An active heterogeneous Al2O3 modified MgZnO (MgZnAlO) catalyst was prepared and the catalytic activity was investigated for the transesterification of different vegetable oils (refined palm oil, waste cooking palm oil, palm kernel oil and coconut oil) with methanol to produce biodiesel. The catalyst was characterized by using X-ray diffraction, Fourier transform infrared spectra, thermo gravimetric and differential thermal analysis to ascertain its versatility. Effects of important reaction parameters such as methanol to oil molar ratio, catalyst dosage, reaction temperature and reaction time on oil conversion were examined. Within the range of studied variability, the suitable transesterification conditions (methanol/oil ratio 16:1, catalyst loading 3.32 wt.%, reaction time 6h, temperature 182°C), the oil conversion of 98% could be achieved with reference to coconut oil in a single stage. The catalyst can be easily recovered and reused for five cycles without significant deactivation.
Magnetic solid phase extraction (MSPE) employing oil-palm fiber activated carbon (OPAC) modified with magnetite (Fe3O4) and polypyrrole (OPAC-Fe3O4-PPy) was successfully used for the determination of two organochlorine pesticides (OCPs), namely endosulfan and dieldrin in environmental water samples. Analysis was performed using gas chromatography with micro-electron capture detection (GC-μECD). The effects of three preparation variables, namely Fe3O4:OPAC ratio, amount of pyrrole monomer, and amount of FeCl3 oxidant were optimized using Box-Behnken design (BBD) (R2 < 0.99, p-value < 0.001%). The optimum conditions were as follows: Fe3O4:OPAC ratio of 2:1 w/w, 1 g of FeCl3 and 100 μL of pyrrole monomer. The experimental results obtained agreed satisfactorily with the model prediction (> 90% agreement). Optimized OPAC-Fe3O4-PPy composite was characterized using field emission scanning electron microscope, vibrating sample magnetometer and Fourier transform infrared spectroscopy. Four numerical parameters of MSPE procedure was optimized using BBD. The significance of the MSPE parameters were salt addition > sample solution pH > extraction time and desorption time. Under the optimized conditions (extraction time: 90 s, desorption time: 10 min, salt: 0%, and pH: 5.8), the method demonstrated good linearity (25-1000 ng L-1) with coefficients of determination, R2 > 0.991, and low detection limits for both endosulfan (7.3 ng L-1) and dieldrin (8.6 ng L-1). The method showed high analyte recoveries in the range of 98.6-103.5% for environmental water samples. The proposed OPAC-Fe3O4-PPy MSPE method offered good features such as sustainability, simplicity, and rapid extraction.
Nanocomposites of magnetite (Fe3O4) and reduced graphene oxide (rGO) generate heat under an alternating magnetic field and therefore have potential applications as thermoseeds for cancer hyperthermia treatment. However, the properties of such nanocomposites as biomaterials have not been sufficiently well characterized. In this study, the osteoconductivity of Fe3O4-rGO nanocomposites of various compositions was evaluated in vitro in terms of their apatite-forming ability in simulated body fluid (SBF). Furthermore, the heat generation of the nanocomposites was measured under an alternating magnetic field. The apatite-forming ability in SBF improved as the Fe3O4 content in the nanocomposite was increased. As the Fe3O4 content was increased, the nanocomposite not only rapidly raised the surrounding temperature to approximately 100 °C, but the specific absorption rate also increased. We assumed that the ionic interaction between the Fe3O4 and rGO was enhanced and that Brown relaxation was suppressed as the proportion of rGO in the nanocomposite was increased. Consequently, a high content of Fe3O4 in the nanocomposite was effective for improving both the osteoconductivity and heat generation characteristics for hyperthermia applications.
