Displaying publications 21 - 40 of 100 in total

Abstract:
Sort:
  1. Adam SH, Giribabu N, Rao PV, Sayem AS, Arya A, Panichayupakaranant P, et al.
    Eur J Pharmacol, 2016 Jan 15;771:173-90.
    PMID: 26703866 DOI: 10.1016/j.ejphar.2015.12.028
    Effect of Rhinacanthin C on hyperglycaemia, hyperlipidemia and pancreatic dysfunction in diabetes was investigated. In-vitro effect of Rhinacanthin C on glucose uptake was studied in 3T3-L1 cell line. Meanwhile, in-vivo effect of 28-days treatment with 5mg/kg/day or 20mg/kg/day Rhinacanthin C was studied in streptozotocin-nicotinamide induced male diabetic rats. Following completion of treatment, fasting blood glucose (FBG), HbA1c, insulin and lipid profile levels were measured by biochemical assays. Histopathological changes in pancreas were observed by light microscopy while levels of pancreatic oxidative stress were determined by enzymatic assays. Expression of insulin, TNFα, Ikkβ and caspase-3 in pancreas were quantified by immunohistochemistry. Molecular docking was used to identify interactions between Rhinacathin C with SOD or GPx enzymes. Dose-dependent increase in glucose uptake was observed with increasing doses of Rhinacathin C. Plasma FBG, HbA1c and lipid profile except LDL levels and pancreatic malonaldehyde level were reduced but serum insulin and pancreatic anti-oxidative enzymes (SOD, CAT and GPx) levels were increased in diabetic rats receiving Rhinacanthin C treatment. Decreased pancreatic histopathological changes with higher pancreatic insulin and Glut-2 levels but lower TNFα, Ikkβ and caspase-3 levels were observed in diabetic rats receiving Rhinacanthin C (P<0.05 compared to non-treated diabetic rats). In diabetic rats which received Rhinacathin C, changes in the above parameters did not achieve the value in non-diabetic rats. Docking shows Rhinacathin C possesses high degree interactions with SOD and GPx. By possessing these effects, Rhinacanthin C could be used as agent to alleviate pancreatic and other complications in diabetes.
    Matched MeSH terms: Diabetes Mellitus, Experimental/drug therapy*
  2. Abas R, Othman F, Thent ZC
    Oxid Med Cell Longev, 2014;2014:429060.
    PMID: 25371774 DOI: 10.1155/2014/429060
    In diabetes mellitus, cardiac fibrosis is characterized by increase in the deposition of collagen fibers. The present study aimed to observe the effect of Momordica charantia (MC) fruit extract on hyperglycaemia-induced cardiac fibrosis. Diabetes was induced in the male Sprague-Dawley rats with a single intravenous injection of streptozotocin (STZ). Following 4 weeks of STZ induction, the rats were subdivided (n = 6) into control group (Ctrl), control group treated with MC (Ctrl-MC), diabetic untreated group (DM-Ctrl), diabetic group treated with MC (DM-MC), and diabetic group treated with 150 mg/kg of metformin (DM-Met). Administration of MC fruit extract (1.5 g/kg body weight) in diabetic rats for 28 days showed significant increase in the body weight and decrease in the fasting blood glucose level. Significant increase in cardiac tissues superoxide dismutase (SOD), glutathione contents (GSH), and catalase (CAT) was observed following MC treatment. Hydroxyproline content was significantly reduced and associated morphological damages reverted to normal. The decreased expression of type III and type IV collagens was observed under immunohistochemical staining. It is concluded that MC fruit extract possesses antihyperglycemic, antioxidative, and cardioprotective properties which may be beneficial in the treatment of diabetic cardiac fibrosis.
    Matched MeSH terms: Diabetes Mellitus, Experimental/drug therapy
  3. Das S, Roy P, Pal R, Auddy RG, Chakraborti AS, Mukherjee A
    PLoS One, 2014;9(7):e101818.
    PMID: 24991800 DOI: 10.1371/journal.pone.0101818
    Silybin, is one imminent therapeutic for drug induced hepatotoxicity, human prostate adenocarcinoma and other degenerative organ diseases. Recent evidences suggest that silybin influences gluconeogenesis pathways favorably and is beneficial in the treatment of type 1 and type 2 diabetes. The compound however is constrained due to solubility (0.4 mg/mL) and bioavailabilty limitations. Appropriate nanoparticle design for silybin in biocompatible polymers was thus proposed as a probable solution for therapeutic inadequacy. New surface engineered biopolymeric nanoparticles with high silybin encapsulation efficiency of 92.11% and zeta potential of +21 mV were designed. Both the pure compound and the nanoparticles were evaluated in vivo for the first time in experimental diabetic conditions. Animal health recovered substantially and the blood glucose levels came down to near normal values after 28 days treatment schedule with the engineered nanoparticles. Restoration from hyperglycemic damage condition was traced to serum insulin regeneration. Serum insulin recovered from the streptozotocin induced pancreatic damage levels of 0.17 ± 0.01 µg/lit to 0.57 ± 0.11 µg/lit after nanoparticle treatment. Significant reduction in glycated hemoglobin level, and restoration of liver glycogen content were some of the other interesting observations. Engineered silybin nanoparticle assisted recovery in diabetic conditions was reasoned due to improved silybin dissolution, passive transport in nanoscale, and restoration of antioxidant status.
