In this study, activated carbon (AC) was prepared from agro-waste betel nut husks (BNH) through the chemical activation method. Different characterization techniques described the physicochemical nature of betel nut husks activated carbon (BNH-AC) through Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), and pH point of zero charge. Later, the produced AC was used for methylene blue (MB) adsorption via numerous batch experimental parameters: initial concentrations of MB dye (25-250 mg/L), contact time (0.5-24 hours) and initial pH (2-12). Dye adsorption isotherms were also assessed at three temperatures where the maximum adsorption capacity (381.6 mg/g) was found at 30 °C. The adsorption equilibrium data were best suited to the non-linear form of the Freundlich isotherm model. Additionally, non-linear pseudo-second-order kinetic model was better fitted with the experimental value as well. Steady motion of solute particles from the boundary layer to the BNH-AC's surface was the possible reaction dynamics concerning MB adsorption. Thermodynamic study revealed that the adsorption process was spontaneous and exothermic in nature. Saline water emerged as an efficient eluent for the desorption of adsorbed dye on AC. Therefore, the BNH-AC is a very promising and cost-effective adsorbent for MB dye treatment and has high adsorption capacity.
Non-isocyanate polyurethane (NIPU) was prepared from Jatropha curcas oil (JCO) and its alkyd resin via curing with different diamines. The isocyanate-free approach is a green chemistry route, wherein carbon dioxide conversion plays a major role in NIPU preparation. Catalytic carbon dioxide fixation can be achieved through carbonation of epoxidized derivatives of JCO. In this study, 1,3-diaminopropane (DM) and isophorone diamine (IPDA) were used as curing agents separately. Cyclic carbonate conversion was catalyzed by tetrabutylammonium bromide. After epoxy conversion, carbonated JCO (CJCO) and carbonated alkyd resin (CC-AR) with carbonate contents of 24.9 and 20.2 wt %, respectively, were obtained. The molecular weight of CJCO and CC-AR were determined by gel permeation chromatography. JCO carbonates were cured with different amine contents. CJCO was blended with different weight ratios of CC-AR to improve its characteristics. The cured NIPU film was characterized by spectroscopic techniques, differential scanning calorimetry, and a universal testing machine. Field emission scanning electron microscopy was used to analyze the morphology of the NIPU film before and after solvent treatment. The solvent effects on the NIPU film interfacial surface were investigated with water, 30% ethanol, methyl ethyl ketone, 10% HCl, 10% NaCl, and 5% NaOH. NIPU based on CCJO and CC-AR (ratio of 1:3) with IPDA crosslink exhibits high glass transition temperature (44 °C), better solvent and chemical resistance, and Young's modulus (680 MPa) compared with the blend crosslinked with DM. Thus, this study showed that the presence of CC-AR in CJCO-based NIPU can improve the thermomechanical and chemical resistance performance of the NIPU film via a green technology approach.
This study was conducted to evaluate the potential of pineapple peel (PP) and pineapple crown leaves (PCL) as the substrate for vanillic acid and vanillin production. About 202 ± 18 mg L-1 and 120 ± 11 mg L-1 of ferulic acid was produced from the PP and PCL respectively. By applied response surface methodology, the ferulic acid yield was increased to 1055 ± 160 mg L-1 by treating 19.3% of PP for 76 min, and 328 ± 23 mg L-1 by treating 9.9% of PCL for 36 min in aqueous sodium hydroxide solution at 120 °C. The results revealed that PP extract was better than PCL extract for vanillic acid and vanillin production. Furthermore, the experiment also proved that large volume feeding was more efficient than small volume feeding for high vanillic acid and vanillin yield. Through large volume feeding, about 7 ± 2 mg L-1 of vanillic acid and 5 ± 1 mg L-1 of vanillin was successfully produced from PP extract via Aspergillus niger fermentation.