Oily wastewater, especially water-oil emulsion has become serious environmental issue and received global attention. Chemical demulsifiers are widely used to treat oil-water emulsion, but the toxicity, non-recyclable and non-environmental friendly characteristic of chemical demulsifiers had limited their practical application in oil-water separation. Therefore, it is imperative to develop an efficient, simple, eco-friendly and recyclable demulsifiers for breaking up the emulsions from the oily wastewater. In this study, a magnetic demulsifier, magnetite-reduced graphene oxide (M-rGO) nanocomposites were proposed as a recyclable demulsifier to break up the surfactant stabilized crude oil-in-water (O/W) emulsion. M-rGO nanocomposites were prepared via in situ chemical synthesis by using only one type Fe salt and GO solid as precursor at room temperature. The prepared composites were fully characterized by various techniques. The effect of demulsifier dosage and pH of emulsion on demulsification efficiency (ED) has been studied in detailed. The demulsification mechanism was also proposed in this study. Results showed that M-rGO nanocomposites were able to demulsify crude O/W emulsion. The ED reaches 99.48% when 0.050 wt.% of M-rGO nanocomposites were added to crude O/W emulsion (pH = 4). Besides, M-rGO nanocomposites can be recycled up to 7 cycles without showing a significant change in terms of ED. Thus, M-rGO nanocomposite is a promising demulsifier for surfactant stabilized crude O/W emulsion.
A new facile magnetic micro-solid-phase extraction coupled to gas chromatography and mass spectrometry detection was developed for the extraction and determination of selected antidepressant drugs in biological fluids using magnetite-MCM-41 as adsorbent. The synthesized sorbent was characterized by several spectroscopic techniques. The maximum extraction efficiency for extraction of 500 μg/L antidepressant drugs from aqueous solution was obtained with 15 mg of magnetite-MCM-41 at pH 12. The analyte was desorbed using 100 μL of acetonitrile prior to gas chromatography determination. This method was rapid in which the adsorption procedure was completed in 60 s. Under the optimized conditions using 15 mL of antidepressant drugs sample, the calibration curve showed good linearity in the range of 0.05-500 μg/L (r2 = 0.996-0.999). Good limits of detection (0.008-0.010 μg/L) were obtained for the analytes with good relative standard deviations of <8.0% (n = 5) for the determination of 0.1, 5.0, and 500.0 μg/L of antidepressant drugs. This method was successfully applied to the determination of amitriptyline and chlorpromazine in plasma and urine samples. The recoveries of spiked plasma and urine samples were in the range of 86.1-115.4%. Results indicate that magnetite micro-solid-phase extraction with gas chromatography and mass spectrometry is a convenient, fast, and economical method for the extraction and determination of amitriptyline and chlorpromazine in biological samples.
This study investigated heat transfer in magnetohydrodynamic (MHD) mixed convection flow of ferrofluid along a vertical channel. The channel with non-uniform wall temperatures was taken in a vertical direction with transverse magnetic field. Water with nanoparticles of magnetite (Fe3O4) was selected as a conventional base fluid. In addition, non-magnetic (Al2O3) aluminium oxide nanoparticles were also used. Comparison between magnetic and magnetite nanoparticles were also conducted. Fluid motion was originated due to buoyancy force together with applied pressure gradient. The problem was modelled in terms of partial differential equations with physical boundary conditions. Analytical solutions were obtained for velocity and temperature. Graphical results were plotted and discussed. It was found that temperature and velocity of ferrofluids depend strongly on viscosity and thermal conductivity together with magnetic field. The results of the present study when compared concurred with published work.
