Displaying publications 21 - 40 of 854 in total

Abstract:
Sort:
  1. Chao CY, Mani MP, Jaganathan SK
    PLoS One, 2018;13(10):e0205699.
    PMID: 30372449 DOI: 10.1371/journal.pone.0205699
    Essential oils play an important role in reducing the pain and inflammation caused by bone fracture.In this study, a scaffold was electrospun based on polyurethane (PU), grape seed oil, honey and propolis for bone tissue-engineering applications. The fiber diameter of the electrospun PU/grape seed oil scaffold and PU/grape seed oil/honey/propolis scaffold were observed to be reduced compared to the pristine PU control. FTIR analysis revealed the existence of grape seed oil, honey and propolis in PU identified by CH band peak shift and also hydrogen bond formation. The contact angle of PU/grape seed oil scaffold was found to increase owing to hydrophobic nature and the contact angle for the PU/grape seed/honey oil/propolis scaffold were decreased because of hydrophilic nature. Further, the prepared PU/grape seed oil and PU/grape seed oil/honey/propolis scaffold showed enhanced thermal stability and reduction in surface roughness than the control as revealed in thermogravimetric analysis (TGA) and atomic force microscopy (AFM) analysis. Further, the developed nanocomposite scaffold displayed delayed blood clotting time than the pristine PU in the activated prothrombin time (APTT) and partial thromboplastin time (PT) assay. The hemolytic assay and cytocompatibility studies revealed that the electrospun PU/grape seed oil and PU/grape seed oil/honey/propolis scaffold possess non-toxic behaviour to red blood cells (RBC) and human fibroblast cells (HDF) cells indicating better blood compatibility and cell viability rates. Hence, the newly developed electrospun nanofibrous composite scaffold with desirable characteristics might be used as an alternative candidate for bone tissue engineering applications.
    Matched MeSH terms: Cell Survival
  2. Karim AA, Azlan A, Ismail A, Hashim P, Abd Gani SS, Zainudin BH, et al.
    BMC Complement Altern Med, 2014 Oct 07;14:381.
    PMID: 25292439 DOI: 10.1186/1472-6882-14-381
    BACKGROUND: Cocoa pod is an outer part of cocoa fruits being discarded during cocoa bean processing. Authors found out that data on its usage in literature as cosmetic materials was not recorded in vast. In this study, cocoa pod extract was investigated for its potential as a cosmetic ingredient.

    METHODS: Cocoa pod extract (CPE) composition was accomplished using UHPLC. The antioxidant capacity were measured using scavenging assay of 1,2-diphenyl-2-picrylhydrazyl (DPPH), β-carotene bleaching assay (BCB) and ferric reducing antioxidant power (FRAP). Inhibiting effect on skin degradation enzymes was carried out using elastase and collagenase assays. The skin whitening effect of CPE was determined based on mushroom tyrosinase assay and sun screening effect (UV-absorbance at 200-400 nm wavelength).

    RESULTS: LC-MS/MS data showed the presence of carboxylic acid, phenolic acid, fatty acid, flavonoids (flavonol and flavones), stilbenoids and terpenoids in CPE. Results for antioxidant activity exhibited that CPE possessed good antioxidant activity, based on the mechanism of the assays compared with ascorbic acid (AA) and standardized pine bark extract (PBE); DPPH: AA > CPE > PBE; FRAP: PBE > CPE > AA; and BCB: BHT > CPE > PBE. Cocoa pod extract showed better action against elastase and collagenase enzymes in comparison with PBE and AA. Higher inhibition towards tyrosinase enzyme was exhibited by CPE than kojic acid and AA, although lower than PBE. CPE induced proliferation when tested on human fibroblast cell at low concentration. CPE also exhibited a potential as UVB sunscreen despite its low performance as a UVA sunscreen agent.

    CONCLUSIONS: Therefore, the CPE has high potential as a cosmetic ingredient due to its anti-wrinkle, skin whitening, and sunscreen effects.