Soda lime silica (SLS) waste as the source of silica (SiO2) and ark clamshell (ACS) as the foaming agent has been utilized to fabricate the low-cost and lightweight foam glass-ceramics. A series of 1 and 6 wt% foam glass-ceramics were successfully prepared by the conventional solid-state sintering method at various sintering temperatures for 60 min. The bulk density of the samples has achieved minimum density (1.014 g/cm3) with maximum expansion (62.31%) at 6 wt% of the ACS content sintered at 800 °C for 60 min. The bulk density increases while the linear shrinkage and total porosity decrease with the progression of ACS contents and sintering temperature, where the results correspond with the FESEM micrograph. The result of XRD and FTIR transmittance spectra have shown that the formation of wollastonite crystal has occurred starting at 6 wt% of the ACS content sintered at 800 °C for 30 min. The highest mechanical performance (3.90 MPa) with an average total porosity (8.04%) is observed for the sample containing 1 wt% of ACS. It can be concluded that the composition of foam glass-ceramics (1 and 6 wt%) and sintering temperatures give significant results to the structural, physical, and mechanical properties of the fabricated foam glass-ceramics.
Radio frequency (RF) magnetron sputtering was used to deposit tungsten disulfide (WS2) thin films on top of soda lime glass substrates. The deposition power of RF magnetron sputtering varied at 50, 100, 150, 200, and 250 W to investigate the impact on film characteristics and determine the optimized conditions for suitable application in thin-film solar cells. Morphological, structural, and opto-electronic properties of as-grown films were investigated and analyzed for different deposition powers. All the WS2 films exhibited granular morphology and consisted of a rhombohedral phase with a strong preferential orientation toward the (101) crystal plane. Polycrystalline ultra-thin WS2 films with bandgap of 2.2 eV, carrier concentration of 1.01 × 1019 cm-3, and resistivity of 0.135 Ω-cm were successfully achieved at RF deposition power of 200 W. The optimized WS2 thin film was successfully incorporated as a window layer for the first time in CdTe/WS2 solar cell. Initial investigations revealed that the newly incorporated WS2 window layer in CdTe solar cell demonstrated photovoltaic conversion efficiency of 1.2% with Voc of 379 mV, Jsc of 11.5 mA/cm2, and FF of 27.1%. This study paves the way for WS2 thin film as a potential window layer to be used in thin-film solar cells.
Demand for diesel continues to increase due to rapid population growth, which could contribute to fossil fuel exhaustion. Biodiesel has been widely developed as a replacement for conventional diesel to resolve the issue. Biodiesel production from waste cooking oil (WCO) was carried out via the transesterification process using two types of bentonite catalysts, which are raw bentonite and NaOH/bentonite. By using the impregnation method, the NaOH/bentonite catalyst was synthesized at 60°C for 12 hours. The transesterification was conducted with 0.5wt% of catalyst, at 15:1 (methanol- to-oil), for 2 hours at different reaction temperatures. The characterization of both raw bentonite and NaOH/bentonite was done using X-ray Diffraction (XRD) and Brunauer, Emmett, Teller (BET) surface characterization. A high yield of FAMEs (72%) was found to be obtained in continuous stirring at 55ºC for 2 hours and 15:1 methanol/oil molar ratio with 0.5wt.% (0.15g) of NaOH/bentonite catalyst.
This paper reports an alternative method for making glass-ceramic from disposal waste water
sludge and soda lime silica (SLS) glass. The glass ceramic samples were prepared from a mixture
of wastewater sludge and SLS glasses, melted at 1375°C for 3 hours and quenched by pouring into
water to obtain a coarse frit. The frit glass was then crushed and sieved to 106μm before it was
pressed to a pellet. The sintering process was performed at various temperatures between 700-
1000°C for 2 hours and morphologically characterized with XRD, SEM, and EDX. Overall results
showed the crystalline phase of diopside sodian-critobalite glass-ceramic is depending on thermal
treatment process and making them attractive to industrial uses such as in construction, tiling, and
glass-ceramic applications.
Agriculture residues are a promising feedstock for value-added products from lignocellulosic waste. However, pretreatment of lignocellulosic materials is essential to facilitate enzymatic
hydrolysis and improve sugar yield. The objective of this study is to evaluate the effect of acid or alkali during microwave-assisted pretreatment of dragon fruit foliage (DFF) that
would make hydrolysis process more efficient. In the present study, distilled water and three chemicals were examined for their effects on releasing monomeric sugar during microwave
treatment. Microwave-assisted pretreatment namely microwave-distilled water (M-H2O) (control); microwave-sulfuric acid (M-H2SO4); microwave-sodium hydroxide (M-NaOH); and
microwave-sodium bicarbonate (M-NaHCO3) pretreatment were performed using 5% (w/v) of DFF as substrate at 800 watt microwave power for 5 minutes exposure time. Highest yield
of monomeric sugar was found at 15.56 mg/g using M-NaOH pretreatment at 0.1N NaOH. For M-H2SO4 pretreatment, 0.1N H2SO4 produced 8.2 mg/g of monomeric sugar. Application
of M-NaHCO3 pretreatment using 0.05N NaHCO3 solution released 6.45 mg/g of monomeric sugar. While, soaking DFF in distilled water and subjecting to microwave irradiation released
6.6 mg/g of monomeric sugar. Treatments with the lowest concentration (0.01 N) of the three chemicals released only small quantities of total monomeric sugars and less than that with distilled water. The changes in the physical structure of DFF prior to and after the microwaveassisted pretreatment are also reported.
