Displaying publications 21 - 40 of 378 in total

Abstract:
Sort:
  1. Ahmad M, Roy RA
    Endod Dent Traumatol, 1994 Apr;10(2):71-6.
    PMID: 8062810
    The incidence of breakage of Piezon-Master ultrasonic K files were evaluated. Three groups of unused files were subjected to three treatments, namely; free vibration in air without irrigation, free vibration in root canal while minimizing contact with the wall of canal in the presence of irrigation and light filing in root canal with free flow of irrigation. Cavitation produced by files in contact and free of contact with a glass surface was examined in order to observe the relationship between cavitation defects and breakage. In addition, the fractured and unfractured files were examined under a scanning electron microscope for the presence of cavitation pits. The results indicated that more files broke in air. In water, a higher incidence of breakage occurred when files were allowed to freely vibrate while no breakage occurred when the files were used in filing. All files generated cavitation which resulted in pitting of their surfaces. However, it was considered unlikely that the pits contributed to fracture. Fatigue cracks which could be the result of the manufacturing process were observed at some of the corners of the cross sections of the fractured files and could be the main contributory factor to fracture.
    Matched MeSH terms: Surface Properties
  2. Ahmad N, Ramsch R, Esquena J, Solans C, Tajuddin HA, Hashim R
    Langmuir, 2012 Feb 7;28(5):2395-403.
    PMID: 22168405 DOI: 10.1021/la203736b
    Synthetic branched-chain glycolipids have become of great interest in biomimicking research, since they provide a suitable alternative for natural glycolipids, which are difficult to extract from natural resources. Therefore, branched-chain glycolipids obtained by direct syntheses are of utmost interest. In this work, two new branched-chain glycolipids are presented, namely, 2-hexyldecyl β(α)-D-glucoside (2-HDG) and 2-hexyldecyl β(α)-D-maltoside (2-HDM) based on glucose and maltose, respectively. The self-assembly properties of these glycolipids have been studied, observing the phase behavior under thermotropic and lyotropic conditions. Due to their amphiphilic characteristics, 2-HDG and 2-HDM possess rich phase behavior in dry form and in aqueous dispersions. In the thermotropic study, 2-HDG formed a columnar hexagonal liquid crystalline phase, whereas in a binary aqueous system, 2-HDG formed an inverted hexagonal liquid crystalline phase in equilibrium with excess aqueous solution. Furthermore, aqueous dispersions of the hexagonal liquid crystal could be obtained, dispersions known as hexosomes. On the other hand, 2-HDM formed a lamellar liquid crystalline phase (smectic A) in thermotropic conditions, whereas multilamellar vesicles have been observed in equilibrium with aqueous media. Surprisingly, 2-HDM mixed with sodium dodecyl sulfate or aerosol OT induced the formation of more stable unilamellar vesicles. Thus, the branched-chain glycolipids 2-HDG and 2-HDM not only provided alternative nonionic surfactants with rich phase behavior and versatile nanostructures, but also could be used as new drug carrier systems in the future.
    Matched MeSH terms: Surface Properties
  3. Ahmad R, Morgano SM, Wu BM, Giordano RA
    J Prosthet Dent, 2005 Nov;94(5):421-9.
    PMID: 16275301
    Many studies on the strengthening effects of grinding and polishing, as well as heat treatment on ceramics, are not well standardized or use commercially available industrial polishing systems. The reported effectiveness of these strengthening mechanisms on ceramics may not be applicable to clinical dentistry.
    Matched MeSH terms: Surface Properties
  4. Ahmad T, Bustam MA, Irfan M, Moniruzzaman M, Asghar HMA, Bhattacharjee S
    Biotechnol Appl Biochem, 2019 Jul;66(4):698-708.
