 fg/ml and attomolar (1 ag/ml) detection limit (S/N = 3:1). This novel CDI-Cu NF/LSG microgap aptasensor has a great potential for the detection of milk allergen with high-specificity and sensitivity.
    Matched MeSH terms: Biosensing Techniques/methods
  11. Nawaz N, Abu Bakar NK, Muhammad Ekramul Mahmud HN, Jamaludin NS
    Anal Biochem, 2021 10 01;630:114328.
    PMID: 34363786 DOI: 10.1016/j.ab.2021.114328
    In multiple biological processes, molecular recognition performs an integral role in detecting bio analytes. Molecular imprinted polymers (MIPs) are tailored sensing materials that can biomimic the biologic ligands and can detect specific target molecules selectively and sensitively. The formulation of molecularly imprinted polymers is followed by the formulation of a control termed as non-imprinted polymer (NIP), which, in the absence of a template, is commonly formulated to evaluate whether distinctive imprints have been produced for the template. Given the difficulties confronting bioanalytical researchers, it is inevitable that this strategy would come out as a central route of multidisciplinary studies to create extremely promising stable artificial receptors as a replacement or accelerate biological matrices. The ease of synthesis, low cost, capability to 'tailor' recognition element for analyte molecules, and stability under harsh environments make MIPs promising candidates as a recognition tool for biosensing. Compared to biological systems, molecular imprinting techniques have several advantages, including high recognition ability, long-term durability, low cost, and robustness, allowing molecularly imprinted polymers to be employed in drug delivery, biosensor technology, and nanotechnology. Molecular imprinted polymer-based sensors still have certain shortcomings in determining biomacromolecules (nucleic acid, protein, lipids, and carbohydrates), considering the vast volume of the latest literature on biomicromolecules. These potential materials are still required to address a few weaknesses until gaining their position in recognition of biomacromolecules. This review aims to highlight the current progress in molecularly imprinted polymers (MIPs)-based sensors for the determination of deoxyribonucleic acid (DNA) or nucleobases.
    Matched MeSH terms: Biosensing Techniques*
  12. Khalil I, Hashem A, Nath AR, Muhd Julkapli N, Yehye WA, Basirun WJ
    Mol Cell Probes, 2021 10;59:101758.
    PMID: 34252563 DOI: 10.1016/j.mcp.2021.101758
    Authentication, detection and quantification of ingredients, and adulterants in food, meat, and meat products are of high importance these days. The conventional techniques for the detection of meat species based on lipid, protein and DNA biomarkers are facing challenges due to the poor selectivity, sensitivity and unsuitability for processed food products or complex food matrices. On the other hand, DNA based molecular techniques and nanoparticle based DNA biosensing strategies are gathering huge attention from the scientific communities, researchers and are considered as one of the best alternatives to the conventional strategies. Though nucleic acid based molecular techniques such as PCR and DNA sequencing are getting greater successes in species detection, they are still facing problems from its point-of-care applications. In this context, nanoparticle based DNA biosensors have gathered successes in some extent but not to a satisfactory stage to mark with. In recent years, many articles have been published in the area of progressive nucleic acid-based technologies, however there are very few review articles on DNA nanobiosensors in food science and technology. In this review, we present the fundamentals of DNA based molecular techniques such as PCR, DNA sequencing and their applications in food science. Moreover, the in-depth discussions of different DNA biosensing strategies or more specifically electrochemical and optical DNA nanobiosensors are presented. In addition, the significance of DNA nanobiosensors over other advanced detection technologies is discussed, focusing on the deficiencies, advantages as well as current challenges to ameliorate with the direction for future development.
    Matched MeSH terms: Biosensing Techniques*
  13. Abd Rahman SF, Md Arshad MK, Gopinath SCB, Fathil MFM, Sarry F, Ibau C
    Chem Commun (Camb), 2021 Sep 23;57(76):9640-9655.