Glass-ceramics are a group of materials that takes advantage of the various glass-forming methods before they are subsequently heat-treated in a controlled manner to effect nucleation and crystallization to produce crystalline materials. The production of glassceramic materials is to overcome the low mechanical strength in pure glassy materials. In this work, a study on the crystallisation of a soda-lime-silica glass was undertaken to ascertain how the processing parameters affect the crystallization of such glasses, viz. either via a single or two-step heat-treatment procedure, as well as the effect of soaking duration at the heat-treatment temperature. A soda-lime-silica glass system was chosen because the raw materials for producing such glasses are readily available and can be considered to be the cheapest. The glass produced was examined by thermal analysis to determine the nucleation and crystallization temperatures before they were heat-treated using a single-step and a two-stage heat-treatment procedures. The resultant glassceramics produced were characterized using x-ray diffraction as well as by scanning electron microscopy. The results thus obtained showed that a two-stage heat-treatment procedure is more successful in producing a well-crystallized glass-ceramic product.
A geopolymer has been reckoned as a rising technology with huge potential for application across the globe. Dolomite refers to a material that can be used raw in producing geopolymers. Nevertheless, dolomite has slow strength development due to its low reactivity as a geopolymer. In this study, dolomite/fly ash (DFA) geopolymer composites were produced with dolomite, fly ash, sodium hydroxide, and liquid sodium silicate. A compression test was carried out on DFA geopolymers to determine the strength of the composite, while a synchrotron Micro-Xray Fluorescence (Micro-XRF) test was performed to assess the elemental distribution in the geopolymer composite. The temperature applied in this study generated promising properties of DFA geopolymers, especially in strength, which displayed increments up to 74.48 MPa as the optimum value. Heat seemed to enhance the strength development of DFA geopolymer composites. The elemental distribution analysis revealed exceptional outcomes for the composites, particularly exposure up to 400 °C, which signified the homogeneity of the DFA composites. Temperatures exceeding 400 °C accelerated the strength development, thus increasing the strength of the DFA composites. This appears to be unique because the strength of ordinary Portland Cement (OPC) and other geopolymers composed of other raw materials is typically either maintained or decreases due to increased heat.
The objective of this research is to optimize the alkaline treatment variables, including sodium hydroxide (NaOH) concentration, soaking, and drying time, that influence the mechanical behavior of bamboo fiber-reinforced epoxy composites. In this study, a Box-Behnken design (BBD) of the response surface methodology (RSM) was employed to design an experiment to investigate the mercerization effect of bamboo fiber-reinforced epoxy composites. The evaluation of predicted tensile strength as a variable parameter of bamboo fiber (Bambusa vulgaris) reinforced epoxy composite structures was determined using analysis of variance (ANOVA) of the quadratic model. In this study, a total of 17 experiment runs were measured and a significant regression for the coefficient between the variables was obtained. Further, the triangular and square core structures made of treated and untreated bamboo fiber-reinforced epoxy composites were tested under compressive loading. It was found that the optimum mercerization condition lies at 5.81 wt.% of the NaOH, after a soaking time of 3.99 h and a drying time of 72 h. This optimum alkaline treatment once again had a great effect on the structures whereby all the treated composite cores with square and triangular structures impressively outperformed the untreated bamboo structures. The treated triangular core of bamboo reinforced composites gave an outstanding performance compared to the treated and untreated square core composite structures for compressive loading and specific energy absorbing capability.