    Matched MeSH terms: Diabetes Mellitus, Experimental/drug therapy*
  4. Giribabu N, Kumar KE, Rekha SS, Muniandy S, Salleh N
    Int J Med Sci, 2014;11(11):1172-84.
    PMID: 25249786 DOI: 10.7150/ijms.9056
    The effect of C. borivilianum root on blood glucose, glycated hemoglobin (HbAIc), insulin and lipid profile levels in diabetes mellitus are not fully understood. This study therefore investigated the effect of C. borivilianum root on the above parameters and oxidative stress of the pancreas in diabetes.
    METHODS: C. borivilianum root aqueous extract (250 and 500 mg/kg/day) was administered to streptozotocin (STZ)-induced male diabetic rats for 28 days. Body weight, blood glucose, HbA1c, insulin, lipid profile levels and glucose homeostasis indices were determined. Histopathological changes and oxidative stress parameters i.e. lipid peroxidation (LPO) and antioxidant enzymes activity levels of the pancreas were investigated.
    RESULTS: C. borivilianum root extract treatment to diabetic rats maintained near normal body weight, blood glucose, HbA1c, lipid profile and insulin levels with higher HOMA-β cell functioning index, number of Islets/pancreas, number of β-cells/Islets however with lower HOMA-insulin resistance (IR) index as compared to non-treated diabetic rats. Negative correlations between serum insulin and blood glucose, HbA1c, triglyceride (TG) and total cholesterol (TC) levels were observed. C. borivilianum root extract administration prevented the increase in lipid peroxidation and the decrease in activity levels of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) with mild histopathological changes in the pancreas of diabetic rats.
    CONCLUSIONS: C. borivilianum root maintains near normal levels of these metabolites and prevented oxidative stress-induced damage to the pancreas in diabetes.
    KEYWORDS: Chlorophytum borivilianum; diabetes; glucose; lipid profile; oxidative stress.; pancreas
    Matched MeSH terms: Diabetes Mellitus, Experimental/drug therapy*
  5. Algariri K, Meng KY, Atangwho IJ, Asmawi MZ, Sadikun A, Murugaiyah V, et al.
    Asian Pac J Trop Biomed, 2013 May;3(5):358-66.
    PMID: 23646298 DOI: 10.1016/S2221-1691(13)60077-5
    To study the antidiabetic activity of Gynura procumbens (G. procumbens) used in the traditional management of diabetes in Southern Asia.
    Matched MeSH terms: Diabetes Mellitus, Experimental/drug therapy
  6. Choo CY, Sulong NY, Man F, Wong TW
    J Ethnopharmacol, 2012 Aug 1;142(3):776-81.
    PMID: 22683902 DOI: 10.1016/j.jep.2012.05.062
    The leaves of Ficus deltoidea are used as a traditional medicine by diabetes patients in Malaysia.
    Matched MeSH terms: Diabetes Mellitus, Experimental/drug therapy*
  7. Wong TW, Sumiran N, Mokhtar MT, Kadir A
    Pharm Biol, 2012 Nov;50(11):1463-6.
    PMID: 22889006 DOI: 10.3109/13880209.2012.679985
    In oral insulin delivery, blood glucose profiles of a subject can be a function of complicated transfer of water and insulin between gastrointestinal and blood compartments.
    Matched MeSH terms: Diabetes Mellitus, Experimental/drug therapy*
  8. NoorShahida A, Wong TW, Choo CY
    J Ethnopharmacol, 2009 Jul 30;124(3):586-91.
    PMID: 19439174 DOI: 10.1016/j.jep.2009.04.058
    The seeds of Brucea javanica (L.) Merr (Simaroubaceae) are recommended by traditional practitioners for the treatment of diabetes mellitus.
    Matched MeSH terms: Diabetes Mellitus, Experimental/drug therapy
  9. Fadzelly AB, Asmah R, Fauziah O
    Plant Foods Hum Nutr, 2006 Mar;61(1):7-12.
    PMID: 16688478
    Strobilanthes crispus (Acanthaceae) has been used traditionally as antidiabetic, diuretic, antilytic, and laxative and has been proven scientifically to possess high antioxidant activity, anti-AIDS, and anticancer properties. It is commonly consumed in the form of herbal tea. The ethnopharmacological value of this plant, such as the development of nutraceutical S. crispus herbal tea (fermented and unfermented) and assessment of their antihyperglycemic properties were investigated. The antidiabetic properties of S. crispus fermented and unfermented tea was carried out in normal and streptozotocin-induced hyperglycaemic rats for 21 days. Glucose and lipid profile (total cholesterol, triglyceride, HDL-cholesterol, LDL-cholesterol) were determined at day 0 (baseline), day 7, and day 21. The results showed that the hot water extract of both fermented and unfermented S. crispus tea reduced blood glucose in hyperglycaemic rats. S. crispus unfermented tea also reduced glucose level in normal rat. Both fermented and unfermented S. crispus tea also showed to improve lipid profile. Antioxidant and polyphenol content that present in the extracts might contribute to the antihyperglycemic and antilipidemic properties. Further study is needed to be carried out in pre-clinical and clinical environment to prove its efficacy in human.
    Matched MeSH terms: Diabetes Mellitus, Experimental/drug therapy*
  10. Azahar MA, Al-Naqeb G, Hasan M, Adam A
    Asian Pac J Trop Med, 2012 Nov;5(11):875-81.
    PMID: 23146801 DOI: 10.1016/S1995-7645(12)60163-1
    OBJECTIVE: To investigate the hypoglycemic effect of the aqueous extract of Octomeles sumatrana (O. sumatrana) (OS) in streptozotocin-induced diabetic rats (STZ) and its molecular mechanisms.