Triethoxyphenylsilane (TEPS)-functionalized magnetic palm-based powdered activated carbon (MPPAC-TEPS) was prepared and characterized using various spectroscopic methods, and then tested for the removal of bisphenol A, carbamazepine, ibuprofen and clofibric acid. Magnetite film on MPPAC-TEPS was homogeneously coated on the outer surface of palm-based powdered activated carbon (PPAC) through a hydrothermal co-precipitation technique. Followed by silanization of phenyl-functionalized organosilane on MPPAC's magnetic film. As results, micro/mesopore surface area and volume increased without significant pore clogging and iron (Fe) dissolution under the acidic conditions was greatly decreased. The unique structural and chemical features of MPPAC-TEPS were found to be the main reasons for the enhanced adsorption rates and removal capacities of POPs. The presence of electrolytes and different pH values greatly affected the sorption efficiencies. The dominant sorption mechanism of POPs by MPPAC-TEPS was determined to be π-π interaction (physisorption), based on thermodynamic (ΔG°) and differential scanning calorimetry (DSC). Thermal regeneration at a low temperature (350 °C) was an effective method to desorb the retained POPs and enabled to reactivate MPPAC-TEPS with sustained sorption rates and capacities, whereas PPAC was largely exhausted. As a new type of sorbent for POPs, MPPAC-TEPS has operational advantages, such as magnetic separation and stable regeneration.
In the present study, magnetic oil palm empty fruits bunch cellulose nanofiber (M-OPEFB-CNF) composite was isolated by sol-gel method using cellulose nanofiber (CNF) obtained from oil palm empty fruits bunch (OPEFB) and Fe3O4 as magnetite. Several analytical methods were utilized to characterize the mechanical, chemical, thermal, and morphological properties of the isolated CNF and M-OPEFB-CNF. Subsequently, the isolated M-OPEFB-CNF composite was utilized for the adsorption of Cr(VI) and Cu(II) from aqueous solution with varying parameters, such as pH, adsorbent doses, treatment time, and temperature. Results showed that the M-OPEFB-CNF as an effective bio-sorbent for the removal of Cu(II) and Cr(VI) from aqueous solution. The adsorption isotherm modeling revealed that the Freundlich equation better describes the adsorption of Cu(II) and Cr(VI) on M-OPEFB-CNF composite. The kinetics studies revealed the pseudo-second-order kinetics model was a better-described kinetics model for the removal of Cu(II) and Cr(VI) using M-OPEFB-CNF composite as bio-sorbent. The findings of the present study showed that the M-OPEFB-CNF composite has the potential to be utilized as a bio-sorbent for heavy metals removal.
Impacts of gold nanoparticles on MHD Poiseuille flow of nanofluid in a porous medium are studied. Mixed convection is induced due to external pressure gradient and buoyancy force. Additional effects of thermal radiation, chemical reaction and thermal diffusion are also considered. Gold nanoparticles of cylindrical shape are considered in kerosene oil taken as conventional base fluid. However, for comparison, four other types of nanoparticles (silver, copper, alumina and magnetite) are also considered. The problem is modeled in terms of partial differential equations with suitable boundary conditions and then computed by perturbation technique. Exact expressions for velocity and temperature are obtained. Graphical results are mapped in order to tackle the physics of the embedded parameters. This study mainly focuses on gold nanoparticles; however, for the sake of comparison, four other types of nanoparticles namely silver, copper, alumina and magnetite are analyzed for the heat transfer rate. The obtained results show that metals have higher rate of heat transfer than metal oxides. Gold nanoparticles have the highest rate of heat transfer followed by alumina and magnetite. Porosity and magnetic field have opposite effects on velocity.
Nano-magnetites are widely researched for its potential as an excellent adsorbent in many applications. However, the efficiency of the nano-magnetites are hindered by their tendency to agglomerate. In this work, we dispersed and embedded the nano-magnetites in a porous silica gel matrix to form a nanocomposite to reduce the extent of agglomeration and to enhance the adsorption performance. Our experimental results showed that the removal efficiency of Cu2+ ion has improved by 46% (22.4 ± 2.2%) on the nano-magnetite-silica-gel (NMSG) nanocomposite as compared to pure nano-magnetites (15.3 ± 0.6%). The adsorption capacity is further enhanced by 39% (from 11.2 ± 1.1 to 15.6 ± 1.6 mg/g) by subjecting the NMSG to a magnetic field prior to adsorption. We infer that the magnetic field aligned the magnetic domains within the nano-magnetites, resulting in an increased Lorentz force during adsorption. Similar alignment of magnetic domains is near to impossible in pure nano-magnetites due to severe agglomeration. We further found that the adsorption capacity of the NMSG can be manipulated with an external magnetic field by varying the strength and the configurations of the field. Equipped with proper process design, our finding has great potentials in processes that involve ion-adsorptions, for example, NMSG can: (i) replace/reduce chemical dosing in controlling adsorption kinetics, (ii) replace/reduce complex chemicals required in ion-chromatography columns, and (iii) reduce wastage of nano-adsorbents by immobilizing it in a porous matrix.