Background: This study aimed to determine the potential anti-aging effects of sea grapes and tempe (fermented soybeans) collagen particle size, by measuring the activities of anti-glycation, antioxidant, and tyrosinase inhibitors. Methods: Collagen was isolated from freeze-dried sea grapes and tempe powder and treated with different NaOH concentrations (0.10 M; 0.20 M; 0.30 M), and CH 3COOH 1 M solution, separately. The collagen particle size was adjusted by stirring at 1000 rpm for 5 and 10 hours. 2,2-diphenyl-1-picrylhydrazyl (DPPH) was used to measure the antioxidant activity, and L-tyrosine and L-DOPA (l-3,4-dihydroxyphenylalanine) was used as a marker of tyrosine inhibition. Results: The collagen treated with 0.10 M NaOH produced the highest collagen yield (11.65%), and the largest particle size (2455 nm). Additionally, this collagen, when treated for 5 hours, exhibited 24.70% antioxidant activity, 62.60% anti-glycation, 8.97% L-tyrosine, and 26.77% L-Dopa inhibition activities. Meanwhile, the collagen treated for 10 hours had a 9.98% antioxidant activity, 41.48% anti-glycation, 7.89% L-tyrosine, and 2.67% L-Dopa inhibition activity. Conclusion: Sea grapes and tempe collagen powder treated with 0.10 M NaOH and stirred for 5 hours, possess the best potential anti-aging properties as a functional food.
Ethanol was produced via the simultaneous saccharification and fermentation (SSF) of dilute sodium hydroxide treated corn stover. Saccharification was achieved by cultivating either Phanerochaete chrysosporium or Gloeophyllum trabeum on the treated stover, and fermentation was then performed by using either Saccharomyces cerevisiae or Escherichia coli K011. Ethanol production was highest on day 3 for the combination of G. trabeum and E. coli K011 at 6.68 g/100g stover, followed by the combination of P. chrysosporium and E. coli K011 at 5.00 g/100g stover. SSF with S. cerevisiae had lower ethanol yields, ranging between 2.88 g/100g stover at day 3 (P. chrysosporium treated stover) and 3.09 g/100g stover at day 4 (G. trabeum treated stover). The results indicated that mild alkaline pretreatment coupled with fungal saccharification offers a promising bioprocess for ethanol production from corn stover without the addition of commercial enzymes.
An in-vial liquid-liquid microextraction method was developed for the selective extraction of the phenolic acids (caffeic, gallic, cinnamic, ferulic, chlorogenic, syringic, vanillic, benzoic, p-hydroxybenzoic, 2,4-dihydroxybenzoic, o-coumaric, m-coumaric and p-coumaric) in vegetable oil samples. The optimised extraction conditions for 20 g sample were: volume of diluent (n-hexane), 2 mL; extractant, methanol: 5 mM sodium hydroxide (60:40; v/v); volume of extractant, 300 μL (twice); vortex, 1 min; centrifugation, 5 min. Recoveries for the studied phenolic acids were 80.1-119.5%. The simultaneous determination of the phenolic acid extracts was investigated by capillary electrophoresis (CE). Separations were carried out on a bare fused-silica capillary (50 μm i.d.× 40 cm length) involving 25 mM sodium tetraborate (pH 9.15) and 5% methanol as CE background electrolyte in the normal polarity mode, voltage of 30 kV, temperature of 25°C, injection time of 4s (50 mbar) and electropherograms were recorded at 200 nm. The phenolic acids were successfully separated in less than 10 min. The validated in-vial LLME-CE method was applied to the determination of phenolic acids in vegetable oil samples (extra virgin olive oil, virgin olive oil, pure olive oil, walnut oil and grapeseed oil). The developed method shows significant advantages over the current methods as lengthy evaporation step is not required.
This paper presents the results of a study on the effect of temperature on geopolymers manufactured using pozzolanic materials (fly ash). In this paper, we report on our investigation of the performance of porous geopolymers made with fly ash after exposure to temperatures from 600 °C up to 1000 °C. The research methodology consisted of pozzolanic materials (fly ash) synthesized with a mixture of sodium hydroxide and sodium silicate solution as an alkaline activator. Foaming agent solution was added to geopolymer paste. The geopolymer paste samples were cured at 60 °C for one day and the geopolymers samples were sintered from 600 °C to 1000 °C to evaluate strength loss due to thermal damage. We also studied their phase formation and microstructure. The heated geopolymers samples were tested by compressive strength after three days. The results showed that the porous geopolymers exhibited strength increases after temperature exposure.
