Displaying publications 21 - 40 of 99 in total

Abstract:
Sort:
  1. Wahib NB, Abdul Sani SF, Ramli A, Ismail SS, Abdul Jabar MH, Khandaker MU, et al.
    Radiat Environ Biophys, 2020 08;59(3):523-537.
    PMID: 32462382 DOI: 10.1007/s00411-020-00846-x
    Accidents resulting in widespread dispersal of radioactive materials have given rise to a need for materials that are convenient in allowing individual dose assessment. The present study examines natural Dead Sea salt adopted as a model thermoluminescence dosimetry system. Samples were prepared in two different forms, loose-raw and loose-ground, subsequently exposed to 60Co gamma-rays, delivering doses in the range 2-10 Gy. Key thermoluminescence (TL) properties were examined, including glow curves, dose response, sensitivity, reproducibility and fading. Glow curves shapes were found to be independent of given dose, prominent TL peaks for the raw and ground samples appearing in the temperature ranges 361-385 ºC and 366-401 ºC, respectively. The deconvolution of glow curves has been undertaken using GlowFit, resulting in ten overlapping first-order kinetic glow peaks. For both sample forms, the integrated TL yield displays linearity of response with dose, the loose-raw salt showing some 2.5 × the sensitivity of the ground salt. The samples showed similar degrees of fading, with respective residual signals 28 days post-irradiation of 66% and 62% for the ground and raw forms respectively; conversely, confronted by light-induced fading the respective signal losses were 62% and 80%. The effective atomic number of the Dead Sea salt of 16.3 is comparable to that of TLD-200 (Zeff 16.3), suitable as an environmental radiation monitor in accident situations but requiring careful calibration in the reconstruction of soft tissue dose (soft tissue Zeff 7.2). Sample luminescence studies were carried out via Raman and Photoluminescence spectroscopy as well as X-ray diffraction, ionizing radiation dependent variation in lattice structure being found to influence TL response.
    Matched MeSH terms: Cobalt Radioisotopes
  2. Nazeri AAZA, Sani SFA, Ung NM, Almugren KS, Alkallas FH, Bradley DA
    Appl Radiat Isot, 2021 Oct;176:109814.
    PMID: 34175543 DOI: 10.1016/j.apradiso.2021.109814
    Brachytherapy is commonly used in treatment of cervical, prostate, breast and skin cancers, also for oral cancers, typically via the application of sealed radioactive sources that are inserted within or alongside the area to be treated. A particular aim of the various brachytherapy techniques is to accurately transfer to the targeted tumour the largest possible dose, at the same time minimizing dose to the surrounding normal tissue, including organs at risk. The dose fall-off with distance from the sources is steep, the dose gradient representing a prime factor in determining the dose distribution, also representing a challenge to the conduct of measurements around sources. Amorphous borosilicate glass (B2O3) in the form of microscope cover slips is recognized to offer a practicable system for such thermoluminescence dosimetry (TLD), providing for high-spatial resolution (down to 
    Matched MeSH terms: Cobalt Radioisotopes/administration & dosage*
  3. Chong TM, Yin WF, Chen JW, Mondy S, Grandclément C, Faure D, et al.
    AMB Express, 2016 Dec;6(1):95.
    PMID: 27730570
    Trace metals are required in many cellular processes in bacteria but also induce toxic effects to cells when present in excess. As such, various forms of adaptive responses towards extracellular trace metal ions are essential for the survival and fitness of bacteria in their environment. A soil Pseudomonas putida, strain S13.1.2 has been isolated from French vineyard soil samples, and shown to confer resistance to copper ions. Further investigation revealed a high capacity to tolerate elevated concentrations of various heavy metals including nickel, cobalt, cadmium, zinc and arsenic. The complete genome analysis was conducted using single-molecule real-time (SMRT) sequencing and the genome consisted in a single chromosome at the size of 6.6 Mb. Presence of operons and gene clusters such as cop, cus, czc, nik, and asc systems were detected and accounted for the observed resistance phenotypes. The unique features in terms of specificity and arrangements of some genetic determinants were also highlighted in the study. Our findings has provided insights into the adaptation of this strain to accumulation and persistence of copper and other heavy metals in vineyard soil environment.
