Displaying publications 21 - 40 of 122 in total

Abstract:
Sort:
  1. Jayaraman P, Nathan P, Vasanthan P, Musa S, Govindasamy V
    Cell Biol Int, 2013 Oct;37(10):1122-8.
    PMID: 23716460 DOI: 10.1002/cbin.10138
    Stem cell biology has gained remarkable interest in recent years, driven by the hope of finding cures for numerous diseases including skin wound healing through transplantation medicine. Initially upon transplantation, these cells home to and differentiate within the injured tissue into specialised cells. Contrariwise, it now appears that only a small percentage of transplanted cells integrate and survive in host tissues. Thus, the foremost mechanism by which stem cells participate in tissue repair seems to be related to their trophic factors. Indeed, stem cells provide the microenvironment with a wide range of growth factors, cytokines and chemokines, which can broadly defined as the stem cells secretome. In in vitro condition, these molecules can be traced from the conditioned medium or spent media harvested from cultured cells. Conditioned medium now serves as a new treatment modality in regenerative medicine and has shown a successful outcome in some diseases. With the emergence of this approach, we described the possibility of using stem cells conditioned medium as a novel and promising alternative to skin wound healing treatment. Numerous pre-clinical data have shown the possibility and efficacy of this treatment. Despite this, significant challenges need to be addressed before translating this technology to the bedside.
    Matched MeSH terms: Wound Healing/drug effects*
  2. Ong JS, Taylor TD, Yong CC, Khoo BY, Sasidharan S, Choi SB, et al.
    Probiotics Antimicrob Proteins, 2020 03;12(1):125-137.
    PMID: 30659503 DOI: 10.1007/s12602-018-9505-9
    This study aimed to elucidate the targets and mechanisms of anti-staphylococcal effects from bioactive metabolites produced by lactic acid bacteria. We aimed to better understand the safety and efficacy of these bioactive metabolites in in vivo systems, typically at topical sites. The cell-free supernatant and protein-rich fraction from Lactobacillus plantarum USM8613 inhibited staphyloxanthin biosynthesis, reduced (p wound healing properties via direct inhibition of S. aureus and promoted innate immunity, in which the expression of β-defensin was significantly (p wound recovery. Using ∆atl S. aureus, the protein-rich fraction from L. plantarum USM8613 exerted inhibitory activity via targeting the atl gene in S. aureus. Taken altogether, our present study illustrates the potential of L. plantarum USM8613 in aiding wound healing, suppressing of S. aureus infection at wound sites and promoting host innate immunity.
    Matched MeSH terms: Wound Healing/drug effects
  3. Bigliardi PL, Alsagoff SAL, El-Kafrawi HY, Pyon JK, Wa CTC, Villa MA
    Int J Surg, 2017 Aug;44:260-268.
    PMID: 28648795 DOI: 10.1016/j.ijsu.2017.06.073
    BACKGROUND: Of the many antimicrobial agents available, iodophore-based formulations such as povidone iodine have remained popular after decades of use for antisepsis and wound healing applications due to their favorable efficacy and tolerability. Povidone iodine's broad spectrum of activity, ability to penetrate biofilms, lack of associated resistance, anti-inflammatory properties, low cytotoxicity and good tolerability have been cited as important factors, and no negative effect on wound healing has been observed in clinical practice. Over the past few decades, numerous reports on the use of povidone iodine have been published, however, many of these studies are of differing design, endpoints, and quality. More recent data clearly supports its use in wound healing.

    METHODS: Based on data collected through PubMed using specified search criteria based on above topics and clinical experience of the authors, this article will review preclinical and clinical safety and efficacy data on the use of povidone iodine in wound healing and its implications for the control of infection and inflammation, together with the authors' advice for the successful treatment of acute and chronic wounds.

    RESULTS AND CONCLUSION: Povidone iodine has many characteristics that position it extraordinarily well for wound healing, including its broad antimicrobial spectrum, lack of resistance, efficacy against biofilms, good tolerability and its effect on excessive inflammation. Due to its rapid, potent, broad-spectrum antimicrobial properties, and favorable risk/benefit profile, povidone iodine is expected to remain a highly effective treatment for acute and chronic wounds in the foreseeable future.