In this study, palm oil mill effluent (POME) was solubilized by batch thermo-alkaline pre-treatments. A three-factor central composite design (CCD) was applied to identify the optimum COD solubilization condition. The individual and interactive effects of three factors, temperature, NaOH concentration and reaction time, on solubilization of POME were evaluated by employing response surface methodology (RSM). The experimental results showed that temperature, NaOH concentration and reaction time all had an individual significant effect on the solubilization of POME. But these three factors were independent, or there was insignificant interaction on the response. The maximum COD solubilization of 82.63% was estimated under the optimum condition at 32.5 degrees C, 8.83g/L of NaOH and 41.23h reaction time. The confirmation experiment of the predicted optimum conditions verified that the RSM with the central composite design was useful for optimizing the solubilization of POME.
Thermal decomposition of oil palm fruit press fiber (FPF) into a liquid product (LP) was achieved using subcritical water treatment in the presence of sodium hydroxide in a high pressure batch reactor. This study uses experimental design and process optimisation tools to maximise the LP yield using response surface methodology (RSM) with central composite rotatable design (CCRD). The independent variables were temperature, residence time, particle size, specimen loading, and additive loading. The mathematical model that was developed fit the experimental results well for all of the response variables that were studied. The optimal conditions were found to be a temperature of 551 K, a residence time of 40 min, a particle size of 710-1000 microm, a specimen loading of 5 g, and a additive loading of 9 wt.% to achieve a LP yield of 76.16%.
Herein we report a synthesis of copper nanoparticles (Cu-NPs) in chitosan (Cts) media via a chemical reaction method. The nanoparticles were synthesized in an aqueous solution in the presence of Cts as stabilizer and CuSO(4)·5H(2)O precursor. The synthesis proceeded with addition of NaOH as pH moderator, ascorbic acid as antioxidant and hydrazine( )as the reducing agent. The characterization of the prepared NPs was done using ultraviolet-visible spectroscopy, which showed a 593 nm copper band. The Field Emission Scanning Electron Microscope (FESEM) images were also observed, and found to be in agreement with the UV-Vis result, confirming the formation of metallic Cu-NPs. The mean size of the Cu-NPs was estimated to be in the range of 35-75 nm using X-ray diffraction. XRD was also used in analysis of the crystal structure of the NPs. The interaction between the chitosan and the synthesized NPs was studied using Fourier transform infrared (FT-IR) spectroscopy, which showed the capping of the NPs by Cts.
A lipase catalysed enantioselective hydrolysis process under in situ racemization of the remaining (R)-ibuprofen ester substrate with sodium hydroxide as the catalyst was developed for the production of S-ibuprofen from (R,S)-ibuprofen ester in isooctane. Detailed investigations on parameters study indicated that 0.5 M NaOH, addition of 20% (v/v) co-solvent (dimethyl sulphoxide), operating temperature of 45 degrees C, and 40 mmol/L substrate gave 86% conversion and 99.4% optical purity of S-ibuprofen in dynamic kinetic resolution. Meanwhile, in common enzymatic kinetic resolution process, only 42% conversion of the racemate and 93% enantiomeric excess of the product was obtained which are of lower values as compared to dynamic kinetic resolution. The S-ibuprofen produced during each process was evaluated and approximately 50% increment in concentration of S-acid product was produced when dynamic kinetic resolution was applied into the process.
Bleached kenaf core pulps (BKC) were hydrolyzed in H2SO4 (0.5M) at different time (0min to 90min) at room temperature. After the hydrolysis process, the viscosity average molecular weight (Mŋ) for BKC sample has reduced from 14.5×10(4) to 2.55×10(4). The hydrolyzed BKC was then dissolved in NaOH:urea:water and in LiOH:urea:water mixed solvent at the ratio of 7:12:81 and 4.6:15:80.4, respectively. The increased in hydrolysis time has decreased Mŋ of cellulose leading to easy dissolution process. Higher porosity and transparency with lower crystallinity index (CrI) of regenerated membrane produced can be achieved as the Mŋ reduced. The properties of membrane were observed through FESEM, UV-vis spectrophotometer and XRD. This study has proven that acid hydrolysis has reduced the Mŋ of cellulose, thus, enhanced the properties of regenerated membrane produced with assisted by alkaline/urea system.