    Matched MeSH terms: Cobalt
  4. Pati S, Jena P, Shahimi S, Nelson BR, Acharya D, Dash BP, et al.
    Data Brief, 2020 Oct;32:106081.
    PMID: 32775581 DOI: 10.1016/j.dib.2020.106081
    This dataset presents morphological features, elemental composition and functional groups of different pre- and post-gamma (γ)-irradiated chitosan (10kGy & 20kGy) prepared from shrimp waste. The γ-irradiated chitosan was characterized using Fourier transfer infrared (FTIR) spectroscopy and X-ray diffraction (XRD) analyses. Thermogravimetry/differential thermal analysis (TG/DTA) were performed using Perkin Elmer Pyris Diamond DSC with a heating rate of 10 °C/minute and dynamic synthetic atmospheric air set at flow rate of 100 ml/minute. We observed γ-irradiated chitosan to have shorter polymer size, small pores and compacted structure with active alkyl and hydroxyl groups when compared to non-irradiated chitosan. Our data provides baseline understanding for structure of shrimp chitosan after 60Co exposure which means, the biopolymer becomes more stable and is considered suitable for vast food industry applications.
    Matched MeSH terms: Cobalt Radioisotopes
  5. Shahid MM, Rameshkumar P, Numan A, Shahabuddin S, Alizadeh M, Khiew PS, et al.
    Mater Sci Eng C Mater Biol Appl, 2019 Jul;100:388-395.
    PMID: 30948075 DOI: 10.1016/j.msec.2019.02.107
    Cobalt oxide nanocubes incorporated with reduced graphene oxide (rGO-Co3O4) was prepared by using simple one-step hydrothermal route. Crystallinity and structural characteristics of the nanocomposite were analyzed and confirmed using X-ray diffraction (XRD) and Raman analysis, respectively. The cubical shape of the Co3O4 nanostructures and the distribution of Co3O4 nanocubes on the surface of rGO sheets were identified through field emission scanning electron microscopy (FESEM) and energy dispersive X-ray (EDX) mapping analysis, respectively. Raman spectra depicted the presence of D and G bands for GO and rGO with different ID/IG values and thus confirmed the reduction of GO into rGO. The electrochemical study reflects that the rGO-Co3O4 nanocomposite shows good electrocatalytic activity in oxidation of depression biomarker serotonin (5-HT) in phosphate buffer (pH 7.2). The detection of 5-HT was carried out by using rGO-Co3O4 nanocomposite modified glassy carbon electrode under dynamic condition using amperometry technique with a linear range of 1-10 μM. The limit of detection and limit of quantification were calculated and found to be 1.128 and 3.760 μM, respectively with a sensitivity value of 0.133 μΑ·μM-1. The sensor showed selectivity in the presence of different interferent species such as ascorbic acid, dopamine and uric acid.
    Matched MeSH terms: Cobalt/chemistry*
  6. Zheng W, Tan MF, Old LA, Paterson IC, Jakubovics NS, Choo SW
    Sci Rep, 2017 06 07;7(1):2949.
    PMID: 28592797 DOI: 10.1038/s41598-017-02399-4
    Streptococcus gordonii and Streptococcus sanguinis are pioneer colonizers of dental plaque and important agents of bacterial infective endocarditis (IE). To gain a greater understanding of these two closely related species, we performed comparative analyses on 14 new S. gordonii and 5 S. sanguinis strains using various bioinformatics approaches. We revealed S. gordonii and S. sanguinis harbor open pan-genomes and share generally high sequence homology and number of core genes including virulence genes. However, we observed subtle differences in genomic islands and prophages between the species. Comparative pathogenomics analysis identified S. sanguinis strains have genes encoding IgA proteases, mitogenic factor deoxyribonucleases, nickel/cobalt uptake and cobalamin biosynthesis. On the contrary, genomic islands of S. gordonii strains contain additional copies of comCDE quorum-sensing system components involved in genetic competence. Two distinct polysaccharide locus architectures were identified, one of which was exclusively present in S. gordonii strains. The first evidence of genes encoding the CylA and CylB system by the α-haemolytic S. gordonii is presented. This study provides new insights into the genetic distinctions between S. gordonii and S. sanguinis, which yields understanding of tooth surfaces colonization and contributions to dental plaque formation, as well as their potential roles in the pathogenesis of IE.