Clean water is very important for health and well-being of humans and ecosystem. However, over the year, a billion tons of industrial waste, fertilizers and chemical waste were dumped untreated into water bodies, such as rivers, lake and oceans contributing towards water pollution, then threatening human health and ecosystem. Hence, the need for clean water has urged scientists to research and find solutions for improving water quality. Application of nanoparticles in wastewater treatment improves the environmental quality by elimination of harmful pollutants in wastewater. Magnetite is one of the nanoparticles used in wastewater treatment because of its specific large surface area, high reactivity in adsorption and recoverable from treated water via magnetic separation technology. Preparation method of magnetite nanoparticles is the important key to its adsorption efficiency.
Magnetic nanoparticles of Fe₃O₄ were synthesized and characterized using transmission electron microscopy and X-ray diffraction. The Fe₃O₄ nanoparticles were found to have an average diameter of 5.48 ±1.37 nm. An electrochemical biosensor based on immobilized alkaline phosphatase (ALP) and Fe₃O₄ nanoparticles was studied. The amperometric biosensor was based on the reaction of ALP with the substrate ascorbic acid 2-phosphate (AA2P). The incorporation of the Fe₃O₄ nanoparticles together with ALP into a sol gel/chitosan biosensor membrane has led to the enhancement of the biosensor response, with an improved linear response range to the substrate AA2P (5-120 μM) and increased sensitivity. Using the inhibition property of the ALP, the biosensor was applied to the determination of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). The use of Fe₃O₄ nanoparticles gives a two-fold improvement in the sensitivity towards 2,4-D, with a linear response range of 0.5-30 μgL-1. Exposure of the biosensor to other toxicants such as heavy metals demonstrated only slight interference from metals such as Hg2+, Cu2+, Ag2+ and Pb2+. The biosensor was shown to be useful for the determination of the herbicide 2, 4-D because good recovery of 95-100 percent was obtained, even though the analysis was performed in water samples with a complex matrix. Furthermore, the results from the analysis of 2,4-D in water samples using the biosensor correlated well with a HPLC method.
Polypyrrole-magnetite dispersive micro-solid-phase extraction method combined with ultraviolet-visible spectrophotometry was developed for the determination of selected cationic dyes in textile wastewater. Polypyrrole-magnetite was used as adsorbent due to its thermal stability, magnetic properties, and ability to adsorb Rhodamine 6G and crystal violet. Dispersive micro-solid-phase extraction parameters were optimized, including sample pH, adsorbent amount, extraction time, and desorption solvent. The optimum polypyrrole-magnetite dispersive micro-solid phase-extraction conditions were sample pH 8, 60 mg polypyrrole-magnetite adsorbent, 5 min of extraction time, and acetonitrile as the desorption solvent. Under the optimized conditions, the polypyrrole-magnetite dispersive micro-solid-phase extraction with ultraviolet-visible method showed good linearity in the range of 0.05-7 mg/L (R2 > 0.9980). The method also showed a good limit of detection for the dyes (0.05 mg/L) and good analyte recoveries (97.4-111.3%) with relative standard deviations
Lung cancer, breast cancer and colorectal cancer are the most prevalent fatal types of cancers globally. Gallic acid (3,4,5-trihydroxybenzoic acid) is a bioactive compound found in plants and foods, such as white tea, witch hazel and it has been reported to possess anticancer, antioxidant and anti-inflammatory properties. In this study we have redesigned our previously reported anticancer nanocomposite formulation with improved drug loading based on iron oxide magnetite nanoparticles coated with polyethylene glycol and loaded with anticancer drug gallic acid (Fe₃O₄-PEG-GA). The in vitro release profile and percentage drug loading were found to be better than our previously reported formulation. The anticancer activity of pure gallic acid (GA), empty carrier (Fe₃O₄-PEG) nanocarrier and of anticancer nanocomposite (Fe₃O₄-PEG-GA) were screened against human lung cancer cells (A549), human breast cancer cells (MCF-7), human colon cancer cells (HT-29) and normal fibroblast cells (3T3) after incubation of 24, 48 and 72 h using (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) MTT assay. The designed formulation (Fe₃O₄-PEG-GA) showed better anticancer activity than free gallic acid (GA). The results of the in vitro studies are highly encouraging to conduct the in vivo studies.