    PMID: 31172593 DOI: 10.1002/bab.1787
    Phytosynthesis of gold nanoparticles (AuNPs) has achieved an indispensable significance due to the diverse roles played by biomolecules in directing the physiochemical characteristics of biosynthesized nanoparticles. Therefore, the precise identification of key bioactive compounds involved in producing AuNPs is vital to control their tunable characteristics for potential applications. Herein, qualitative and quantitative determination of key biocompounds contributing to the formation of AuNPs using aqueous Elaeis guineensis leaves extract is reported. Moreover, roles of phenolic compounds and flavonoids in reduction of Au3+ and stabilization of AuNPs have been elucidated by establishing a reaction mechanism. Fourier-transform infrared spectroscopy (FTIR) showed shifting of O─H stretching vibrations toward longer wavenumbers and C═O toward shorter wavenumbers due to involvement of polyphenolic compounds in biosynthesis and oxidation of polyphenolic into carboxylic compounds, respectively, which cape nanoparticles to inhibit the aggregation. Congruently, pyrolysis-gas chromatography-mass spectrometry revealed the major contribution of polyphenolic compounds in the synthesis of AuNPs, which was further endorsed by reduction of total phenolic and total flavonoids contents from 48.08 ± 1.98 to 9.59 ± 0.92 mg GAE/g and 32.02 ± 1.31 to 13.8 ± 0.97 mg CE/g within 60 Min, respectively. Based on experimental results, reaction mechanism explained the roles of phenolic compounds and flavonoids in producing spherical-shaped AuNPs.
    Matched MeSH terms: Surface Properties
  5. Ahmed T, Ya HH, Khan R, Hidayat Syah Lubis AM, Mahadzir S
    Materials (Basel), 2020 Jul 27;13(15).
    PMID: 32726965 DOI: 10.3390/ma13153333
    Polymeric materials such as High density polyethylene(HDPE) are ductile in nature, having very low strength. In order to improve strength by non-treated rigid fillers, polymeric materials become extremely brittle. Therefore, this work focuses on achieving pseudo-ductility (high strength and ductility) by using a combination of rigid filler particles (CaCO3 and bentonite) instead of a single non-treated rigid filler particle. The results of all tensile-tested (D638 type i) samples signify that the microstructural features and surface properties of rigid nano fillers can render the required pseudo-ductility. The maximum value of tensile strength achieved is 120% of the virgin HDPE, and the value of elongation is retained by 100%. Furthermore, the morphological and fractographic analysis revealed that surfactants are not always going to obtain polymer-filler bonding, but the synergistic effect of filler particles can carry out sufficient bonding for stress transfer. Moreover, pseudo-ductility was achieved by a combination of rigid fillers (bentonite and CaCO3) when the content of bentonite dominated as compared to CaCO3. Thus, the achievement of pseudo-ductility by the synergistic effect of rigid particles is the significance of this study. Secondly, this combination of filler particles acted as an alternative for the application of surfactant and compatibilizer so that adverse effect on mechanical properties can be avoided.
    Matched MeSH terms: Surface Properties
  6. Al-Alwani MAM, Ludin NA, Mohamad AB, Kadhum AAH, Sopian K
    PMID: 28213142 DOI: 10.1016/j.saa.2017.02.026
    Current study employs mixture of chlorophyll-anthocyanin dye extracted from leaves of Cordyline fruticosa as new sensitizers for dye-sensitized solar cell (DSSCs), as well as betalains dye obtained from fruit of Hylocereus polyrhizus. Among ten pigments solvents, the ethanol and methanol extracts revealed higher absorption spectra of pigments extracted from C. fruticosa and H. polyrhizus respectively. A major effect of temperature increase was studied to increase the extraction yield. The results indicated that extraction temperature between 70 and 80°C exhibited a high dye concentration of each plant than other temperatures. The optimal temperature was around 80°C and there was a sharp decrease of dye concentration at temperatures higher than this temperature. According to experimental results, the conversion efficiency of DSSC fabricated by mixture of chlorophyll and anthocyanin dyes from C. fruticosa leaves is 0.5% with short-circuit current (Isc) of 1.3mA/cm-2, open-circuit voltage (Voc) of 0.62V and fill factor (FF) of 60.16%. The higher photoelectric conversion efficiency of the DSSC prepared from the extract of H. polyrhizus was 0.16%, with Voc of 0.5V, Isc of 0.4mA/cm-2 and FF of 79.16%. The DSSC based betalain dye extracted from fruit of H. polyrhizus shows higher maximum IPCE of 44% than that of the DSSCs sensitized with mixed chlorophyll-anthocyanin dye from C. fruticosa (42%).