    Matched MeSH terms: Cell Survival
  3. Poli A, Abdul-Hamid S, Zaurito AE, Campagnoli F, Bevilacqua V, Sheth B, et al.
    Proc Natl Acad Sci U S A, 2021 08 03;118(31).
    PMID: 34312224 DOI: 10.1073/pnas.2010053118
    Regulatory T cells (Tregs) play fundamental roles in maintaining peripheral tolerance to prevent autoimmunity and limit legitimate immune responses, a feature hijacked in tumor microenvironments in which the recruitment of Tregs often extinguishes immune surveillance through suppression of T-effector cell signaling and tumor cell killing. The pharmacological tuning of Treg activity without impacting on T conventional (Tconv) cell activity would likely be beneficial in the treatment of various human pathologies. PIP4K2A, 2B, and 2C constitute a family of lipid kinases that phosphorylate PtdIns5P to PtdIns(4,5)P 2 They are involved in stress signaling, act as synthetic lethal targets in p53-null tumors, and in mice, the loss of PIP4K2C leads to late onset hyperinflammation. Accordingly, a human single nucleotide polymorphism (SNP) near the PIP4K2C gene is linked with susceptibility to autoimmune diseases. How PIP4Ks impact on human T cell signaling is not known. Using ex vivo human primary T cells, we found that PIP4K activity is required for Treg cell signaling and immunosuppressive activity. Genetic and pharmacological inhibition of PIP4K in Tregs reduces signaling through the PI3K, mTORC1/S6, and MAPK pathways, impairs cell proliferation, and increases activation-induced cell death while sparing Tconv. PIP4K and PI3K signaling regulate the expression of the Treg master transcriptional activator FOXP3 and the epigenetic signaling protein Ubiquitin-like containing PHD and RING finger domains 1 (UHRF1). Our studies suggest that the pharmacological inhibition of PIP4K can reprogram human Treg identity while leaving Tconv cell signaling and T-helper differentiation to largely intact potentially enhancing overall immunological activity.
    Matched MeSH terms: Cell Survival
  4. Lim SW, Loh HS, Ting KN, Bradshaw TD, Zeenathul NA
    PMID: 25480449 DOI: 10.1186/1472-6882-14-469
    Tocotrienols, especially the gamma isomer was discovered to possess cytotoxic effects associated with the induction of apoptosis in numerous cancers. Individual tocotrienol isomers are believed to induce dissimilar apoptotic mechanisms in different cancer types. This study was aimed to compare the cytotoxic potency of alpha-, gamma- and delta-tocotrienols, and to explore their resultant apoptotic mechanisms in human lung adenocarcinoma A549 and glioblastoma U87MG cells which are scarcely researched.
    Matched MeSH terms: Cell Survival/drug effects
  5. Wong CC, Sagineedu SR, Sumon SH, Sidik SM, Phillips R, Lajis NH, et al.
    Environ Toxicol Pharmacol, 2014 Sep;38(2):489-501.
    PMID: 25168151 DOI: 10.1016/j.etap.2014.07.016
    Andrographolide (AGP) is the main bioactive constituent isolated from the traditional medicinal, Andrographis paniculata which contributes towards its various biological activities, including anticancer property. In this study, a series of new AGP derivatives were semi-synthesised and screened against the NCI in vitro 60 cell lines. From the screening results, we had identified SRS07 as the most potent AGP derivative, against breast and colon cancer cell lines. Subsequently, SRS07 was tested for its capability to induce cell cycle arrest and apoptosis in MCF-7 and HCT116 cancer cells. SRS07 effectively induced G1 cell cycle arrest in both cell lines and ultimately apoptosis by inducing DNA fragmentation in HCT116 cells. The apoptotic cell death induced by SRS07 was confirmed via FITC Annexin-V double staining. Western blot analysis of SRS07-treated HCT116 cells revealed that the compound induced apoptosis be activating caspase 8 which in turn cleaved Bid to t-Bid to initiate cell death cascade. Prediction of the possible mode of action of SRS07 by utilising NCI COMPARE analysis failed to reveal a distinct mechanism category. Hence, it is speculated that SRS07 possesses novel mechanism of action. In conclusion, SRS07 demonstrated superior in vitro anticancer profiles and emerged as a potential lead anticancer candidate.