    Matched MeSH terms: Wound Healing/drug effects*
  4. Pourshahrestani S, Kadri NA, Zeimaran E, Towler MR
    Biomater Sci, 2018 Dec 18;7(1):31-50.
    PMID: 30374499 DOI: 10.1039/c8bm01041b
    Immediate control of uncontrolled bleeding and infection are essential for saving lives in both combat and civilian arenas. Inorganic well-ordered mesoporous silica and bioactive glasses have recently shown great promise for accelerating hemostasis and infection control. However, to date, there has been no comprehensive report assessing their specific mechanism of action in accelerating the hemostasis process and exerting an antibacterial effect. After providing a brief overview of the hemostasis process, this review presents a critical overview of the recently developed inorganic mesoporous silica and bioactive glass-based materials proposed for hemostatic clinical applications and specifically investigates their unique characteristics that render them applicable for hemostatic applications and preventing infections. This article also identifies promising new research directions that should be undertaken to ascertain the effectiveness of these materials for hemostatic applications.
    Matched MeSH terms: Wound Healing/drug effects
  5. Muniandy K, Gothai S, Arulselvan P, Kumar SS, Norhaizan ME, Umamaheswari A, et al.
    Pak J Pharm Sci, 2019 Mar;32(2):703-707.
    PMID: 31081786
    Wound healing is a natural intricate cascade process involving cellular, biochemical and molecular mechanism to restore the injured or wounded tissue. Malaysia's multi-ethnic social fabric is reflected in its different traditional folk cuisines with different nutritional important ingredients. Despite these differences, there are some commonly used pantry ingredients among Malaysians and these ingredients may possess some healing power for acute and chronic wounds. These essential nutritional ingredients are included Amla (Ribes uva-crispa), Cinnamon (Cinnamomun venum), Curry Leaves (Murraya koenigii), Coriander (Coriandrum sativum), Fenugreek (Trigonella foenum-graecum), Garlic (Allium indica), Onion (Allium cepa) and Tamarind (Tamarindus indica). This article provides a review of the remedies with confirmed wound healing activities from previous experiments conducted by various researchers. Most of the researchers have focused only on the preliminary studies through appropriate model; hence detailed investigations which including pharmacological and pre-clinical studies are needed to discover its molecular mechanisms. In this review article, we have discussed about the wound healing potential of few commonly used edible plants and their known mechanism.
    Matched MeSH terms: Wound Healing/drug effects*
  6. Low JS, Mak KK, Zhang S, Pichika MR, Marappan P, Mohandas K, et al.
    Fitoterapia, 2021 Oct;154:105026.
    PMID: 34480992 DOI: 10.1016/j.fitote.2021.105026
    Wounds still pose a huge burden on human health and healthcare systems in many parts of the world. Phytomedicines are being used to heal the wounds since ancient times. Now-a-days also many researchers are exploring the wound healing activity of phytomedicines. Wound healing is a complex process thus, it is always a question mark regarding the best test model (in vivo, ex vivo and in vitro) model to assess the wound healing activity of phytomedicines. In general, the researchers would opt for in vivo model - probably because of closer physiological relevance to human wounds. However, in vivo experimental models are not suitable for high throughput screening and not ethical in terms of initial screening of the phytomedicines. The in vivo models are associated with difficulties in obtaining the ethical approvals, requires huge budget, and resources. We argue that judicious selection of cell types would serve the purpose of developing a physiologically relevant in vitro experimental model. A lot of progress has been made in molecular biology techniques to bridge the gap between in vitro models and their physiological relevance. The in vitro models are the best suited for high throughput screening and to elucidate the molecular mechanisms. The main aim of this review is to provide insights on selection of the cell types for developing physiologically relevant in vitro wound healing assays, which can be used to improve the value of phytomedicines further.
    Matched MeSH terms: Wound Healing/drug effects*
  7. Pandey M, Mohamad N, Low WL, Martin C, Mohd Amin MC
    Drug Deliv Transl Res, 2017 02;7(1):89-99.