    Matched MeSH terms: Surface Properties
  7. Al-Alwani MAM, Ludin NA, Mohamad AB, Kadhum AAH, Mukhlus A
    Spectrochim Acta A Mol Biomol Spectrosc, 2018 Mar 05;192:487-498.
    PMID: 29133132 DOI: 10.1016/j.saa.2017.11.018
    The natural dyes anthocyanin and chlorophyll were extracted from Musa acuminata bracts and Alternanthera dentata leaves, respectively. The dyes were then applied as sensitizers in TiO2-based dye-sensitized solar cells (DSSCs). The ethanol extracts of the dyes had maximum absorbance. High dye yields were obtained under extraction temperatures of 70 to 80°C, and the optimal extraction temperature was approximately 80°C. Moreover, dye concentration sharply decreased under extraction temperatures that exceeded 80°C. High dye concentrations were obtained using acidic extraction solutions, particularly those with a pH value of 4. The DSSC fabricated with anthocyanin from M. acuminata bracts had a conversion efficiency of 0.31%, short-circuit current (Isc) of 0.9mA/cm2, open-circuit voltage (Voc) of 0.58V, and fill factor (FF) of 62.22%. The DSSC sensitized with chlorophyll from A. dentata leaves had a conversion efficiency of 0.13%, Isc of 0.4mA/cm-2,Voc of 0.54V, and FF of 67.5%. The DSSC sensitized with anthocyanin from M. acuminata bracts had a maximum incident photon-to-current conversion efficiency of 42%, which was higher than that of the DSSC sensitized with chlorophyll from A. dentata leaves (23%). Anthocyanin from M. acuminata bracts exhibited the best photosensitization effects.
    Matched MeSH terms: Surface Properties
  8. Al-Hada NM, Saion EB, Shaari AH, Kamarudin MA, Flaifel MH, Ahmad SH, et al.
    PLoS One, 2014;9(8):e103134.
    PMID: 25093752 DOI: 10.1371/journal.pone.0103134
    A facile thermal-treatment route was successfully used to synthesize ZnO nanosheets. Morphological, structural, and optical properties of obtained nanoparticles at different calcination temperatures were studied using various techniques. The FTIR, XRD, EDX, SEM and TEM images confirmed the formation of ZnO nanosheets through calcination in the temperature between 500 to 650 °C. The SEM images showed a morphological structure of ZnO nanosheets, which inclined to crumble at higher calcination temperatures. The XRD and FTIR spectra revealed that the samples were amorphous at 30 °C but transformed into a crystalline structure during calcination process. The average particle size and degree of crystallinity increased with increasing calcination temperature. The estimated average particle sizes from TEM images were about 23 and 38 nm for the lowest and highest calcination temperature i.e. 500 and 650 °C, respectively. The optical properties were determined by UV-Vis reflection spectrophotometer and showed a decrease in the band gap with increasing calcination temperature.
    Matched MeSH terms: Surface Properties
  9. Al-Makramani BMA, Razak AAA, Abu-Hassan MI
    J Prosthodont, 2008 Feb;17(2):120-124.
    PMID: 18047490 DOI: 10.1111/j.1532-849X.2007.00270.x
    PURPOSE: The current study investigated the effect of different luting agents on the fracture resistance of Procera AllCeram copings.

    METHODS: Six master dies were duplicated from the prepared maxillary first premolar tooth using nonprecious metal alloy (Wiron 99). Thirty copings (Procera AllCeram) of 0.6-mm thickness were manufactured. Three types of luting media were used: zinc phosphate cement (Elite), glass ionomer cement (Fuji I), and dual-cured composite resin cement (Panavia F). Ten copings were cemented with each type. Two master dies were used for each group, and each of them was used to lute five copings. All groups were cemented according to manufacturer's instructions and received a static load of 5 kg during cementation. After 24 hours of distilled water storage at 37 degrees C, the copings were vertically compressed using a universal testing machine at a crosshead speed of 1 mm/min.