    Matched MeSH terms: Cell Survival/drug effects
  6. Rothan HA, Mohamed Z, Suhaeb AM, Rahman NA, Yusof R
    OMICS, 2013 Nov;17(11):560-7.
    PMID: 24044366 DOI: 10.1089/omi.2013.0056
    Dengue virus infects millions of people worldwide, and there is no vaccine or anti-dengue therapeutic available. Antimicrobial peptides have been shown to possess effective antiviral activity against various viruses. One of the main limitations of developing these peptides as potent antiviral drugs is the high cost of production. In this study, high yield production of biologically active plectasin peptide was inexpensively achieved by producing tandem plectasin peptides as inclusion bodies in E. coli. Antiviral activity of the recombinant peptide towards dengue serotype-2 NS2B-NS3 protease (DENV2 NS2B-NS3pro) was assessed as a target to inhibit dengue virus replication in Vero cells. Single units of recombinant plectasin were collected after applying consecutive steps of refolding, cleaving by Factor Xa, and nickel column purification to obtain recombinant proteins of high purity. The maximal nontoxic dose (MNTD) of the recombinant peptide against Vero cells was 20 μM (100 μg/mL). The reaction velocity of DENV2 NS2B-NS3pro decreased significantly after increasing concentrations of recombinant plectasin were applied to the reaction mixture. Plectasin peptide noncompetitively inhibited DENV2 NS2B-NS3pro at Ki value of 5.03 ± 0.98 μM. The percentage of viral inhibition was more than 80% at the MNTD value of plectasin. In this study, biologically active recombinant plectasin which was able to inhibit dengue protease and viral replication in Vero cells was successfully produced in E. coli in a time- and cost- effective method. These findings are potentially important in the development of potent therapeutics against dengue infection.
    Matched MeSH terms: Cell Survival/drug effects
  7. Abdelwahab SI, Mohan S, Abdulla MA, Sukari MA, Abdul AB, Taha MM, et al.
    J Ethnopharmacol, 2011 Sep 2;137(2):963-70.
    PMID: 21771650 DOI: 10.1016/j.jep.2011.07.010
    Boesenbergia rotunda (L) Mansf. has been used for the treatment of gastrointestinal disorders including peptic ulcer. In the current study we aimed to investiagte the anti-ulcer activities of methanolic extract of B. rotunda (MEBR) and its main active compound, pinostrobin on ethanol-induced ulcer in rats. The possible involevement of lipid peroxidation, nitric oxide, cyclooxygenases and free radical scavenging mechanisms also has been investigated.
    Matched MeSH terms: Cell Survival/drug effects
  8. Kim YH, Kim KH, Han CS, Park SH, Yang HC, Lee BY, et al.
    J Cosmet Sci, 2008 Sep-Oct;59(5):419-30.