    Matched MeSH terms: Cobalt
  7. Samat SB, Evans CJ, Kadni T, Dolah MT
    Br J Radiol, 2000 Aug;73(872):867-77.
    PMID: 11026863
    A cylindrical gamma-ray 60Co source of activity alpha is predicted to produce an exposure rate X at a distance d in vacuum, given by X = gamma(T)(alpha/d2), where gamma(T) is the specific gamma-ray constant. It has been documented that this formula may be used to approximate X with an accuracy of 1% from a source of length l, provided that d/l > or = 5. It is shown that the formula is accurate to 0.1% under these conditions, provided that the distance is measured from the centre of the source. When absorption in the source and scattering in the collimator are considered, the position of the origin d = 0 can shift by a distance of the order of centimetres. Absorption in air between the source and the ionization chamber adds an exponential factor to the formula. It is shown that even when these modifications are included the discrepancy in the results, although generally less than 1%, is still large compared with the measurement errors. Some suggestions are made for the origin of this discrepancy.
    Matched MeSH terms: Cobalt Radioisotopes/therapeutic use*
  8. Li MH, Da Oh W, Lin KA, Hung C, Hu C, Du Y
    Sci Total Environ, 2020 Jul 01;724:138032.
    PMID: 32408427 DOI: 10.1016/j.scitotenv.2020.138032
    Since 5-sulfosalicylic acid (SFA) has been increasingly released to the environment, SO4--based oxidation processes using Oxone have been considered as useful methods to eliminate SFA. As Co3O4 has been a promising material for OX activation, the four 3D Co3O4 catalysts with distinct morphologies, including Co3O4-C (with cubes), Co3O4-P (with plates), Co3O4-N (with needles) and Co3O4-F (with floral structures), are fabricated for activating OX to degrade SFA. In particular, Co3O4-F not only exhibits the highest surface area but also possesses the abundant Co2+ and more reactive surface, making Co3O4-F the most advantageous 3D Co3O4 catalyst for OX activation to degrade SFA. The mechanism of SFA by this 3D Co3O4/OX is also investigated and the corresponding SFA degradation pathway has been elucidated. The catalytic activities of Co3O4 catalysts can be correlated to physical and chemical properties which were associated with particular morphologies to provide insights into design of 3D Co3O4-based catalysts for OX-based technology to degrade emerging contaminants, such as SFA.
    Matched MeSH terms: Cobalt
  9. Samat SB, Evans CJ
    Radiat Prot Dosimetry, 2003;103(4):341-7.
    PMID: 12797557
    For the specific absorbed dose constant for 60Co photons, three values quoted directly in the literature and two derived indirectly from published information are reported. The three publications giving the direct values mentioned no medium of absorption, whereas the other two specify tissue. A database of the specific absorbed dose constant is generated for each of 14 media namely air, water, bone and 11 types of soft tissue. These values are consistent with the three directly quoted values plus one of the indirectly obtained values. Air is found to be unlikely as the medium for the first three; and appropriate media for these are suggested. For the other two values, the generated database suggests that one is too small to be accurate; while the other is correct for tissue (as stated in the publication). An apparent error of 10(3) is identified in one of the values directly quoted.
    Matched MeSH terms: Cobalt Radioisotopes*
  10. Adam Husein, Huwaina Abd. Ghani, Fazal Reza
    MyJurnal
    Replacing a single missing anterior tooth can be a challenge. Many factors need to be considered when choosing the appropriate treatment. Several treatment options are well established. This case report is to present the use of a cast cobalt chrome partial denture with custom made porcelain tooth to improve aesthetic. The overall shade of the artificial tooth were nicely matched with the adjacent teeth and definite enamel translucency could be achieved which would not be possible with acrylic or even with readymade porcelain tooth.