    RESULTS: ANOVA revealed significant differences in the load at fracture among the three groups (p < 0.001). The fracture strength results showed that the mean fracture strength of zinc phosphate cement (Elite), glass ionomer cement (Fuji I), and resin luting cement (Panavia F) were 1091.9 N, 784.8 N, and 1953.5 N, respectively.

    CONCLUSION: Different luting agents have an influence on the fracture resistance of Procera AllCeram copings.

    Matched MeSH terms: Surface Properties
  10. Al-Marzok MI, Al-Azzawi HJ
    J Contemp Dent Pract, 2009;10(6):E017-24.
    PMID: 20020077
    Dental plaque has a harmful influence on periodontal tissue. When a porcelain restoration is fabricated and refinishing of the glazed surface is inevitable, the increase in surface roughness facilitates the adhesion of plaque and its components. The aim of this in vitro study was to evaluate the effect of surface roughness of glazed or polished porcelain on the adhesion of oral Streptococcus mutans.
    Matched MeSH terms: Surface Properties
  11. Al-Namnam NM, Kutty MG, Chai WL, Ha KO, Kim KH, Siar CH, et al.
    Mater Sci Eng C Mater Biol Appl, 2017 Mar 01;72:332-340.
    PMID: 28024594 DOI: 10.1016/j.msec.2016.11.086
    Recently, a modified form of a three-dimension (3D) porous poly(caprolactone-trifumarate) (PCLTF) scaffold has been produced using a fabrication technique that involves gelatin microparticles porogen leaching. This poly(caprolactone trifumarate-gelatin microparticles) (PCLTF-GMPs) scaffold has been shown to be biocompatible, more flowable clinically, and has a shorter degradation time as compared to its existing predecessors. In this report, a detailed characterization of this new scaffold was performed by testing its cytocompatibility, analyzing the surface topography, and understanding its thermal, physical and mechanical properties. The result showed that the PCLTF-GMPs has no critical cytotoxic effect. To confirm improvement, the surface properties were compared against the older version of PCLTF fabricated using salt porogen leaching. This PCLTF-GMPs scaffold showed no significant difference (unpaired t-test; p>0.05) in mechanical properties before and after gelatin leaching. However, it is mechanically weaker when compared to its predecessors. It has a high biodegradability rate of 16weeks. The pore size produced ranges from 40 to 300μm, and the RMS roughness is 613.7±236.9nm. These characteristics are condusive for osteoblast in-growth, as observed by the extension of filopodia across the macropores. Overall, this newly produced material has good thermal, physical and mechanical properties that complements its biocompatibility and ease of use.
    Matched MeSH terms: Surface Properties
  12. Al-Salihi KA, Samsudin AR
    Med J Malaysia, 2004 May;59 Suppl B:202-3.
    PMID: 15468888
    In this study the surface properties of two particulate coral and polyhydroxybutrate (PHB) were studied in order to characterize them prior to use in composite production. Coral powder and PHB particle were evaluated using scanning electron microscopy and confocal laser scanning microscopy, to measure surface porosity and pores size. The results showed that coral powder has multiple pleomorphic micropores cross each others give appearance of micro-interconnectivity. Some pore reached to 18 microm with an average porosity of 70%. PHB revealed multiple different size pores extended to the depth, with an average some times reach 25 microm and porosity 45%. These findings demonstrate that both coral and PHB have excellent pores size and porosity that facilitate bone in growth, vascular invasion and bone development. We believe that incorporation of coral powder into PHB will make an excellent composite scaffold for tissue engineering.
    Matched MeSH terms: Surface Properties
  13. Al-Shaibani MM, Radin Mohamed RMS, Zin NM, Al-Gheethi A, Al-Sahari M, El Enshasy HA
    Molecules, 2021 Apr 25;26(9).