    METHODS: Diabetes was induced by intraperitoneal (i.p.) injection of streptozotocin (55 mg/kg) in to male Sprague-Dawley rats. Rats were divided into six different groups; normal control rats were not induced with STZ and served as reference, STZ diabetic control rats were given normal saline. Three groups were treated with OS aqueous extract at 0.2, 0.3 and 0.5 g/kg, orally twice daily continuously for 21 d. The fifth group was treated with glibenclamide (6 mg/kg) in aqueous solution orally continuously for 21 d. After completion of the treatment period, biochemical parameters and expression levels of glucose transporter 2 (Slc2a2), glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PCK1) were determined in liver by quantitative real time PCR.

    RESULTS: Administration of OS at different doses to STZ induced diabetic rats, resulted in significant decrease (P<0.05) in blood glucose level in a dose dependent manner by 36%, 48%, and 64% at doses of 0.2, 0.3 and 0.5 g/kg, respectively, in comparison to the STZ control values. Treatment with OS elicited an increase in the expression level of Slc2a2 gene but reduced the expression of G6Pase and PCK1 genes. Morefore, OS treated rats, showed significantly lower levels of serum alanine transaminase (ALT), aspartate aminotransferase (AST) and urea levels compared to STZ untreated rats. The extract at different doses elicited signs of recovery in body weight gain when compared to STZ diabetic controls although food and water consumption were significantly lower in treated groups compared to STZ diabetic control group.

    CONCLUSIONS: O. sumatrana aqueous extract is beneficial for improvement of hyperglycemia by increasing gene expression of liver Slc2a2 and reducing expression of G6Pase and PCK1 genes in streptozotocin-induced diabetic rats.

    Matched MeSH terms: Diabetes Mellitus, Experimental/drug therapy*
  11. Kuate D, Kengne AP, Biapa CP, Azantsa BG, Abdul Manan Bin Wan Muda W
    Lipids Health Dis, 2015;14:50.
    PMID: 26003803 DOI: 10.1186/s12944-015-0051-0
    Background: Tetrapleura tetraptera, a seasoning and nutritive spice is also used in western African folk medicine in the management of wide variety of diseases including diabetes, inflammation and hypertension. Flavonoids and saponins are some abundant secondary metabolic constituents in the fruits of this plant. This study aimed at evaluating the potential therapeutic action of the polyphenol-rich hydroethanolic extract (HET) of this fruit in experimentally induced obese and type 2 diabetic rats (T2DM) with characteristic metabolic syndrome (MetS).