    PMID: 34473143 DOI: 10.1039/d1cc03080a
    Prostate cancer is currently diagnosed using the conventional gold standard methods using prostate-specific antigen (PSA) as the selective biomarker. However, lack of precision in PSA screening has resulted in needless biopsies and delays the treatment of potentially fatal prostate cancer. Thus, identification of glycans as novel biomarkers for the early detection of prostate cancer has attracted considerable attention due to their reliable diagnostic platform compared with the current PSA systems. Therefore, biosensing technologies that provide point-of-care diagnostics have demonstrated the ability to detect various analytes, including glycosylated micro- and macro-molecules, thereby enabling versatile detection methodologies. This highlight article discusses recent advances in the biosensor-based detection of prostate cancer glycan biomarkers and the innovative strategies for the conjugation of nanomaterials adapted to biosensing platforms. Finally, the article is concluded with prospects and challenges of prostate cancer biosensors and recommendations to overcome the issues associated with prostate cancer diagnosis.
    Matched MeSH terms: Biosensing Techniques*
  14. Awang MS, Bustami Y, Hamzah HH, Zambry NS, Najib MA, Khalid MF, et al.
    Biosensors (Basel), 2021 Sep 18;11(9).
    PMID: 34562936 DOI: 10.3390/bios11090346
    Large-scale food-borne outbreaks caused by Salmonella are rarely seen nowadays, thanks to the advanced nature of the medical system. However, small, localised outbreaks in certain regions still exist and could possess a huge threat to the public health if eradication measure is not initiated. This review discusses the progress of Salmonella detection approaches covering their basic principles, characteristics, applications, and performances. Conventional Salmonella detection is usually performed using a culture-based method, which is time-consuming, labour intensive, and unsuitable for on-site testing and high-throughput analysis. To date, there are many detection methods with a unique detection system available for Salmonella detection utilising immunological-based techniques, molecular-based techniques, mass spectrometry, spectroscopy, optical phenotyping, and biosensor methods. The electrochemical biosensor has growing interest in Salmonella detection mainly due to its excellent sensitivity, rapidity, and portability. The use of a highly specific bioreceptor, such as aptamers, and the application of nanomaterials are contributing factors to these excellent characteristics. Furthermore, insight on the types of biorecognition elements, the principles of electrochemical transduction elements, and the miniaturisation potential of electrochemical biosensors are discussed.
    Matched MeSH terms: Biosensing Techniques
  15. Promsuwan K, Soleh A, Saisahas K, Saichanapan J, Kanatharana P, Thavarungkul P, et al.
    J Colloid Interface Sci, 2021 Sep;597:314-324.
    PMID: 33872888 DOI: 10.1016/j.jcis.2021.03.162
    A unique nanocomposite was fabricated using negatively charged manganese dioxide nanoparticles, poly (3,4-ethylenedioxythiophene) and reduced graphene oxide (MnO2/PEDOT/rGO). The nanocomposite was deposited on a glassy carbon electrode (GCE) functionalized with amino groups. The modified GCE was used to electrochemically detect dopamine (DA). The surface morphology, charge effect and electrochemical behaviours of the modified GCE were characterized by scanning electron microscopy, energy dispersive X-ray analysis (EDX), cyclic voltammetry and electrochemical impedance spectroscopy, respectively. The MnO2/PEDOT/rGO/GCE exhibited excellent performance towards DA sensing with a linear range between 0.05 and 135 µM with a lowest detection limit of 30 nM (S/N = 3). Selectivity towards DA was high in the presence of high concentrations of the typical interferences ascorbic acid and uric acid. The stability and reproducibility of the electrode were good. The sensor accurately determined DA in human serum. The synergic effect of the multiple components of the fabricated nanocomposite were critical to the good DA sensing performance. rGO provided a conductive backbone, PEDOT directed the uniform growth of MnO2 and adsorbed DA via pi-pi and electrostatic interaction, while the negatively charged MnO2 provided adsorption and catalytic sites for protonated DA. This work produced a promising biosensor that sensitively and selectively detected DA.
    Matched MeSH terms: Biosensing Techniques
  16. Christwardana M, Yoshi LA, Setyonadi I, Maulana MR, Fudholi A
    Enzyme Microb Technol, 2021 Sep;149:109831.