    PMID: 33923072 DOI: 10.3390/molecules26092510
    The present research aimed to enhance the pharmaceutically active compounds' (PhACs') productivity from Streptomyces SUK 25 in submerged fermentation using response surface methodology (RSM) as a tool for optimization. Besides, the characteristics and mechanism of PhACs against methicillin-resistant Staphylococcus aureus were determined. Further, the techno-economic analysis of PhACs production was estimated. The independent factors include the following: incubation time, pH, temperature, shaker rotation speed, the concentration of glucose, mannitol, and asparagine, although the responses were the dry weight of crude extracts, minimum inhibitory concentration, and inhibition zone and were determined by RSM. The PhACs were characterized using GC-MS and FTIR, while the mechanism of action was determined using gene ontology extracted from DNA microarray data. The results revealed that the best operating parameters for the dry mass crude extracts production were 8.20 mg/L, the minimum inhibitory concentrations (MIC) value was 8.00 µg/mL, and an inhibition zone of 17.60 mm was determined after 12 days, pH 7, temperature 28 °C, shaker rotation speed 120 rpm, 1 g glucose /L, 3 g mannitol/L, and 0.5 g asparagine/L with R2 coefficient value of 0.70. The GC-MS and FTIR spectra confirmed the presence of 21 PhACs, and several functional groups were detected. The gene ontology revealed that 485 genes were upregulated and nine genes were downregulated. The specific and annual operation cost of the production of PhACs was U.S. Dollar (U.S.D) 48.61 per 100 mg compared to U.S.D 164.3/100 mg of the market price, indicating that it is economically cheaper than that at the market price.
    Matched MeSH terms: Surface Properties
  14. Al-Sharqi A, Apun K, Vincent M, Kanakaraju D, Bilung LM, Sum MSH
    J Appl Microbiol, 2020 Jan;128(1):102-115.
    PMID: 31596989 DOI: 10.1111/jam.14471
    AIM: This work reports a new method for the use of lasers for the selective killing of bacteria targeted using light-absorbing Silver nanoparticles (Ag-NPs) conjugated with a specific antibody against the Gram-positive bacterium Staphylococcus aureus (S. aureus).

    METHODS AND RESULTS: Ag-NPs were synthesized using a chemical reduction method and characterized with respect to their surface plasmon resonance, surface morphology via transmission electron microscopy (TEM) and dynamic light scattering (DLS). The bacterial surface was targeted using 20 nm Ag-NPs conjugated with an anti-protein A antibody. Labelled bacteria were irradiated with blue visible laser at 2·04 W/cm2 . The antibacterial activity of functionalized Ag-NPs was investigated by fluorescence microscopy after irradiation, and morphological changes in S. aureus after laser treatment were assessed using scanning electron microscopy (SEM). The laser-irradiated, functionalized Ag-NPs exhibited significant bactericidal activity, and laser-induced bacterial damage was observed after 10 min of laser irradiation against S. aureus. The fluorescence microscopic analysis results supported that bacterial cell death occurred in the presence of the functionalized Ag-NPs.

    CONCLUSIONS: The results of this study suggest that a novel method for the preparation of functionalized nanoparticles has potential as a potent antibacterial agent for the selective killing of resistant disease-causing bacteria.

    SIGNIFICANCE AND IMPACT OF THE STUDY: This study shows that Ag-NPs functionalized with a specific antibody, could be used in combination with laser radiation as a novel treatment to target resistant bacterial and fungal pathogens with minimal impact on normal microflora.

    Matched MeSH terms: Surface Properties
  15. Alao AR, Mohd Azhari MA
    J Mech Behav Biomed Mater, 2021 12;124:104842.