    Methods: MetS was induced in rats by high-carbohydrate, high-fat diet and administration of low-dose streptozotocin. Then different oral doses of HET (200 and 400 mg/kg) were administered to T2DM rats for 28 days. A standard antidiabetic drug, metformin (300 mg/kg), was used for comparison. The body weight, systolic blood pressure, oxidative stress and metabolic parameters were then assessed to evaluate the effect of HET on MetS.

    Results: HET reduced weight gain, fasting blood glucose and plasma insulin levels as well as homeostasis model assessment of insulin resistance (HOMA-IR) and alleviated obesity and T2DM associated oxidative stress and hypertension in rats. Moreover, a significantly hypolipidemic property and an attenuation of liver injury and tissue steatosis was observed after HET administration. HET further demonstrated its anti-inflammation effect via down regulation of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), C-reactive protein (CRP), leptin and an increase in adiponectin. The HET exhibited dose-dependent effects which were comparable to that of metformin.

    Conclusions: The present study thereby demonstrates the anti-insulin resistance, antilipidemic, anti-obesity, hypotensive and anti-inflammatory properties of HET; hence it has the potential to be further developed for the management of MetS such as obesity, T2DM and hypertension.
    Matched MeSH terms: Diabetes Mellitus, Experimental/drug therapy*
  12. Panda BP, Krishnamoorthy R, Bhattamisra SK, Shivashekaregowda NKH, Seng LB, Patnaik S
    Sci Rep, 2019 11 22;9(1):17331.
    PMID: 31758056 DOI: 10.1038/s41598-019-53996-4
    Drug delivery and therapeutic challenges of gliclazide, a BCS class II drug used in type 2 diabetes mellitus (T2DM) can be overcome by exploring smarter carriers of second-generation nanocrystals (SGNCs). A combined method of emulsion diffusion, high-pressure homogenization and solvent evaporation method were employed in the preparation of gliclazide loaded poly (D, L-lactide-co-glycolide) (PLGA) SGNCs. Taguchi experimental design was adopted in fabrication of Gliclazide SGNc using Gliclazide -PLGA ratio at 1:0.5, 1:0.75, 1:1 with stabilizer (Poloxamer-188, PEG 4000, HPMC E15 at 0.5, 0.75, 1% w/v). The formulated gliclazide of SGNCs were investigated for physicochemical properties, in vitro drug release, and in vivo performance studies using type-2 diabetes rat model. The formulation (SGNCF1) with Drug: PLGA 1: 0.5 ratio with 0.5% w/v Poloxamer-188 produced optimized gliclazide SGNCs. SGNCF1 showed spherical shape, small particle size (106.3 ± 2.69 nm), good zeta potential (-18.2 ± 1.30 mV), small PDI (0.222 ± 0.104) and high entrapment efficiency (86.27 ± 0.222%). The solubility, dissolution rate and bioavailability of gliclazide SGNCs were significantly improved compared to pure gliclazide. The findings emphasize gliclazide SGNCs produce faster release initially, followed by delayed release with improved bioavailability, facilitate efficient delivery of gliclazide in T2DM with better therapeutic effect.
    Matched MeSH terms: Diabetes Mellitus, Experimental/drug therapy*
  13. Tan ST, Ismail A, Hamid M, Chong PP, Sun J
    J Food Biochem, 2019 05;43(5):e12843.
    PMID: 31353513 DOI: 10.1111/jfbc.12843
    Unhealthy eating habits and lack of physical activities are among the contributing factors for obesity and diabetes. It has been reported that consumption of naturally occurring phenolics could exert beneficial effects toward these diseases. Therefore, this study aims to evaluate the ability of phenolic-rich soy husk powder extract (SHPE) in modifying the physical and biochemical parameters for obesity and diabetes. Forty-nine Sprague Dawley rats were divided into seven groups, including three supplementary/treatment groups. Rats in supplementary/treatment groups were provided with either 4 mg/kg BW Rosiglitazone Maleate, 250 mg SHPE/kg BW, or 500 mg SHPE/kg BW. The effectiveness of SHPE in alleviating obesity-diabetes was evaluated by measuring body weight (physical parameter), blood glucose metabolisms (biochemical parameters), and PPARγ expression. Findings in the present study revealed that short-term SHPE and Rosiglitazone Maleate administration improved the physical and biochemical parameters of obese-diabetic rats. In addition, SHPE was also demonstrated to upregulate PPARγ expression in adipocytes. These findings suggest that soy husk could emerge as a potential hypoglycemic and anti-adipogenic nutraceutical in future. PRACTICAL APPLICATIONS: This was the first study to evaluate the potential effects of soy husk against the parameters of obese-diabetes in rats. In addition, promising effects derived from this study might explore the possibility of soy husk to be utilized as an antidiabetes nutraceutical.
    Matched MeSH terms: Diabetes Mellitus, Experimental/drug therapy*
  14. Eleazu C, Ekeleme CE, Famurewa A, Mohamed M, Akunna G, David E, et al.
    PMID: 30659555 DOI: 10.2174/1871530319666190119101058
    BACKGROUND: Research studies that holistically investigated the effect of administration of Virgin Coconut Oil (VCO) on diabetic humans or animals are limited in literature.