    PMID: 18841306
    Crinum asiaticum Linne var. japonicum has long been used as a rheumatic remedy, as an anti-pyretic and as an anti-ulcer treatment, and for the alleviation of local pain and fever in Korea and Malaysia. In order to investigate the possibility of Crinum asiaticum Linne var. japonicum extract as a cosmetic ingredient, we measured its anti-inflammatory effect by its inhibition of iNOS (inducible nitric oxide synthase) and the release of PGE2, IL-6, and IL-8. We also measured its anti-allergic effect by its inhibition of beta-hexosamidase release. An HPLC experiment after extraction with 95% EtOH at pH 3.5 showed that Crinum asiaticum Linne var. japonicum was mainly composed of lycorine (up to 1%), a well-known immunosuppressor. The content of lycorine varied, depending on the type of plant tissue analyzed and the extraction method. In an anti-inflammatory assay for inhibition of nitric oxide formation on lipopolysaccharide (LPS)-activated mouse macrophage RAW 264.7 cells, the ethanol extract of Crinum asiaticum showed an inhibitory activity of NO production in a dose-dependent manner (IC50 = 58.5 microg/ml). Additional study by RT-PCR demonstrated that the extract of Crinum asiaticum significantly suppressed the expression of the iNOS gene. Moreover, the extract of Crinum asiaticum did not show any cytotoxicity, but did show a cell proliferation effect against LPS (a 10 approximately 60% increase in cell viability). In an assay to determine inhibition of the H2O2-activated release of PGE2, IL-6, and IL-8 in human normal fibroblast cell lines, the release of PGE2 and IL-6 was almost completely inhibited above concentrations of 0.05% and 1%, respectively. Moreover, the release of IL-8 was completely inhibited over the entire range of concentration (>0.0025%). In order to investigate the skin-sensitizing potentials of the extract of Crinum asiaticum, a human clinical test was performed after repeated epicutaneous 48-h applications under an occlusive patch (RIPT). The repeated and single cutaneous applications of Crinum asiaticum Linne var. japonicum extract under the occlusive patch did not provoke any cumulative irritation and sensitization reactions. The result showed that the extract of Crinum asiaticum Linne var. japonicum has a sufficient anti-inflammatory effect. Therefore, Crinum asiaticum Linne var. japonicum extract may be useful for development as an ingredient in cosmetic products.
    Matched MeSH terms: Cell Survival/drug effects
  9. Arbab IA, Abdul AB, Sukari MA, Abdullah R, Syam S, Kamalidehghan B, et al.
    J Ethnopharmacol, 2013 Jan 9;145(1):343-54.
    PMID: 23178663 DOI: 10.1016/j.jep.2012.11.020
    Clausena excavata Burm. f. has been used in folk medicines in eastern Thailand for the treatment of cancer.
    Matched MeSH terms: Cell Survival/drug effects
  10. Huat TJ, Khan AA, Abdullah JM, Idris FM, Jaafar H
    Int J Mol Sci, 2015;16(5):9693-718.
    PMID: 25938966 DOI: 10.3390/ijms16059693
    Insulin-like growth factor 1 (IGF-1) enhances cellular proliferation and reduces apoptosis during the early differentiation of bone marrow derived mesenchymal stem cells (BMSCs) into neural progenitor-like cells (NPCs) in the presence of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF). BMSCs were differentiated in three groups of growth factors: (A) EGF + bFGF, (B) EGF + bFGF + IGF-1, and (C) without growth factor. To unravel the molecular mechanisms of the NPCs derivation, microarray analysis using GeneChip miRNA arrays was performed. The profiles were compared among the groups. Annotated microRNA fingerprints (GSE60060) delineated 46 microRNAs temporally up-regulated or down-regulated compared to group C. The expressions of selected microRNAs were validated by real-time PCR. Among the 46 microRNAs, 30 were consistently expressed for minimum of two consecutive time intervals. In Group B, only miR-496 was up-regulated and 12 microRNAs, including the let-7 family, miR-1224, miR-125a-3p, miR-214, miR-22, miR-320, miR-708, and miR-93, were down-regulated. Bioinformatics analysis reveals that some of these microRNAs (miR-22, miR-214, miR-125a-3p, miR-320 and let-7 family) are associated with reduction of apoptosis. Here, we summarize the roles of key microRNAs associated with IGF-1 in the differentiation of BMSCs into NPCs. These findings may provide clues to further our understanding of the mechanisms and roles of microRNAs as key regulators of BMSC-derived NPC maintenance.