The increasing number and concentration of organic pollutants in water stream could become a serious threat in the near future. Magnetite has the potential to degrade pollutants via photocatalysis with a convenient separation process. This study discusses in detail the control size and morphology of magnetite nanoparticles, and their composites with co-precipitation, hydrothermal, sol-gel, and electrochemical route. Further photocatalytic enhancement with the addition of metal and porous support was proposed. This paper also discussed the technology to extend the lifetime of recombination through an in-depth explanation of charge transfer. The possibility to use waste materials as catalyst support was also elucidated. However, magnetite-based photocatalysts still require many improvements to meet commercialization criteria.
The preparation of magnetic nanoparticles coated with chitosan-prindopril erbumine was accomplished and confirmed by X-ray diffraction, TEM, magnetic measurements, thermal analysis and infrared spectroscopic studies. X-ray diffraction and TEM results demonstrated that the magnetic nanoparticles were pure iron oxide phase, having a spherical shape with a mean diameter of 6 nm, compared to 15 nm after coating with chitosan-prindopril erbumine (FCPE). Fourier transform infrared spectroscopy study shows that the coating of iron oxide nanoparticles takes place due to the presence of some bands that were emerging after the coating process, which belong to the prindopril erbumine (PE). The thermal stability of the PE in an FCPE nanocomposite was remarkably enhanced. The release study showed that around 89% of PE could be released within about 93 hours by a phosphate buffer solution at pH 7.4, which was found to be of sustained manner governed by first order kinetic. Compared to the control (untreated), cell viability study in 3T3 cells at 72 h post exposure to both the nanoparticles and the pure drug was found to be sustained above 80% using different doses.
In this study, a new magnetic adsorbent based on magnetite-sporopollenin/graphene oxide (Fe3O4-SP/GO) was successfully developed. The adsorbent was applied for magnetic solid phase extraction (MSPE) of three selected polar organophosphorus pesticides (OPPs), namely, dimethoate, phenthoate, and phosphamidon, prior to gas chromatography analysis with electron capture detection (GC-μECD). The Fe3O4-SP/GO adsorbent combines the advantages of superior adsorption capability of the modified sporopollenin (SP) with graphene oxide (GO) and magnetite (Fe3O4) for easy isolation from sample solution. Several MSPE parameters were optimized. Under optimized conditions, excellent linearity (R2 ≥ 0.9994) was achieved using matrix match calibration in the range of 0.1 to 500 ng mL-1. The limit of detection (LOD) method (S/N = 3) was from 0.02 to 0.05 ng mL-1. The developed Fe3O4-SP/GO MSPE method was successfully applied for the determination of these three polar OPPs in cucumber, long beans, bell pepper, and tomato samples. Good recoveries (81.0-120.0%) and good relative standard deviation (RSD) (1.4-7.8%, n = 3) were obtained for the spiked OPPs (1 ng mL-1) from real samples. This study is beneficial for adsorptive removal of toxic pesticide compounds from vegetable samples.