    Matched MeSH terms: Cobalt
  11. Isa IM, Mustafar S, Ahmad M, Hashim N, Ghani SA
    Talanta, 2011 Dec 15;87:230-4.
    PMID: 22099672 DOI: 10.1016/j.talanta.2011.10.002
    A new cobalt(II) ion selective electrode based on palladium(II) dichloro acetylthiophene fenchone azine(I) has been developed. The best membrane composition is found to be 10:60:10:21.1 (I)/PVC/NaTPB/DOP (w/w). The electrode exhibits a Nerstian response in the range of 1.0 × 10(-1)-1.0 × 10(-6)M with a detection limit and slope of 8.0 × 10(-7)M and 29.6 ± 0.2 mV per decade respectively. The response time is within the range of 20-25s and can be used for a period of up to 4 months. The electrode developed reveals good selectivity for cobalt(II) and could be used in pH range of 3-7. The electrode has been successfully used in the determination of cobalt(II) in water samples.
    Matched MeSH terms: Cobalt/analysis*
  12. Rizwan Z, Zakaria A, Ghazali MS
    Int J Mol Sci, 2011;12(3):1625-32.
    PMID: 21673911 DOI: 10.3390/ijms12031625
    Photopyroelectric (PPE) spectroscopy is a nondestructive tool that is used to study the optical properties of the ceramics (ZnO + 0.4MnO(2) + 0.4Co(3)O(4) + xV(2)O(5)), x = 0-1 mol%. Wavelength of incident light, modulated at 10 Hz, was in the range of 300-800 nm. PPE spectrum with reference to the doping level and sintering temperature is discussed. Optical energy band-gap (E(g)) was 2.11 eV for 0.3 mol% V(2)O(5) at a sintering temperature of 1025 °C as determined from the plot (ρhυ)(2)versushυ. With a further increase in V(2)O(5), the value of E(g) was found to be 2.59 eV. Steepness factor 'σ(A)' and 'σ(B)', which characterize the slope of exponential optical absorption, is discussed with reference to the variation of E(g). XRD, SEM and EDAX are also used for characterization of the ceramic. For this ceramic, the maximum relative density and grain size was observed to be 91.8% and 9.5 μm, respectively.
    Matched MeSH terms: Cobalt/chemistry*
  13. Kumar R, Singh L, Zularisam AW, Hai FI
    Bioresour Technol, 2016 Nov;220:537-542.
    PMID: 27614156 DOI: 10.1016/j.biortech.2016.09.003
    This study aims to investigate the potential of porous Co3O4 nanorods as the cathode catalyst for oxygen reduction reaction (ORR) in aqueous air cathode microbial fuel cells (MFCs). The porous Co3O4 nanorods were synthesized by a facile and cost-effective hydrothermal method. Three different concentrations (0.5mg/cm(2), 1mg/cm(2), and 2mg/cm(2)) of Co3O4 nanorods coated on graphite electrodes were used to test its performance in MFCs. The results showed that the addition of porous Co3O4 nanorods enhanced the electrocatalytic activity and ORR kinetics significantly and the overall resistance of the system was greatly reduced. Moreover, the MFC with a higher concentration of the catalyst achieved a maximum power density of 503±16mW/m(2), which was approximately five times higher than the bare graphite electrode. The improved catalytic activity of the cathodes could be due to the porous properties of Co3O4 nanorods that provided the higher number of active sites for oxygen.
    Matched MeSH terms: Cobalt/chemistry*
  14. Anuar K, Hamdan S
    Talanta, 1992 Dec;39(12):1653-6.
    PMID: 18965586
    A new lead(II) electrode has been constructed with poly(hydroxamic acid) (PHXA) as the active material and silicone rubber as the supporting material. The electrode gave near Nerstian response over the concentration range 4 x 10(-5)-1 x 10(-2)M lead(II). The detection limit of the electrode is approximately 4 x 10(-6)M and the electrode works well in the pH range 4.5-6.0. The response time was 50-120 sec over the whole concentration range and the electrode has a working life of at least 4 weeks. Iron(III) severely poisoned the electrode membrane. Nickel(II) and mercury(II) gave very strong interference compared to copper(II), silver(I), cobalt(II), sodium(I), potassium(I), zinc(II) and cadmium(II) which gave some or little interference. Values determined with atomic absorption (AAS) and a commercial lead(II) electrode were in good agreement with those measured with the lead(II) electrode reported here.