    Matched MeSH terms: Cell Survival/drug effects
  11. Ch'ng WC, Abd-Aziz N, Ong MH, Stanbridge EJ, Shafee N
    Cell Oncol (Dordr), 2015 Aug;38(4):279-88.
    PMID: 25930675 DOI: 10.1007/s13402-015-0229-5
    Newcastle disease virus (NDV) is an oncolytic virus that is known to have a higher preference to cancer cells than to normal cells. It has been proposed that this higher preference may be due to defects in the interferon (IFN) responses of cancer cells. The exact mechanism underlying this process, however, remains to be resolved. In the present study, we examined the antiviral response towards NDV infection of clear cell renal cell carcinoma (ccRCC) cells. ccRCC is associated with mutations of the von Hippel-Lindau tumor suppressor gene VHL, whose protein product is important for eliciting cellular responses to changes in oxygen levels. The most common first line treatment strategy of ccRCC includes IFN. Unfortunately, most ccRCC cases are diagnosed at a late stage and often are resistant to IFN-based therapies. Alternative treatment approaches, including virotherapy using oncolytic viruses, are currently being investigated. The present study was designed to investigate the mechanistic pathways underlying the response of ccRCC cells to oncolytic NDV infection.
    Matched MeSH terms: Cell Survival/drug effects
  12. Mehrabani M, Najafi M, Kamarul T, Mansouri K, Iranpour M, Nematollahi MH, et al.
    Cell Prolif, 2015 Oct;48(5):532-49.
    PMID: 26332145 DOI: 10.1111/cpr.12209
    OBJECTIVES: Both excessive and insufficient angiogenesis are associated with progression of diabetic complications, of which poor angiogenesis is an important feature. Currently, adipose-derived stem cells (ADSCs) are considered to be a promising source to aid therapeutic neovascularization. However, functionality of these cells is impaired by diabetes which can result from a defect in hypoxia-inducible factor-1 (HIF-1), a key mediator involved in neovascularization. In the current study, we sought to explore effectiveness of pharmacological priming with deferoxamine (DFO) as a hypoxia mimetic agent, to restore the compromised angiogenic pathway, with the aid of ADSCs derived from streptozotocin (STZ)-induced type 1 diabetic rats ('diabetic ADSCs').

    MATERIALS AND METHODS: Diabetic ADSCs were treated with DFO and compared to normal and non-treated diabetic ADSCs for expression of HIF-1α, VEGF, FGF-2 and SDF-1, at mRNA and protein levels, using qRT-PCR, western blotting and ELISA assay. Activity of matrix metalloproteinases -2 and -9 were measured using a gelatin zymography assay. Angiogenic potential of conditioned media derived from normal, DFO-treated and non-treated diabetic ADSCs were determined by in vitro (in HUVECs) and in vivo experiments including scratch assay, three-dimensional tube formation testing and surgical wound healing models.

    RESULTS: DFO remarkably enhanced expression of noted genes by mRNA and protein levels and restored activity of matrix metalloproteinases -2 and -9. Compromised angiogenic potential of conditioned medium derived from diabetic ADSCs was restored by DFO both in vitro and in vivo experiments.

    CONCLUSION: DFO preconditioning restored neovascularization potential of ADSCs derived from diabetic rats by affecting the HIF-1α pathway.

    Matched MeSH terms: Cell Survival/drug effects
  13. Mehrbod P, Hair-Bejo M, Tengku Ibrahim TA, Omar AR, El Zowalaty M, Ajdari Z, et al.
    Int J Mol Med, 2014 Jul;34(1):61-73.