    PMID: 27815776 DOI: 10.1007/s13346-016-0341-8
    Burn wound management is a complex process because the damage may extend as far as the dermis which has an acknowledged slow rate of regeneration. This study investigates the feasibility of using hydrogel microparticles composed of bacterial cellulose and polyacrylamide as a dressing material for coverage of partial-thickness burn wounds. The microparticulate carrier structure and surface morphology were investigated by Fourier transform infrared, X-ray diffraction, elemental analysis, and scanning electron microscopy. The cytotoxicity profile of the microparticles showed cytocompatibility with L929 cells. Dermal irritation test demonstrated that the hydrogel was non-irritant to the skin and had a significant effect on wound contraction compared to the untreated group. Moreover, histological examination of in vivo burn healing samples revealed that the hydrogel treatment enhanced epithelialization and accelerated fibroblast proliferation with wound repair and intact skin achieved by the end of the study. Both the in vitro and in vivo results proved the biocompatibility and efficacy of hydrogel microparticles as a wound dressing material.
    Matched MeSH terms: Wound Healing/drug effects
  8. Bagheri E, Saremi K, Hajiaghaalipour F, Faraj FL, Ali HM, Abdulla MA, et al.
    Curr Pharm Des, 2018;24(13):1395-1404.
    PMID: 29384057 DOI: 10.2174/1381612824666180130124308
    Quinazoline is an aromatic bicyclic compound exhibiting several pharmaceutical and biological activities. This study was conducted to investigate the potential wound healing properties of Synthetic Quinazoline Compound (SQC) on experimental rats. The toxicity of SQC was determined by MTT cell proliferation assay. The healing effect of SQC was assessed by in vitro wound healing scratch assay on the skin fibroblast cells (BJ-5ta) and in vivo wound healing experiment of low and high dose of SQC on adult Sprague-Dawley rats compared with negative (gum acacia) and positive control (Intrasite-gel). Hematoxylin and Eosin (H&E), Masson's Trichrome (MT) staining and immunohistochemistry analysis were performed to evaluate the histopathological alterations and proteins expression of Bax and Hsp70 on the wound tissue after 10 days. In addition, levels of antioxidant enzymes (catalase, glutathione peroxidase and superoxide dismutase), and malondialdehyde (MDA) were measured in wound tissue homogenates. The SQC significantly enhanced BJ-5ta cell proliferation and accelerated the percentage of wound closure, with less scarring, increased fibroblast and collagen fibers and less inflammatory cells compared with the negative control. The compound also increases endogenous enzymes and decline lipid peroxidation in wound homogenate.
    Matched MeSH terms: Wound Healing/drug effects*
  9. Sh Ahmed A, Taher M, Mandal UK, Jaffri JM, Susanti D, Mahmood S, et al.
    BMC Complement Altern Med, 2019 Aug 14;19(1):213.
    PMID: 31412845 DOI: 10.1186/s12906-019-2625-2
    BACKGROUND: Various extracts of Centella asiatica (Apiaceae) and its active constituent, asiaticoside, have been reported to possess wound healing property when assessed using various in vivo and in vitro models. In an attempt to develop a formulation with accelerated wound healing effect, the present study was performed to examine in vivo efficacy of asiaticoside-rich hydrogel formulation in rabbits.

    METHODS: Asiaticoside-rich fraction was prepared from C. asiatica aerial part and then incorporated into polyvinyl alcohol/polyethylene glycol (PVA/PEG) hydrogel. The hydrogel was subjected to wound healing investigation using the in vivo incision model.

    RESULTS: The results obtained demonstrated that: i) the hydrogel formulation did not cause any signs of irritation on the rabbits' skin and; ii) enhanced wound healing 15% faster than the commercial cream and > 40% faster than the untreated wounds. The skin healing process was seen in all wounds marked by formation of a thick epithelial layer, keratin, and moderate formation of granulation tissues, fibroblasts and collagen with no fibrinoid necrosis detected.

    CONCLUSION: The asiaticoside-rich hydrogel developed using the freeze-thaw method was effective in accelerating wound healing in rabbits.

    Matched MeSH terms: Wound Healing/drug effects*
  10. Che Zain MS, Lee SY, Nasir NM, Fakurazi S, Shaari K
    Molecules, 2020 Nov 30;25(23).