    PMID: 34311895 DOI: 10.1016/j.enzmictec.2021.109831
    In this study, yeast microbial fuel cells (MFCs) were established as biosensors for in-situ monitoring of dissolved oxygen (DO) levels in environmental waters, with yeast and glucose substrates acting as biocatalyst and fuel, respectively. Diverse environmental factors, such as temperature, pH and conductivity, were considered. The sensor performance was first tested with distilled water with different DO levels ranging from 0 mg/L to 8 mg/L and an external resistance of 1000 Ω. The relationship between DO and current density was non-linear (exponential). This MFC capability was further explored under different environmental conditions (pH, temperature and conductivity), and the current density produced was within the range of 0.14-34.88 mA/m2, which increased with elevated DO concentration. The resulting regression was y = 1.3051e0.3548x, with a regression coefficient (R2) = 0.71, indicating that the MFC-based DO meter was susceptible to interference. When used in environmental water samples, DO measurements using MFC resulted in errors ranging from 6.25 % to 15.15 % when compared with commercial DO meters. The simple yeast-based MFC sensors demonstrate promising prospects for future monitoring in a variety of areas, including developing countries and remote locations.
    Matched MeSH terms: Biosensing Techniques*
  17. Wong XY, Quesada-González D, Manickam S, Muthoosamy K
    Anal Chim Acta, 2021 Aug 29;1175:338745.
    PMID: 34330444 DOI: 10.1016/j.aca.2021.338745
    Metal ions homeostasis plays an important role in biological processes. The ability to detect the concentration of metal ions in biological fluids is often challenged by the obvious interference or competitive binding nature of other alkaline metals ions. Common analytical techniques employed for metal ions detection are electrochemical, fluorescence and colorimetric methods. However, most reported metal ions sensors are complicated, time-consuming and involve costly procedures with limited effectiveness. Herein, a nanobiosensor for detecting sodium and potassium ions using folic acid-functionalised reduced graphene oxide-modified RNase A gold nanoclusters (FA-rGO-RNase A/AuNCs) based on fluorescence "turn-off/turn-on" is presented. Firstly, a facile and optimised protocol for the fabrication of RNase A/AuNCs is developed. The activity of RNase A protein after the formation of RNase A/AuNCs is studied. RNase A/AuNCs is then loaded onto FA-rGO, in which FA-rGO is used as a potential carrier and fluorescence quencher for RNase A/AuNCs. Finally, a fluorescence "turn-on" sensing strategy is developed using the as-synthesised FA-rGO-RNase A/AuNCs to detect sodium and potassium ions. The developed nanobiosensor revealed an excellent sensing performance and meets the sensitivity required to detect both sodium and potassium ions. To the best of our knowledge, this is the first work done on determining the RNase A protein activity in RNase A/AuNCs and exploring the potential application of RNase A/AuNCs as a metal ion sensor. This work serves as a proof-of-concept for combining the potential of drug delivery, active targeting and therapy on cancer cells, as well as biosensing of metal ions into a single platform.
    Matched MeSH terms: Biosensing Techniques*
  18. Yang Y, Wei X, Zhang N, Zheng J, Chen X, Wen Q, et al.
    Nat Commun, 2021 08 12;12(1):4876.
    PMID: 34385436 DOI: 10.1038/s41467-021-25075-8
    While the printed circuit board (PCB) has been widely considered as the building block of integrated electronics, the world is switching to pursue new ways of merging integrated electronic circuits with textiles to create flexible and wearable devices. Herein, as an alternative for PCB, we described a non-printed integrated-circuit textile (NIT) for biomedical and theranostic application via a weaving method. All the devices are built as fibers or interlaced nodes and woven into a deformable textile integrated circuit. Built on an electrochemical gating principle, the fiber-woven-type transistors exhibit superior bending or stretching robustness, and were woven as a textile logical computing module to distinguish different emergencies. A fiber-type sweat sensor was woven with strain and light sensors fibers for simultaneously monitoring body health and the environment. With a photo-rechargeable energy textile based on a detailed power consumption analysis, the woven circuit textile is completely self-powered and capable of both wireless biomedical monitoring and early warning. The NIT could be used as a 24/7 private AI "nurse" for routine healthcare, diabetes monitoring, or emergencies such as hypoglycemia, metabolic alkalosis, and even COVID-19 patient care, a potential future on-body AI hardware and possibly a forerunner to fabric-like computers.