    PMID: 34555624 DOI: 10.1016/j.jmbbm.2021.104842
    Indentation size effect (ISE) and R-curve behaviour of Li2O-SiO2 and Li2O-2SiO2 glass ceramics are investigated using micro-indentation and indentation-strength (IS) techniques, respectively. Vickers micro-indentations were applied on both materials at the load of 0.10-19.6 N to determine the load influence on the measured hardness. For the IS-measured fracture toughness, the load ranged from 1.96 to 19.6 N. The hardness decreased with increasing load by 20% and 18% on Li2O-SiO2 and Li2O-2SiO2 glass ceramics, respectively, indicating the ISE behaviour on both materials. The fracture toughness increased with the load by 27% and 59% on Li2O-SiO2 and Li2O-2SiO2 glass ceramics, respectively, signifying the R-curve behaviour. The ISE behaviour of both materials was analysed using the Meyer's, Hays-Kendall (HK), proportional specimen resistance (PSR), Nix-Gao (NG), modified PSR (MPSR) and elastic plastic deformation (EPD) models while the R-curve behaviour was analysed by the fractional power law. The Meyer's index of both materials was less than 2, strongly confirming the ISE existence. The HK, PSR and NG models were only suitable to determine intrinsic Vickers hardness for Li2O-2SiO2 glass ceramic while the MPSR and EPD models were successful for both materials. The fractional power law gave higher R-curve steepness for Li2O-2SiO2 than Li2O-SiO2 glass ceramics. Also, material and brittleness indices predicted, respectively, higher quasi-plasticity and better machinability for Li2O-2SiO2 than Li2O-SiO2 glass ceramics indicating superior performance in the former to the latter. Finally, this study presents a new significant insight into the micro-mechanisms of fracture tolerance behaviour of these glass ceramics which is critical to their functional performance as structural ceramics.
    Matched MeSH terms: Surface Properties
  16. Alawjali SS, Lui JL
    J Dent, 2013 Aug;41 Suppl 3:e53-61.
    PMID: 23103847 DOI: 10.1016/j.jdent.2012.10.008
    This study was to compare the effect of three different one-step polishing systems on the color stability of three different types of nanocomposites after immersion in coffee for one day and seven days and determine which nanocomposite material has the best color stability following polishing with each of the one-step polishing system.
    Matched MeSH terms: Surface Properties
  17. Ali MK, Moshikur RM, Wakabayashi R, Tahara Y, Moniruzzaman M, Kamiya N, et al.
    J Colloid Interface Sci, 2019 Sep 01;551:72-80.
    PMID: 31075635 DOI: 10.1016/j.jcis.2019.04.095
    Ionic liquid (IL) surfactants have attracted great interest as promising substitutes for conventional surfactants owing to their exceptional and favorable physico-chemical properties. However, most IL surfactants are not eco-friendly and form unstable micelles, even when using a high concentration of the surfactant. In this study, we prepared a series of halogen-free and biocompatible choline-fatty-acid-based ILs with different chain lengths and degrees of saturation, and we then investigated their micellar properties in aqueous solutions. Characterization of the synthesized surface-active ILs (SAILs) was performed by 1H and 13C nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, and elemental analysis. The surface-active properties of the SAILs were investigated by tensiometry, conductometry, and dynamic light scattering measurements. The critical micelle concentration of the SAILs was found to be 2-4 times lower than those of conventional surfactants. The thermodynamic properties of micellization (ΔG0m, ΔH0m, and ΔS0m) indicate that the micellization process of the SAILs is spontaneous, stable, and entropy-driven at room temperature. The cytotoxicity of the SAILs was evaluated using mammalian cell line NIH 3T3. Importantly, [Cho][Ole] shows lower toxicity than the analogous ILs with conventional surfactants. These results clearly suggest that these environmentally friendly SAILs can be used as a potential alternative to conventional ILs for various purposes, including biological applications.
    Matched MeSH terms: Surface Properties
  18. Almoustafa HA, Alshawsh MA, Chik Z
    Anticancer Drugs, 2021 Aug 01;32(7):745-754.