    PMID: 24788303 DOI: 10.3892/ijmm.2014.1761
    Influenza A virus is one of the most important health risks that lead to significant respiratory infections. Continuous antigenic changes and lack of promising vaccines are the reasons for the unsuccessful treatment of influenza. Statins are pleiotropic drugs that have recently served as anti-influenza agents due to their anti-inflammatory activity. In this study, the effect of simvastatin on influenza A-infected cells was investigated. Based on the MTT cytotoxicity test, hemagglutination (HA) assay and qPCR it was found that simvastatin maintained cell viability and decreased the viral load significantly as compared to virus-inoculated cells. The expression of important pro-inflammatory cytokines (tumor necrosis factor-α, interleukin-6 and interferon-γ), which was quantified using ELISA showed that simvastatin decreased the expression of pro-inflammatory cytokines to an average of 2-fold. Furthermore, the modulation of actin filament polymerization was determined using rhodamine staining. Endocytosis and autophagy processes were examined by detecting Rab and RhoA GTPase protein prenylation and LC3 lipidation using western blotting. The results showed that inhibiting GTPase and LC3 membrane localization using simvastatin inhibits influenza replication. Findings of this study provide evidence that modulation of RhoA, Rabs and LC3 may be the underlying mechanisms for the inhibitory effects of simvastatin as an anti-influenza compound.
    Matched MeSH terms: Cell Survival/drug effects
  14. Seifaddinipour M, Farghadani R, Namvar F, Bin Mohamad J, Muhamad NA
    Molecules, 2020 Apr 13;25(8).
    PMID: 32295069 DOI: 10.3390/molecules25081776
    Pistacia (Pistacia vera) hulls (PV) is a health product that has been determined to contain bioactive phytochemicals which have fundamental importance for biomedical use. In this study, PV ethyl acetate extraction (PV-EA) fractions were evaluated with the use of an MTT assay to find the most cytotoxic fraction, which was found to be F13b1/PV-EA. After that, HPTLC was used for identify the most active compounds. The antioxidant activity was analyzed with DPPH and ABTS tests. Apoptosis induction in MCF-7 cells by F13b1/PV-EA was validated via flow cytometry analysis and a distinctive nuclear staining method. The representation of genes like Caspase 3, Caspase 8, Bax, Bcl-2, CAT and SOD was assessed via a reverse transcription (RT_PCR) method. Inhabitation of Tubo breast cancer cell development was examined in the BALB-neuT mouse with histopathology observations. The most abundant active components available in our extract were gallic acid and the flavonoid quercetin. The F13b1/PV-EA has antiradical activity evidence by its inhibition of ABTS and DPPH free radicals. F13b1/PV-EA displayed against MCF-7 a suppressive effect with an IC50 value of 15.2 ± 1.35 µg/mL. Also, the expression of CAT, SOD, Caspase 3, Caspase 8 and Bax increased and the expression of Bcl-2 decreased. F13b1/PV-EA dose-dependently inhibited tumor development in cancer-induced mice. Thus, this finding introduces F13b1/PV-EA as an effectual apoptosis and antitumor active agent against breast cancer.
    Matched MeSH terms: Cell Survival/drug effects
  15. Issac PK, Guru A, Chandrakumar SS, Lite C, Saraswathi NT, Arasu MV, et al.
    Mol Biol Rep, 2020 Sep;47(9):6727-6740.
    PMID: 32809102 DOI: 10.1007/s11033-020-05728-5
    Understanding the mechanism by which the exogenous biomolecule modulates the GLUT-4 signalling cascade along with the information on glucose metabolism is essential for finding solutions to increasing cases of diabetes and metabolic disease. This study aimed at investigating the effect of hamamelitannin on glycogen synthesis in an insulin resistance model using L6 myotubes. Glucose uptake was determined using 2-deoxy-D-[1-3H] glucose and glycogen synthesis were also estimated in L6 myotubes. The expression levels of key genes and proteins involved in the insulin-signaling pathway were determined using real-time PCR and western blot techniques. The cells treated with various concentrations of hamamelitannin (20 µM to 100 µM) for 24 h showed that, the exposure of hamamelitannin was not cytotoxic to L6 myotubes. Further the 2-deoxy-D-[1-3H] glucose uptake assay was carried out in the presence of wortmannin and Genistein inhibitor for studying the GLUT-4 dependent cell surface recruitment. Hamamelitannin exhibited anti-diabetic activity by displaying a significant increase in glucose uptake (125.1%) and glycogen storage (8.7 mM) in a dose-dependent manner. The optimum concentration evincing maximum activity was found to be 100 µm. In addition, the expression of key genes and proteins involved in the insulin signaling pathway was studied to be upregulated by hamamelitannin treatment. Western blot analysis confirmed the translocation of GLUT-4 protein from an intracellular pool to the plasma membrane. Therefore, it can be conceived that hamamelitannin exhibited an insulinomimetic effect by enhancing the glucose uptake and its further conversion into glycogen by regulating glucose metabolism.