    PMID: 33265992 DOI: 10.3390/molecules25235636
    Oil palm (Elaeis guineensis Jacq.) leaflets (OPLs) are one of the major agricultural by-products generated from the massive cultivation of Malaysian palm oil. This biomass is also reported to be of potential value based on its health-improving effects. By employing proton nuclear magnetic resonance (1H-NMR) spectroscopy combined with multivariate data analysis (MVDA), the metabolite profile of OPLs was characterized and correlated with their antioxidant and wound healing properties. Principal component analysis (PCA) classified four varieties of extracts, prepared using solvents ranging from polar to medium polarity, into three distinct clusters. Cumulatively, six flavonoids, eight organic acids, four carbohydrates, and an amine were identified from the solvent extracts. The more polar extracts, such as, the ethyl acetate-methanol, absolute methanol, and methanol-water, were richer in phytochemicals. Based on partial least square (PLS) analysis, the constituents in these extracts, such as (+)-catechin, (-)-epicatechin, orientin, isoorientin, vitexin, and isovitexin, were strongly correlated with the measured antioxidant activities, comprising ferric reducing antioxidant power (FRAP), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and nitric oxide (NO) free radical scavenging activities, as well as with cell proliferation and migration activities. This study has provided crucial evidence on the importance of these natural antioxidant compounds on the wound healing properties of OPL.
    Matched MeSH terms: Wound Healing/drug effects*
  11. Aslam Khan MU, Abd Razak SI, Al Arjan WS, Nazir S, Sahaya Anand TJ, Mehboob H, et al.
    Molecules, 2021 Jan 25;26(3).
    PMID: 33504080 DOI: 10.3390/molecules26030619
    The polymeric composite material with desirable features can be gained by selecting suitable biopolymers with selected additives to get polymer-filler interaction. Several parameters can be modified according to the design requirements, such as chemical structure, degradation kinetics, and biopolymer composites' mechanical properties. The interfacial interactions between the biopolymer and the nanofiller have substantial control over biopolymer composites' mechanical characteristics. This review focuses on different applications of biopolymeric composites in controlled drug release, tissue engineering, and wound healing with considerable properties. The biopolymeric composite materials are required with advanced and multifunctional properties in the biomedical field and regenerative medicines with a complete analysis of routine biomaterials with enhanced biomedical engineering characteristics. Several studies in the literature on tissue engineering, drug delivery, and wound dressing have been mentioned. These results need to be reviewed for possible development and analysis, which makes an essential study.
    Matched MeSH terms: Wound Healing/drug effects
  12. Mughrabi FF, Hashim H, Ameen M, Khaledi H, Ali HM, Ismail S
    Indian J Exp Biol, 2011 Jan;49(1):50-5.
    PMID: 21365996
    Effects of topical application of Bis[benzyl N'-(indol-3-ylmethylene)-hydrazinecarbodithioato]-zinc(II) (BHCZ) on wound healing and histology of healed wound were assessed. Sprague Dawley rats were experimentally induced wound in the posterior neck area. Tween 20 (0.2 ml of 10%) was applied to rats in Group 1 (negative control). Intrasite gel (0.2 ml) was applied topically to rats in Group 2 as reference. BHCZ at the concentrations 0.2 ml of 25, 50 and 100 mg/ml were applied to Group 3, 4 and 5, respectively. Wound dressed with BHCZ significantly healed earlier than those treated with 10% Tween 20. Also wound dressed with 100 mg/ml BHCZ accelerated the rate of wound healing compared to those dressed with intrasite gel and, 25 mg/ml and 50 mg/ml BHCZ. Histological analysis of healed wound with BHCZ showed comparatively less scar width at wound enclosure and the healed wound contained less macrophages and large amount of collagen with angiogenesis compared to wounds dressed with 10% Tween 20. Results of this study showed that wounds dressed with 100 mg/ml of BHCZ significantly enhanced acceleration of the rate of wound healing enclosure, and histology of healed wounds showed comparatively less macrophages and more collagen with angiogenesis.
    Matched MeSH terms: Wound Healing/drug effects*
  13. Ajlia SA, Majid FA, Suvik A, Effendy MA, Nouri HS
    Pak J Biol Sci, 2010 Jun 15;13(12):596-603.