    OBJECTIVE: To investigate the effect of administration of VCO on lipid profile, markers of hepatic and renal dysfunction, and hepatic and renal antioxidant activities of alloxan induced diabetic rats.

    METHODS: Twenty-four male albino rats were used, and they were divided into four groups of six rats each. Group 1 (Normal Control, NC) received distilled water (1 mL/kg); Group 2 (VCO Control) received VCO (5 mL/kg); Group 3 (Diabetic Control, DC) received distilled water (1 mL/kg); Group 4 (Test Group, TG) received 5 ml/kg of VCO.

    RESULTS: There were no significant differences in blood glucose, body weights, relative liver weights, relative kidney weights, hepatic and renal Superoxide Dismutase (SOD) activities, Malondialdehyde (MDA), albumin, aspartate Amino Transaminase (AST), alanine Amino Transaminase (ALT), Alkaline Phosphatase (ALP), urea, creatinine, uric acid, total cholesterol, triacylglycerol, Very Low Density Lipoprotein cholesterol (VLDL) and Low Density Lipoprotein cholesterol (LDL) concentrations; significant increases in renal Glutathione (GSH), hepatic catalase, Glutathione Peroxidase (GPx) and GSH but significant reduction in renal GPx and catalase activities of VCO control group compared with NC group. There were significant increases in blood glucose, relative liver and kidney weights, hepatic GPx, hepatic and renal MDA concentration, ALP, AST, ALT, urea, creatinine, uric acid, triacylglycerol, total cholesterol, LDL and VLDL concentrations; and significant decreases in body weight, hepatic SOD and GSH activities and albumin concentration but no significant difference in hepatic catalase activity of DC group compared with NC group. Administration of VCO to diabetic rats positively modulated these parameters compared with the diabetic control.

    CONCLUSION: The study showed the potentials of VCO in the management of hyperlipidemia, renal and hepatic dysfunctions imposed by hyperglycemia and by oxidative stress in diabetic rats.

    Matched MeSH terms: Diabetes Mellitus, Experimental/drug therapy*
  15. Najafi R, Hosseini A, Ghaznavi H, Mehrzadi S, Sharifi AM
    Brain Res Bull, 2017 May;131:117-122.
    PMID: 28373151 DOI: 10.1016/j.brainresbull.2017.03.013
    OBJECTIVE: Neuropathies are a nerve disorders that caused by diabetes. Neuropathy affects over 50% of diabetic patients. High blood glucose and their toxic byproducts are the main causes for nerve dysfunction. In the present study, we examined the neroprotective effects of cerium oxide (CeO2) nanoparticles in diabetic rats.

    METHOD: Rats divided into four groups: control group, diabetic group, the diabetic group treated with CeO2nanoparticle at a dose of 65mg/kg and diabetic group received CeO2nanoparticle at a dose of 85mg/kg. Diabetes was induced by single intraperitoneal injection of 65mg/kg streptozotocin (STZ). 8 weeks after the induction of diabetes, body weight and pain sensitivity in all groups were measured. The blood sample was collected for biochemical analysis. The dorsal root ganglion (DRG) neurons were isolated for histopathological stain and morphometric parameters studies.