    Matched MeSH terms: Cell Survival/drug effects
  16. Hasanpourghadi M, Pandurangan AK, Karthikeyan C, Trivedi P, Mustafa MR
    Oncotarget, 2017 Apr 25;8(17):28840-28853.
    PMID: 28392503 DOI: 10.18632/oncotarget.16263
    Microtubule Targeting Agents (MTAs) induce cell death through mitotic arrest, preferentially affecting rapidly dividing cancer cells over slowly proliferating normal cells. Previously, we showed that Methyl 2-(-5-fluoro-2-hydroxyphenyl)-1H-benzo[d]imidazole-5-carboxylate (MBIC) acts as a potential MTA. In this study, we demonstrated that MBIC exhibits greater toxicity towards non-aggressive breast cancer cell-line, MCF-7 (IC50 = 0.73 ± 0.0 μM) compared to normal fibroblast cell-line, L-cells (IC50 = 59.6 ± 2.5 μM). The IC50 of MBIC against the aggressive breast cancer cell-line, MDA-MB-231 was 20.4 ± 0.2 μM. We hypothesized that the relatively high resistance of MDA-MB-231 cells to MBIC is associated with p53 mutation. We investigated p53 and three of its downstream proteins: survivin, cyclin dependent kinase (Cdk1) and cyclin B1. Following treatment with MBIC, survivin co-immunoprecipitated with caspases with higher affinity in MDA-MB-231 compared to MCF-7 cells. Furthermore, silencing survivin caused a 4.5-fold increase in sensitivity of MDA-MB-231 cells to MBIC (IC50 = 4.4 ± 0.3). In addition, 4 weeks of MBIC administration in MDA-MB-231 cells inoculated BALB/c nude mice resulted in 79.7% reduction of tumor volume compared to the untreated group with no severe sign of toxicity. Our results demonstrated MBIC has multiple anti-tumor actions and could be a potential drug in breast cancer therapy.
    Matched MeSH terms: Cell Survival/drug effects
  17. Zengin G, Rodrigues MJ, Abdallah HH, Custodio L, Stefanucci A, Aumeeruddy MZ, et al.
    Comput Biol Chem, 2018 Dec;77:178-186.
    PMID: 30336375 DOI: 10.1016/j.compbiolchem.2018.10.005
    The genus Silene is renowned in Turkey for its traditional use as food and medicine. Currently, there are 138 species of Silene in Turkey, amongst which have been several studies for possible pharmacological potential and application in food industry. However, there is currently a paucity of data on Silene salsuginea Hub.-Mor. This study endeavours to access its antioxidant, enzyme inhibitory, and anti-inflammatory properties. Besides, reversed-phase high-performance liquid chromatography-diode array detector (RP-HPLC-DAD) was used to detect phenolic compounds, and molecular docking was performed to provide new insights for tested enzymes and phenolics. High amounts of apigenin (534 μg/g extract), ferulic acid (452 μg/g extract), p-coumaric acid (408 μg/g extract), and quercetin (336 μg/g extract) were detected in the methanol extract while rutin (506 μg/g extract) was most abundant in the aqueous extract. As for their biological properties, the methanol extract exhibited the best antioxidant effect in the DPPH and CUPRAC assays, and also the highest inhibition against tyrosinase. The aqueous extract was the least active enzyme inhibitor but showed the highest antioxidant efficacy in the ABTS, FRAP, and metal chelating assays. At a concentration of 15.6 μg/mL, the methanol extract resulted in a moderate decrease (25.1%) of NO production in lipopolysaccharide-stimulated cells. Among the phenolic compounds, epicatechin, (+)-catechin, and kaempferol showed the highest binding affinity towards the studied enzymes in silico. It can be concluded that extracts of S. salsuginea are a potential source of functional food ingredients but need further analytical experiments to explore its complexity of chemical compounds and pharmacological properties as well as using in vivo toxicity models to establish its maximum tolerated dose.