    PMID: 33675612 DOI: 10.1097/CAD.0000000000001065
    Poly lactic-co-glycolic acid (PLGA) nanoparticles are intensively studied nanocarriers in drug delivery because of their biodegradability and biochemical characteristics. Polyethylene glycol (PEG) coating for nanocarriers gives them long circulation time in blood and makes them invisible to the reticuloendothelial system. Breast cancer cells have greater uptake of hyaluronic acid compared to normal cells as it binds to their overexpressed CD44 receptors. Since hypoxia plays an important role in cancer metastasis; we formulated PEG-PLGA nanoparticles coated with hyaluronic acid as targeted delivery system for doxorubicin (DOX) using nanoprecipitation method, and characterized them for chemical composition, size, surface charge, shape, and encapsulation efficiency. Then we tested them in vitro on hypoxia-optimized metastatic breast cancer cells. The nanoparticles were spherical with an average size of about 106 ± 53 nm, a negative surface charge (-15 ± 3 mV), and high encapsulation efficiency (73.3 ± 4.1%). In vitro investigation with hypoxia-elevated CD44 MDA-MB-231 cells showed that hyaluronic acid-targeted nanoparticles maintained their efficacy despite hypoxia-induced drug resistance unlike free DOX and nontargeted nanoparticles. In conclusion, this study revealed a simple third generation nanoparticle formulation for targeted treatment of hypoxia-induced drug resistance in breast cancer metastatic cells. Further, optimization is needed including In vivo efficacy and nanoparticle-specific pharmacokinetic studies.
    Matched MeSH terms: Surface Properties
  19. Alshammary F, Karobari MI, Assiry AA, Marya A, Shaikh GM, Siddiqui AA, et al.
    Biomed Res Int, 2021;2021:5523242.
    PMID: 34036099 DOI: 10.1155/2021/5523242
    This study is aimed at assessing the influence of Nd:YAG, Er,Cr:YSGG laser irradiation, and adjunctive photodynamic therapy (aPDT) on the bond strength of zirconia posts to radicular dentin. Eighty extracted anterior teeth were randomly categorized into 4 groups (n = 20) based on varying laser irradiation treatments, i.e., conventional cleaning and shaping (CCS), Nd:YAG, Er,Cr:YSGG, and aPDT group, respectively. Using a cutting machine, the samples were prepared for push-out bond strength analysis; 4 sections (2 on each apical and cervical) of around 1 mm thickness were sectioned for all roots at a right angle to the long axis of the post. After making the space for the post, they were incorporated into the root system and were subjected to different laser treatments. The universal testing machine was utilized to assess the push-out bond strength, which had a defined 1 mm/minute crosshead speed until the failure was encountered. Specimens in the aPDT group (8.20 ± 2.14 MPa) demonstrated the highest mean push-out bond strength, whereas the lowest was shown by samples in the CCS group (7.08 ± 1.11 MPa). According to the independent t-test, the mean push-out bond strength scores of the cervical segments were higher as compared to the apical segments in research groups (p < 0.05). Overall, the adhesive type was the most frequently encountered failure mode in all of the experimental groups, with the least number of failures observed in aPDT treated teeth samples. In conclusion, the push-out bond strength to radicular dentin was not much influenced by Nd:YAG, Er,Cr:YSGG laser, and aPDT in comparison with CCS. Although statistically not significant, however, the application of aPDT provided better outcomes as compared to other research groups.
    Matched MeSH terms: Surface Properties
  20. Alwash AH, Abdullah AZ, Ismail N
    J Hazard Mater, 2012 Sep 30;233-234:184-93.
    PMID: 22831996 DOI: 10.1016/j.jhazmat.2012.07.021
    A new heterogeneous catalyst for sonocatalytic degradation of amaranth dye in water was synthesized by introducing titania into the pores of zeolite (NaY) through ion exchange method while Fe (III) was immobilized on the encapsulated titanium via impregnation method. XRD results could not detect any peaks for titanium oxide or Fe(2)O(3) due to its low loading. The UV-vis analysis proved a blue shift toward shorter wavelength after the loading of Ti into NaY while a red shift was detected after the loading of Fe into the encapsulated titanium. Different reaction variables such as TiO(2) content, amount of Fe, pH values, amount of hydrogen peroxide, catalyst loading and the initial dye concentration were studied to estimate their effect on the decolorization efficiency of amaranth. The maximum decolorization efficiency achieved was 97.5% at a solution pH of 2.5, catalyst dosage of 2 g/L, 20 mmol/100 mL of H(2)O(2) and initial dye concentration of 10 mg/L. The new heterogeneous catalyst Fe/Ti-NaY was a promising catalyst for this reaction and showed minimum Fe leaching at the end of the reaction.
    Matched MeSH terms: Surface Properties
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links