    Matched MeSH terms: Cobalt
  15. Rahman NA, Olutoye MA, Hameed BH
    Bioresour Technol, 2011 Oct;102(20):9749-54.
    PMID: 21855332 DOI: 10.1016/j.biortech.2011.07.023
    The potential of Mg(x)Co(2-)(x)O(2) as heterogeneous reusable catalyst in transesterification of palm oil to methyl ester was investigated. The catalyst was prepared via co-precipitation of the metal hydroxides at different Mg-Co ratios. Mg(1.7)Co(0.3)O(2) catalyst was more active than Mg(0.3)Co(1.7)O(2) in the transesterification of palm oil with methanol. The catalysts calcined at temperature 300 °C for 4 h resulted in highly active oxides and the highest transesterification of 90% was achieved at methanol/oil molar ratio of 9:1, catalyst loading of 5.00 wt.%, reaction temperature of 150 °C and reaction time of 2 h. The catalyst could easily be removed from reaction mixture, but showed 50% decrease in activity when reused due to leaching of active sites.
    Matched MeSH terms: Cobalt/chemistry*
  16. van der Ent A, Mak R, de Jonge MD, Harris HH
    Sci Rep, 2018 Jun 26;8(1):9683.
    PMID: 29946061 DOI: 10.1038/s41598-018-26891-7
    Hyperaccumulation is generally highly specific for a single element, for example nickel (Ni). The recently-discovered hyperaccumulator Glochidion cf. sericeum (Phyllanthaceae) from Malaysia is unusual in that it simultaneously accumulates nickel and cobalt (Co) with up to 1500 μg g-1 foliar of both elements. We set out to determine whether distribution and associated ligands for Ni and Co complexation differ in this species. We postulated that Co hyperaccumulation coincides with Ni hyperaccumulation operating on similar physiological pathways. However, the ostensibly lower tolerance for Co at the cellular level results in the exudation of Co on the leaf surface in the form of lesions. The formation of such lesions is akin to phytotoxicity responses described for manganese (Mn). Hence, in contrast to Ni, which is stored principally inside the foliar epidermal cells, the accumulation response to Co consists of an extracellular mechanism. The chemical speciation of Ni and Co, in terms of the coordinating ligands involved and principal oxidation state, is similar and associated with carboxylic acids (citrate for Ni and tartrate or malate for Co) and the hydrated metal ion. Some oxidation to Co3+, presumably on the surface of leaves after exudation, was observed.
    Matched MeSH terms: Cobalt/metabolism*
  17. Sri Yulis M. Amin, Norhamidi Muhamad, Khairur Rijal Jamaludin, Fayyaz A, Heng SY
    Sains Malaysiana, 2014;43:123-128.
    Feedstock preparation, as well as its characterization, is crucial in the production of highly sintered parts with minimal defect. The hard metal powder - particularly, cemented carbide (wc-co) used in this study was investigated both physically and thermally to determine its properties before the mixing and injection molding stage. Several analyses were conducted, such as scanning electron microscopy, energy dispersive X-ray diffraction, pycnometer density, critical powder volume percentage (cPvP), as well as thermal tests, such as thermogravimetric analysis and differential scanning calorimetry. On the basis of the CPVP value, the feedstock, consisting of wc-co powder, was mixed with 60% palm stearin and 40% polyethylene at an optimal powder loading, within 2 to 5% lower than the CPVP value. The CPVP spotted value was 65%. The feedstock optimal value at 61% showed good rheological properties (pseudoplastic behavior) with an n value lower than 1, considerably low activation energy and high moldability index. These preliminary properties of the feedstock serve as a benchmark in designing the schedule for the next whole steps (i.e. injection, debinding and sintering processes).
    Matched MeSH terms: Cobalt
  18. Ling W, Liew G, Li Y, Hao Y, Pan H, Wang H, et al.
    Adv Mater, 2018 Jun;30(23):e1800917.