    Matched MeSH terms: Cell Survival/drug effects
  18. Manikam SD, Manikam ST, Stanslas J
    J Pharm Pharmacol, 2009 Jan;61(1):69-78.
    PMID: 19126299 DOI: 10.1211/jpp/61.01.0010
    The growth inhibiting potential of andrographolide was evaluated in three acute promyelocytic leukaemia cell line models (HL-60, NB4 and all-trans retinoic acid (ATRA)-resistant NB4-R2).
    Matched MeSH terms: Cell Survival/drug effects
  19. Yeo EH, Goh WL, Chow SC
    Toxicol. Mech. Methods, 2018 Mar;28(3):157-166.
    PMID: 28849708 DOI: 10.1080/15376516.2017.1373882
    The leucine aminopeptidase inhibitor, benzyloxycarbonyl-leucine-chloromethylketone (z-L-CMK), was found to be toxic and readily induce cell death in Jurkat T cells. Dose-response studies show that lower concentration of z-L-CMK induced apoptosis in Jurkat T cells whereas higher concentration causes necrosis. In z-L-CMK-induced apoptosis, both the initiator caspases (-8 and -9) and effector caspases (-3 and -6) were processed to their respective subunits. However, the caspases remained intact in z-L-CMK-induced necrosis. The caspase inhibitor, z-VAD-FMK inhibited z-L-CMK-mediated apoptosis and caspase processing but has no effect on z-L-CMK-induced necrosis in Jurkat T cells. The high mobility group protein B1 (HMGB1) protein was found to be released into the culture medium by the necrotic cells and not the apoptotic cells. These results indicate that the necrotic cell death mediated by z-L-CMK at high concentrations is via classical necrosis rather than secondary necrosis. We also demonstrated that cell death mediated by z-L-CMK was associated with oxidative stress via the depletion of intracellular glutathione (GSH) and increase in reactive oxygen species (ROS), which was blocked by N-acetyl cysteine. Taken together, the results demonstrated that z-L-CMK is toxic to Jurkat T cells and induces apoptosis at low concentrations, while at higher concentrations the cells die of necrosis. The toxic side effects in Jurkat T cells mediated by z-L-CMK are associated with oxidative stress via the depletion of GSH and accumulation of ROS.
    Matched MeSH terms: Cell Survival/drug effects
  20. Noh SM, Abdul Kadir SH, Crowston JG, Subrayan V, Vasudevan S
    Mol Vis, 2015;21:1191-200.
    PMID: 26539031
    Inhibiting exaggerated wound healing responses, which are primarily mediated by human Tenon's fibroblast (HTF) migration and proliferation, has become the major determining factor for a successful trabeculectomy. Antivascular endothelial growth factor (anti-VEGF) has showed promising results as a potential antifibrotic candidate for use concurrently in trabeculectomy. Preliminary cohort studies have revealed improved bleb morphology following trabeculectomy augmented with ranibizumab. However, the effects on HTFs remain unclear. This study was conducted to understand the effects of ranibizumab on transforming growth factor (TGF)-β1 and transforming growth factor (TGF)-β2 expression by HTFs.
    Matched MeSH terms: Cell Survival/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links