    Matched MeSH terms: Biosensing Techniques/instrumentation*; Biosensing Techniques/methods
  19. Zheng J, Wai JL, Lake RJ, New SY, He Z, Lu Y
    Anal Chem, 2021 08 10;93(31):10834-10840.
    PMID: 34310132 DOI: 10.1021/acs.analchem.1c01077
    DNAzymes have emerged as an important class of sensors for a wide variety of metal ions, with florescence DNAzyme sensors as the most widely used in different sensing and imaging applications because of their fast response time, high signal intensity, and high sensitivity. However, the requirements of an external excitation light source and its associated power increase the cost and size of the fluorometer, making it difficult to be used for portable detections. To overcome these limitations, we report herein a DNAzyme sensor that relies on chemiluminescence resonance energy transfer (CRET) without the need for external light. The sensor is constructed by combining the functional motifs from both Pb2+-dependent 8-17 DNAzyme conjugated to fluorescein (FAM) and hemin/G-quadruplex that mimics horseradish peroxidase to catalyze the oxidation of luminol by H2O2 to yield chemiluminescence. In the absence of Pb2+, the hybridization between the enzyme and substrate strands bring the FAM and hemin/G-quadruplex in close proximity, resulting in CRET. The presence of Pb2+ ions can drive the cleavage on the substrate strand, resulting in a sharp decrease in the melting temperature of hybridization and thus separation of the FAM from hemin/G-quadruplex. The liberated CRET pair causes a ratiometric increase in the donor's fluorescent signal and a decrease in the acceptor signal. Using this method, Pb2+ ions have been measured rapidly (<15 min) with a low limit of detection at 5 nM. By removing the requirement of exogenous light excitation, we have demonstrated a simple and portable detection using a smartphone, making the DNAzyme-CRET system suitable for field tests of lake water. Since DNAzymes selective for other metal ions or targets, such as bacteria, can be obtained using in vitro selection, the method reported here opens a new avenue for rapid, portable, and ratiometric detection of many targets in environmental monitoring, food safety, and medical diagnostics.
    Matched MeSH terms: Biosensing Techniques*
  20. Ibrahim N, Jamaluddin ND, Tan LL, Mohd Yusof NY
    Sensors (Basel), 2021 Jul 28;21(15).
    PMID: 34372350 DOI: 10.3390/s21155114
    The emergence of highly pathogenic and deadly human coronaviruses, namely SARS-CoV and MERS-CoV within the past two decades and currently SARS-CoV-2, have resulted in millions of human death across the world. In addition, other human viral diseases, such as mosquito borne-viral diseases and blood-borne viruses, also contribute to a higher risk of death in severe cases. To date, there is no specific drug or medicine available to cure these human viral diseases. Therefore, the early and rapid detection without compromising the test accuracy is required in order to provide a suitable treatment for the containment of the diseases. Recently, nanomaterials-based biosensors have attracted enormous interest due to their biological activities and unique sensing properties, which enable the detection of analytes such as nucleic acid (DNA or RNA), aptamers, and proteins in clinical samples. In addition, the advances of nanotechnologies also enable the development of miniaturized detection systems for point-of-care (POC) biosensors, which could be a new strategy for detecting human viral diseases. The detection of virus-specific genes by using single-stranded DNA (ssDNA) probes has become a particular interest due to their higher sensitivity and specificity compared to immunological methods based on antibody or antigen for early diagnosis of viral infection. Hence, this review has been developed to provide an overview of the current development of nanoparticles-based biosensors that target pathogenic RNA viruses, toward a robust and effective detection strategy of the existing or newly emerging human viral diseases such as SARS-CoV-2. This review emphasizes the nanoparticles-based biosensors developed using noble metals such as gold (Au) and silver (Ag) by virtue of their powerful characteristics as a signal amplifier or enhancer in the detection of nucleic acid. In addition, this review provides a broad knowledge with respect to several analytical methods involved in the development of nanoparticles-based biosensors for the detection of viral nucleic acid using both optical and electrochemical techniques.
    Matched MeSH terms: Biosensing Techniques*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links