    RESULTS: Reduction of body weight, total thiol molecules (TTM), total antioxidant power (TAP) and ADP/ATP ratio in diabetic rat was reversed by CeO2nanoparticles administration. We showed that lipid peroxidation (LPO) and nociception latency were significantly increased in STZ-treated rats and decreased after CeO2nanoparticles administration. DRG neurons showed obvious vacuole and various changes in diameter, area and the count of A and B cells in STZ-diabetic rat. CeO2nanoparticles improved the histopathology and morphological abnormalities of DRG neurons.

    CONCLUSION: Our study concluded the CeO2nanoparticles have a protective effect against the development of DN.

    Matched MeSH terms: Diabetes Mellitus, Experimental/drug therapy
  16. Lee WC, Mokhtar SS, Munisamy S, Yahaya S, Rasool AHG
    Cell Mol Biol (Noisy-le-grand), 2018 May 30;64(7):60-69.
    PMID: 29974854
    Diabetes mellitus is an epidemic that is gaining global concern. Chronic hyperglycemia in diabetes induces the excess production of free radicals. The deleterious effects of excess free radicals are encountered by endogenous antioxidant defense system. Imbalance between free radicals production and antioxidants defense mechanisms leads to a condition known as "oxidative stress". Diabetes mellitus is associated with augmented oxidative stress that induced micro- and macrovascular complications, which presents a significant risk for cardiovascular events. Low vitamin D levels in the body have also been reported to be associated with the pathogenesis of diabetes and enhanced oxidative stress. The article is to review available literature and summarize the relationship between oxidative stress and vitamin D levels in diabetes. We also review the effects of vitamin D analogs supplementation in improving oxidative stress in diabetics.
    Matched MeSH terms: Diabetes Mellitus, Experimental/drug therapy
  17. Noor H, Hammonds P, Sutton R, Ashcroft SJ
    Diabetologia, 1989 Jun;32(6):354-9.
    PMID: 2668082
    In Malaysia, Tinospora crispa extract is taken orally by Type 2 (non-insulin-dependent) diabetic patients to treat hyperglycaemia. We have evaluated the claimed hypoglycaemic property by adding aqueous extract to the drinking water of normal and alloxan-diabetic rats. After one week, fasting blood glucose levels were significantly (p less than 0.01) lower and serum insulin levels were significantly (p less than 0.01) higher in treated diabetic animals (10.4 +/- 1.0 mmol/l and 12.8 +/- 1.1 muU/ml respectively) compared to untreated diabetic controls (17.4 +/- 1.7 mmol/l and 8.0 +/- 0.7 muU/ml respectively). The insulinotropic action of T. crispa was further investigated in vitro using isolated human or rat islets of Langerhans and HIT-T15 cells. In static incubations with rat islets and HIT-T15 B cells, the extract induced a dosage dependent stimulation and potentiation of basal and glucose-stimulated insulin secretion respectively. This insulinotropic effect was also evident in perifused human and rat islets and HIT-T5 B-cells. The observations that (i) in all three models insulin secretory rates rapidly returned to basal levels on removal of the extract and (ii) in rat islets, a second challenge with T. crispa induced an additional, stimulated response, are all consistent with physiological release of insulin by B cells. Moreover, the rate of HIT-T15 glucose utilisation was not affected by incubation with T. crispa, suggesting that the cells were viable throughout. These are the first studies to provide biochemical evidence which substantiates the traditional claims for an oral hypoglycaemic effect of Tinospora crispa, and which also show that the hypoglycaemic effect is associated with increased insulin secretion.
    Matched MeSH terms: Diabetes Mellitus, Experimental/drug therapy*
  18. Hafizur RM, Hameed A, Shukrana M, Raza SA, Chishti S, Kabir N, et al.
    Phytomedicine, 2015 Feb 15;22(2):297-300.
    PMID: 25765836 DOI: 10.1016/j.phymed.2015.01.003
    Although the anti-diabetic activity of cinnamic acid, a pure compound from cinnamon, has been reported but its mechanism(s) is not yet clear. The present study was designed to explore the possible mechanism(s) of anti-diabetic activity of cinnamic acid in in vitro and in vivo non-obese type 2 diabetic rats. Non-obese type 2 diabetes was developed by injecting 90 mg/kg streptozotocin in 2-day-old Wistar pups. Cinnamic acid and cinnamaldehyde were administered orally to diabetic rats for assessing acute blood glucose lowering effect and improvement of glucose tolerance. Additionally, insulin secretory activity of cinnamic acid and cinnamaldehyde was evaluated in isolated mice islets. Cinnamic acid, but not cinnamaldehyde, decreased blood glucose levels in diabetic rats in a time- and dose-dependent manner. Oral administration of cinnamic acid with 5 and 10 mg/kg doses to diabetic rats improved glucose tolerance in a dose-dependent manner. The improvement by 10 mg/kg cinnamic acid was comparable to that of standard drug glibenclamide (5 mg/kg). Further in vitro studies showed that cinnamaldehyde has little or no effect on glucose-stimulated insulin secretion; however, cinnamic acid significantly enhanced glucose-stimulated insulin secretion in isolated islets. In conclusion, it can be said that cinnamic acid exerts anti-diabetic activity by improving glucose tolerance in vivo and stimulating insulin secretion in vitro.
    Matched MeSH terms: Diabetes Mellitus, Experimental/drug therapy*
  19. Hamzah N, Safuan S, Wan Ishak WR
    Molecules, 2021 Jun 16;26(12).
    PMID: 34208534 DOI: 10.3390/molecules26123665
    Endothelial cell dysfunction is considered to be one of the major causes of vascular complications in diabetes. Polyphenols are known as potent antioxidants that can contribute to the prevention of diabetes. Corn silk has been reported to contain polyphenols and has been used in folk medicine in China for the treatment of diabetes. The present study aims to investigate the potential protective role of the phenolic-rich fraction of corn silk (PRF) against injuries to vascular endothelial cells under high glucose conditions in vitro and in vivo. The protective effect of PRF from high glucose toxicity was investigated using human umbilical vein endothelial cells (HUVECs). The protective effect of PRF was subsequently evaluated by using in vivo methods in streptozotocin (STZ)-induced diabetic rats. Results showed that the PRF significantly reduced the cytotoxicity of glucose by restoring cell viability in a dose-dependent manner. PRF was also able to prevent the histological changes in the aorta of STZ-induced diabetic rats. Results suggested that PRF might have a beneficial effect on diabetic patients and may help to prevent the development and progression of diabetic complications such as diabetic nephropathy and atherosclerosis.
    Matched MeSH terms: Diabetes Mellitus, Experimental/drug therapy
  20. Samsulrizal N, Goh YM, Ahmad H, Md Dom S, Azmi NS, NoorMohamad Zin NS, et al.
    Pharm Biol, 2021 Dec;59(1):66-73.
    PMID: 33399485 DOI: 10.1080/13880209.2020.1865411
    CONTEXT: Diabetes mellitus increases the risk of bone diseases including osteoporosis and osteoarthritis. We have previously demonstrated that Ficus deltoidea Jack (Moraceae) is capable of reducing hyperglycaemia. However, whether F. deltoidea could protect against diabetic osteoporosis remains to be determined.