    PMID: 21061910
    A new invention, papain-based wound cleanser is formulated by incorporating papain, a proteolytic enzyme extracted from Carica papaya into the formulation. This cleanser is invented to simplify the methods in wound management by combining wound cleansing and wound debridement using a single formulation. This study describes the preparation and preclinical study of papain-based wound cleanser in accelerating wound healing. In this study, papain-based wound cleanser was used to treat wound incision on Sprague-Dawley rats while distilled water and Betadine were used as negative and positive control. Twenty-seven clinically healthy white rats were randomly divided into three groups and treated accordingly until the 21st day post-incision. Wound reduction rates and histological analysis were obtained to asses the healing pattern. Rats treated with papain-based wound cleanser showed a progressive wound healing based on the wound reduction rates and histological analysis when compared with rats treated with distilled water and Betadine. Better collagen deposition and presence of skin organelles in rats treated with papain-based wound cleanser demonstrated its efficacy in promoting wound healing. In addition to its wound healing effect, papain-based wound cleanser is also integrated with antibacterial properties which make it a complete package for wound management. However, further studies should be carried out to ensure its safety for human usage.
    Matched MeSH terms: Wound Healing/drug effects*
  14. Ng MH, Duski S, Tan KK, Yusof MR, Low KC, Rose IM, et al.
    Biomed Res Int, 2014;2014:345910.
    PMID: 25165699 DOI: 10.1155/2014/345910
    Calcium phosphate-based bone substitutes have not been used to repair load-bearing bone defects due to their weak mechanical property. In this study, we reevaluated the functional outcomes of combining ceramic block with osteogenic-induced mesenchymal stem cells and platelet-rich plasma (TEB) to repair critical-sized segmental tibial defect. Comparisons were made with fresh marrow-impregnated ceramic block (MIC) and partially demineralized allogeneic bone block (ALLO). Six New Zealand White female rabbits were used in each study group and three rabbits with no implants were used as negative controls. By Day 90, 4/6 rabbits in TEB group and 2/6 in ALLO and MIC groups resumed normal gait pattern. Union was achieved significantly faster in TEB group with a radiological score of 4.50 ± 0.78 versus ALLO (1.06 ± 0.32), MIC (1.28 ± 0.24), and negative controls (0). Histologically, TEB group scored the highest percentage of new bone (82% ± 5.1%) compared to ALLO (5% ± 2.5%) and MIC (26% ± 5.2%). Biomechanically, TEB-treated tibiae achieved the highest compressive strength (43.50 ± 12.72 MPa) compared to those treated with ALLO (15.15 ± 3.57 MPa) and MIC (23.28 ± 6.14 MPa). In conclusion, TEB can repair critical-sized segmental load-bearing bone defects and restore limb function.
    Matched MeSH terms: Wound Healing/drug effects
  15. Hussan F, Teoh SL, Muhamad N, Mazlan M, Latiff AA
    J Wound Care, 2014 Aug;23(8):400, 402, 404-7.
    PMID: 25139598 DOI: 10.12968/jowc.2014.23.8.400
    Transforming growth factor-β (TGF-β) plays an important role in wound healing. Delayed wound healing is a consequence of diabetes, leading to high morbidity and poor quality of life. Momordica charantia (MC) fruit possesses anti-diabetic and wound healing properties. This study aimed to explore the changes in TGF-β expression in diabetic wounds treated with topical MC fruit extract.
    Matched MeSH terms: Wound Healing/drug effects*
  16. Kutty MG, De A, Bhaduri SB, Yaghoubi A
    ACS Appl Mater Interfaces, 2014 Aug 27;6(16):13587-93.
    PMID: 25095907 DOI: 10.1021/am502967n
    Morphological surface modifications have been reported to enhance the performance of biomedical implants. However, current methods of introducing graded porosity involves postprocessing techniques that lead to formation of microcracks, delamination, loss of fatigue strength, and, overall, poor mechanical properties. To address these issues, we developed a microwave sintering procedure whereby pure titanium powder can be readily densified into implants with graded porosity in a single step. Using this approach, surface topography of implants can be closely controlled to have a distinctive combination of surface area, pore size, and surface roughness. In this study, the effect of various surface topographies on in vitro response of neonatal rat calvarial osteoblast in terms of attachment and proliferation is studied. Certain graded surfaces nearly double the chance of cell viability in early stages (∼one month) and are therefore expected to improve the rate of healing. On the other hand, while the osteoblast morphology significantly differs in each sample at different periods, there is no straightforward correlation between early proliferation and quantitative surface parameters such as average roughness or surface area. This indicates that the nature of cell-surface interactions likely depends on other factors, including spatial parameters.