Discovery of a novel anticancer drug delivery agent is important to replace conventional cancer therapies which are often accompanied by undesired side effects. This study demonstrated the synthesis of superparamagnetic magnetite nanocomposites (Fe3O4-NCs) using a green method. Montmorillonite (MMT) was used as matrix support, while Fe3O4 nanoparticles (NPs) and carrageenan (CR) were used as filler and stabilizer, respectively. The combination of these materials resulted in a novel nanocomposite (MMT/CR/Fe3O4-NCs). A series of characterization experiments was conducted. The purity of MMT/CR/Fe3O4-NCs was confirmed by X-ray diffraction (XRD) analysis. High resolution transmission electron microscopy (HRTEM) analysis revealed the uniform and spherical shape of Fe3O4 NPs with an average particle size of 9.3 ± 1.2 nm. Vibrating sample magnetometer (VSM) analysis showed an Ms value of 2.16 emu/g with negligible coercivity which confirmed the superparamagnetic properties. Protocatechuic acid (PCA) was loaded onto the MMT/CR/Fe3O4-NCs and a drug release study showed that 15% and 92% of PCA was released at pH 7.4 and 4.8, respectively. Cytotoxicity assays showed that both MMT/CR/Fe3O4-NCs and MMT/CR/Fe3O4-PCA effectively killed HCT116 which is a colorectal cancer cell line. Dose-dependent inhibition was seen and the killing was enhanced two-fold by the PCA-loaded NCs (IC50-0.734 mg/mL) compared to the unloaded NCs (IC50-1.5 mg/mL). This study highlights the potential use of MMT/CR/Fe3O4-NCs as a biologically active pH-responsive drug delivery agent. Further investigations are warranted to delineate the mechanism of cell entry and cancer cell killing as well as to improve the therapeutic potential of MMT/CR/Fe3O4-NCs.
Graphene-magnetite composite (G-Fe3O4) was successfully synthesized and applied as adsorbent for magnetic solid phase extraction (MSPE) of two phenolic acids namely 4-hydroxybenzoic acid (4-HB) and 3,4-dihydroxybenzoic acid (3,4-DHB) from stingless bee honey prior to analysis using high performance liquid chromatography with ultraviolet-visible detection (HPLC-UV/Vis). Several MSPE parameters affecting extraction of these two acids were optimized. Optimum MSPE conditions were 50 mg of G-Fe3O4 adsorbent, 5 min extraction time at 1600 rpm, 30 mL sample volume, sample solution pH 0.5, 200 µL methanol as desorption solvent (5 min sonication assisted) and 5% w/v NaCl. The LODs (3 S/N) calculated for 4-HB and 3,4-DHB were 0.08 and 0.14 µg/g, respectively. Good relative recoveries (72.6-110.6%) and reproducibility values (RSD
Coal combustion and the disposal of combustion wastes emit enormous quantities of nano-sized particles that pose significant health concerns on exposure, particularly in unindustrialized countries. Samples of fresh and weathered class F fly ash were analysed through various techniques including X-ray fluorescence (XRF), X-ray diffraction (XRD), focused ion beam scanning electron microscopy (FIB-SEM), field-emission gun scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM) coupled with energy dispersive x-ray spectroscopy (EDS), and Raman Spectroscopy. The imaging techniques showed that the fresh and weathered coal fly ash nanoparticles (CFA-NPs) are mostly spherical shaped. The crystalline phases detected were quartz, mullite, ettringite, calcite, maghemite, hematite, gypsum, magnetite, clay residues, and sulphides. The most abundant crystalline phases were quartz mixed with Al-Fe-Si-K-Ti-O-amorphous phases whereas mullite was detected in several amorphous phases of Al, Fe, Ca, Si, O, K, Mg, Mn, and P. The analyses revealed that CFA-NPs are 5-500 nm in diameter and encapsulate several potentially hazardous elements (PHEs). The carbon species were detected as 5-50 nm carbon nanoballs of graphitic layers and massive fullerenes. Lastly, the aspects of health risks related to exposure to some detected ambient nanoparticles are also discussed.