    OBJECTIVE: The study examines the effect of F. deltoidea on bone histomorphometric parameters, oxidative stress, and turnover markers in diabetic rats.

    MATERIALS AND METHODS: Streptozotocin (STZ)-induced diabetic Sprague-Dawley rats (n = 6 animals per group) received one of the following treatments via gavage for 8 weeks: saline (diabetic control), metformin (1000 mg/kg bwt), and methanol leaves extract of F. deltoidea (1000 mg/kg bwt). A group of healthy rats served as normal control. The femoral bones were excised and scanned ex vivo using micro-computed tomography (micro-CT) for histomorphometric analysis. The serum levels of insulin, oxidative stress, and bone turnover markers were determined by ELISA assays.

    RESULTS: Treatment of diabetic rats with F. deltoidea could significantly increase bone mineral density (BMD) (from 526.98 ± 11.87 to 637.74 ± 3.90). Higher levels of insulin (2.41 ± 0.08 vs. 1.58 ± 0.16), osteocalcin (155.66 ± 4.11 vs. 14.35 ± 0.97), and total bone n-3 PUFA (2.34 ± 0.47 vs. 1.44 ± 0.18) in parallel with the presence of chondrocyte hypertrophy were also observed following F. deltoidea treatment compared to diabetic control.

    CONCLUSIONS: F. deltoidea could prevent diabetic osteoporosis by enhancing osteogenesis and inhibiting bone oxidative stress. These findings support the potential use of F. deltoidea for osteoporosis therapy in diabetes.

    Matched MeSH terms: Diabetes Mellitus, Experimental/drug therapy*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links