    Matched MeSH terms: Wound Healing/drug effects*
  17. Wong TW, Ramli NA
    Carbohydr Polym, 2014 Nov 4;112:367-75.
    PMID: 25129756 DOI: 10.1016/j.carbpol.2014.06.002
    Infection control and wound healing profiles of sodium carboxymethylcellulose (SCMC) films were investigated as a function of their anti-bacterial action, physical structures, polymer molecular weights and carboxymethyl substitution degrees. The films were prepared with in vitro polymer/film and in vivo microbe-colonized wound healing/systemic infection profiles examined. Adhesive high carboxymethyl substituted SCMC films aided healing via attaching to microbes and removing them from wound. Pseudomonas aeruginosa was removed via encapsulating in gelling low molecular weight SCMC film, whereas Staphylococcus aureus was trapped in tight folds of high molecular weight SCMC film. Incomplete microbe removal from wound did not necessary translate to inability to heal as microbe remnant at wound induced fibroblast migration and aided tissue reconstruction. Using no film nonetheless will cause systemic blood infection. SCMC films negate infection and promote wound healing via specific polymer-microbe adhesion, and removal of S. aureus and P. aeruginosa requires films of different polymer characteristics.
    Matched MeSH terms: Wound Healing/drug effects*
  18. Al-Obaidi MM, Al-Bayaty FH, Al Batran R, Hassandarvish P, Rouhollahi E
    Arch Oral Biol, 2014 Sep;59(9):987-99.
    PMID: 24952163 DOI: 10.1016/j.archoralbio.2014.06.001
    This study has attempted to evaluate the effects of ellagic acid (EA) on alveolar bone healing after tooth extraction in rats.
    Matched MeSH terms: Wound Healing/drug effects*
  19. Sasidharan S, Logeswaran S, Latha LY
    Int J Mol Sci, 2012;13(1):336-47.
    PMID: 22312255 DOI: 10.3390/ijms13010336
    Elaeis guineensis of the Arecaceae family is widely used in the traditional medicine of societies in West Africa for treating various ailments. To validate the ethnotherapeutic claims of the plant in skin diseases, wound healing activity was studied. The results showed that E. guineensis leaf extract had potent wound healing capacity as evident from the better wound closure (P < 0.05), improved tissue regeneration at the wound site, and supporting histopathological parameters pertaining to wound healing. Matrix metalloproteinases expression correlated well with the results thus confirming efficacy of E. guineensis in the treatment of the wound. E. guineensis accelerated wound healing in rats, thus supporting its traditional use. The result of this study suggested that, used efficiently, oil palm leaf extract is a renewable resource with wound healing properties.
    Matched MeSH terms: Wound Healing/drug effects*
  20. Kamarul T, Ab-Rahim S, Tumin M, Selvaratnam L, Ahmad TS
    Eur Cell Mater, 2011 Mar 15;21:259-71; discussion 270-1.
    PMID: 21409755
    The effects of Glucosamine Sulphate (GS) and Chondroitin Sulphate (CS) on the healing of damaged and repaired articular cartilage were investigated. This study was conducted using 18 New Zealand white rabbits as experimental models. Focal cartilage defects, surgically created in the medial femoral condyle, were either treated by means of autologous chondrocyte implantation (ACI) or left untreated as controls. Rabbits were then divided into groups which received either GS+/-CS or no pharmacotherapy. Three rabbits from each group were sacrificed at 12 and 24 weeks post-surgery. Knees dissected from rabbits were then evaluated using gross quantification of repair tissue, glycosaminoglycan (GAG) assays, immunoassays and histological assessments. It was observed that, in contrast to untreated sites, surfaces of the ACI-repaired sites appeared smooth and continuous with the surrounding native cartilage. Histological examination demonstrated a typical hyaline cartilage structure; with proteoglycans, type II collagen and GAGs being highly expressed in repair areas. The improved regeneration of these repair sites was also noted to be significant over time (6 months vs. 3 months) and in GS and GS+CS groups compared to the untreated (without pharmacotherapy) group. Combination of ACI and pharmacotherapy (with glucosamine sulphate alone/ or with chondroitin sulphate) may prove beneficial for healing of damaged cartilage, particularly in relation to focal cartilage defects.
    Matched MeSH terms: Wound Healing/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links