    PMID: 29633379 DOI: 10.1002/adma.201800917
    The combination of novel materials with flexible electronic technology may yield new concepts of flexible electronic devices that effectively detect various biological chemicals to facilitate understanding of biological processes and conduct health monitoring. This paper demonstrates single- or multichannel implantable flexible sensors that are surface modified with conductive metal-organic frameworks (MOFs) such as copper-MOF and cobalt-MOF with large surface area, high porosity, and tunable catalysis capability. The sensors can monitor important nutriments such as ascorbicacid, glycine, l-tryptophan (l-Trp), and glucose with detection resolutions of 14.97, 0.71, 4.14, and 54.60 × 10-6 m, respectively. In addition, they offer sensing capability even under extreme deformation and complex surrounding environment with continuous monitoring capability for 20 d due to minimized use of biological active chemicals. Experiments using live cells and animals indicate that the MOF-modified sensors are biologically safe to cells, and can detect l-Trp in blood and interstitial fluid. This work represents the first effort in integrating MOFs with flexible sensors to achieve highly specific and sensitive implantable electrochemical detection and may inspire appearance of more flexible electronic devices with enhanced capability in sensing, energy storage, and catalysis using various properties of MOFs.
    Matched MeSH terms: Cobalt
  19. Yusof MFM, Hamid PNKA, Tajuddin AA, Hashim R, Bauk S, Isa NM, et al.
    Radiol Phys Technol, 2017 Sep;10(3):331-339.
    PMID: 28718054 DOI: 10.1007/s12194-017-0408-3
    The aim of this study was to determine the suitability of tannin-added Rhizophora spp. particleboards as phantom materials in the application of low- and high-energy photons. The tannin-added Rhizophora spp. particleboards and density plug phantoms were created with a target density of 1.0 g/cm3. The elemental composition and effective atomic number of the particleboards were measured using energy dispersive X-ray analysis. The mass attenuation coefficient of the particleboards for low-energy photons were measured using the attenuation of X-ray fluorescence. The mass attenuation coefficients of high-energy photons were measured using the attenuation of 137Cs and 60Co gamma energies. The results were compared to the calculated value of water using XCOM calculations. The results showed that the effective atomic number and mass attenuation coefficients of tannin-added Rhizophora spp. particleboards were similar to those of water, indicating the suitability of tannin-added Rhizophora spp. particleboards as phantom materials for low- and high-energy photons.
    Matched MeSH terms: Cobalt Radioisotopes*
  20. Choong YS, Lim TS, Chew AL, Aziah I, Ismail A
    J Mol Graph Model, 2011 Apr;29(6):834-42.
    PMID: 21371926 DOI: 10.1016/j.jmgm.2011.01.008
    The high typhoid incidence rate in developing and under-developed countries emphasizes the need for a rapid, affordable and accessible diagnostic test for effective therapy and disease management. TYPHIDOT®, a rapid dot enzyme immunoassay test for typhoid, was developed from the discovery of a ∼50 kDa protein specific for Salmonella enterica serovar Typhi. However, the structure of this antigen remains unknown till today. Studies on the structure of this antigen are important to elucidate its function, which will in turn increase the efficiency of the development and improvement of the typhoid detection test. This paper described the predictive structure and function of the antigenically specific protein. The homology modeling approach was employed to construct the three-dimensional structure of the antigen. The built structure possesses the features of TolC-like outer membrane protein. Molecular docking simulation was also performed to further probe the functionality of the antigen. Docking results showed that hexamminecobalt, Co(NH(3))(6)(3+), as an inhibitor of TolC protein, formed favorable hydrogen bonds with D368 and D371 of the antigen. The single point (D368A, D371A) and double point (D368A and D371A) mutations of the antigen showed a decrease (single point mutation) and loss (double point mutations) of binding affinity towards hexamminecobalt. The architecture features of the built model and the docking simulation reinforced and supported that this antigen is indeed the variant of outer membrane protein, TolC. As channel proteins are important for the virulence and survival of bacteria, therefore this ∼50 kDa channel protein is a good specific target for typhoid detection test.
    Matched MeSH terms: Cobalt/metabolism; Cobalt/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links